Newer
Older
// Gmsh - Copyright (C) 1997-2011 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include "GmshConfig.h"
#include "GmshMessage.h"
#include "MPoint.h"
#include "MLine.h"
#include "MTriangle.h"
#include "MQuadrangle.h"
#include "MTetrahedron.h"
#include "MHexahedron.h"
#include "MPrism.h"
#include "MPyramid.h"
#include "MElementCut.h"
double MElement::_isInsideTolerance = 1.e-6;
Gauthier Becker
committed
MElement::MElement(int num, int part) : _visible(1)
{
#pragma omp critical
{
if(num){
_num = num;
_globalNum = std::max(_globalNum, _num);
}
else{
_num = ++_globalNum;
}
Gauthier Becker
committed
_partition = (short)part;
Gauthier Becker
committed
void MElement::_getEdgeRep(MVertex *v0, MVertex *v1,
double *x, double *y, double *z, SVector3 *n,
{
x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z();
x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z();
if(faceIndex >= 0){
n[0] = n[1] = getFace(faceIndex).normal();
}
else{
MEdge e(v0, v1);
n[0] = n[1] = e.normal();
}
}
Gauthier Becker
committed
void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
Gauthier Becker
committed
x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x();
y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y();
z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z();
SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]);
SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]);
SVector3 normal = crossprod(t1, t2);
normal.normalize();
for(int i = 0; i < 3; i++) n[i] = normal;
}
if(CTX::instance()->hideUnselected && _visible < 2) return false;
Gauthier Becker
committed
return _visible;
double MElement::minEdge()
{
double m = 1.e25;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::maxEdge()
{
double m = 0.;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::rhoShapeMeasure()
{
double min = minEdge();
double max = maxEdge();
if(max)
return min / max;
else
return 0.;
}
void MElement::getNode(int num, double &u, double &v, double &w)
{
// only for MElements that don't have a lookup table for this
// (currently only 1st order elements have)
double uvw[3];
MVertex* ver = getVertex(num);
double xyz[3] = {ver->x(), ver->y(), ver->z()};
xyz2uvw(xyz, uvw);
u = uvw[0];
v = uvw[1];
w = uvw[2];
}
void MElement::getShapeFunctions(double u, double v, double w, double s[], int o)

Christophe Geuzaine
committed
const polynomialBasis* fs = getFunctionSpace(o);
else Msg::Error("Function space not implemented for this type of element");
Gauthier Becker
committed
void MElement::getGradShapeFunctions(double u, double v, double w, double s[][3],

Christophe Geuzaine
committed
const polynomialBasis* fs = getFunctionSpace(o);
else Msg::Error("Function space not implemented for this type of element");
Gauthier Becker
committed
void MElement::getHessShapeFunctions(double u, double v, double w, double s[][3][3],
int o)
{
const polynomialBasis* fs = getFunctionSpace(o);
if(fs) fs->ddf(u, v, w, s);
else Msg::Error("Function space not implemented for this type of element");
}
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
p[0] += v->x();
p[1] += v->y();
p[2] += v->z();
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
double MElement::getVolume()
{
int npts;
IntPt *pts;
getIntegrationPoints(getDim() * (getPolynomialOrder() - 1), &npts, &pts);
double vol = 0.;
for (int i = 0; i < npts; i++){
vol += getJacobianDeterminant(pts[i].pt[0], pts[i].pt[1], pts[i].pt[2])
}
return vol;
}
int MElement::getVolumeSign()
{
double v = getVolume();
if(v < 0.) return -1;
else if(v > 0.) return 1;
else return 0;
}
bool MElement::setVolumePositive()
{
int s = getVolumeSign();
if(s < 0) revert();
if(!s) return false;
return true;
}
std::string MElement::getInfoString()
{
char tmp[256];
sprintf(tmp, "Element %d", getNum());
return std::string(tmp);
}
static double _computeDeterminantAndRegularize(MElement *ele, double jac[3][3])
Gauthier Becker
committed
jac[0][0] = jac[1][1] = jac[2][2] = 1.0;
jac[0][1] = jac[1][0] = jac[2][0] = 0.0;
Gauthier Becker
committed
jac[0][2] = jac[1][2] = jac[2][1] = 0.0;
Gauthier Becker
committed
}
case 1:
dJ = sqrt(SQU(jac[0][0]) + SQU(jac[0][1]) + SQU(jac[0][2]));
// regularize matrix
double a[3], b[3], c[3];
if((fabs(a[0]) >= fabs(a[1]) && fabs(a[0]) >= fabs(a[2])) ||
(fabs(a[1]) >= fabs(a[0]) && fabs(a[1]) >= fabs(a[2]))) {
b[0] = a[1]; b[1] = -a[0]; b[2] = 0.;
}
else {
b[0] = 0.; b[1] = a[2]; b[2] = -a[1];
}
Jonathan Lambrechts
committed
jac[1][0] = b[0]; jac[1][1] = b[1]; jac[1][2] = b[2];
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
break;
}
case 2:
{
dJ = sqrt(SQU(jac[0][0] * jac[1][1] - jac[0][1] * jac[1][0]) +
SQU(jac[0][2] * jac[1][0] - jac[0][0] * jac[1][2]) +
SQU(jac[0][1] * jac[1][2] - jac[0][2] * jac[1][1]));
// regularize matrix
double a[3], b[3], c[3];
a[0] = jac[0][0];
a[1] = jac[0][1];
a[2] = jac[0][2];
b[0] = jac[1][0];
b[1] = jac[1][1];
b[2] = jac[1][2];
prodve(a, b, c);
norme(c);
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
case 3:
{
dJ = fabs(jac[0][0] * jac[1][1] * jac[2][2] + jac[0][2] * jac[1][0] * jac[2][1] +
jac[0][1] * jac[1][2] * jac[2][0] - jac[0][2] * jac[1][1] * jac[2][0] -
jac[0][0] * jac[1][2] * jac[2][1] - jac[0][1] * jac[1][0] * jac[2][2]);
Gauthier Becker
committed
return dJ;
double MElement::getJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for (int i = 0; i < getNumShapeFunctions(); i++) {
const MVertex *v = getShapeFunctionNode(i);
jac[j][0] += v->x() * gg[j];
jac[j][1] += v->y() * gg[j];
jac[j][2] += v->z() * gg[j];
}
}
return _computeDeterminantAndRegularize(this, jac);
}
double MElement::getJacobian(const fullMatrix<double> &gsf, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for (int i = 0; i < getNumShapeFunctions(); i++) {
const MVertex *v = getShapeFunctionNode(i);
for (int j = 0; j < gsf.size2(); j++) {
jac[j][0] += v->x() * gsf(i, j);
jac[j][1] += v->y() * gsf(i, j);
jac[j][2] += v->z() * gsf(i, j);
}
}
return _computeDeterminantAndRegularize(this, jac);
}
double MElement::getPrimaryJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for(int i = 0; i < getNumPrimaryShapeFunctions(); i++) {
const MVertex *v = getShapeFunctionNode(i);
double* gg = gsf[i];
for (int j = 0; j < 3; j++) {
jac[j][0] += v->x() * gg[j];
jac[j][1] += v->y() * gg[j];
jac[j][2] += v->z() * gg[j];
return _computeDeterminantAndRegularize(this, jac);
}
for (int j = 0; j < getNumShapeFunctions(); j++) {
const MVertex *v = getShapeFunctionNode(j);
x += sf[j] * v->x();
y += sf[j] * v->y();
z += sf[j] * v->z();
Gauthier Becker
committed
}
void MElement::primaryPnt(double u, double v, double w, SPoint3 &p)
for (int j = 0; j < getNumPrimaryShapeFunctions(); j++) {
const MVertex *v = getShapeFunctionNode(j);
x += sf[j] * v->x();
y += sf[j] * v->y();
z += sf[j] * v->z();
}
p = SPoint3(x,y,z);
}
void MElement::xyz2uvw(double xyz[3], double uvw[3])
{
// general Newton routine for the nonlinear case (more efficient
// routines are implemented for simplices, where the basis functions
// are linear)
uvw[0] = uvw[1] = uvw[2] = 0.;
int iter = 1, maxiter = 20;
double error = 1., tol = 1.e-6;
while (error > tol && iter < maxiter){
double jac[3][3];
if(!getJacobian(uvw[0], uvw[1], uvw[2], jac)) break;
double xn = 0., yn = 0., zn = 0.;
for (int i = 0; i < getNumShapeFunctions(); i++) {
MVertex *v = getShapeFunctionNode(i);
xn += v->x() * sf[i];
yn += v->y() * sf[i];
zn += v->z() * sf[i];
Gauthier Becker
committed
double un = uvw[0] + inv[0][0] * (xyz[0] - xn) +
inv[1][0] * (xyz[1] - yn) + inv[2][0] * (xyz[2] - zn);
double vn = uvw[1] + inv[0][1] * (xyz[0] - xn) +
inv[1][1] * (xyz[1] - yn) + inv[2][1] * (xyz[2] - zn);
double wn = uvw[2] + inv[0][2] * (xyz[0] - xn) +
inv[1][2] * (xyz[1] - yn) + inv[2][2] * (xyz[2] - zn);
error = sqrt(SQU(un - uvw[0]) + SQU(vn - uvw[1]) + SQU(wn - uvw[2]));
uvw[0] = un;
uvw[1] = vn;
uvw[2] = wn;
iter++ ;
}
}
void MElement::movePointFromParentSpaceToElementSpace(double &u, double &v, double &w)
{
if(!getParent()) return;
SPoint3 p;
getParent()->pnt(u, v, w, p);
double xyz[3] = {p.x(), p.y(), p.z()};
double uvwE[3];
xyz2uvw(xyz, uvwE);
u = uvwE[0]; v = uvwE[1]; w = uvwE[2];
}
void MElement::movePointFromElementSpaceToParentSpace(double &u, double &v, double &w)
{
if(!getParent()) return;
SPoint3 p;
pnt(u, v, w, p);
double xyz[3] = {p.x(), p.y(), p.z()};
double uvwP[3];
getParent()->xyz2uvw(xyz, uvwP);
u = uvwP[0]; v = uvwP[1]; w = uvwP[2];
}
double MElement::interpolate(double val[], double u, double v, double w, int stride,
int order)
for(int i = 0; i < getNumShapeFunctions(); i++){
void MElement::interpolateGrad(double val[], double u, double v, double w, double f[],
for(int i = 0; i < getNumShapeFunctions(); i++){
dfdu[0] += val[j] * gsf[i][0];
dfdu[1] += val[j] * gsf[i][1];
dfdu[2] += val[j] * gsf[i][2];
j += stride;
}
if(invjac){
matvec(invjac, dfdu, f);
}
else{
double jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
matvec(inv, dfdu, f);
}
}
void MElement::interpolateCurl(double val[], double u, double v, double w, double f[],
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv, order);
interpolateGrad(&val[1], u, v, w, fy, stride, inv, order);
interpolateGrad(&val[2], u, v, w, fz, stride, inv, order);
f[0] = fz[1] - fy[2];
f[1] = -(fz[0] - fx[2]);
f[2] = fy[0] - fx[1];
}
double MElement::interpolateDiv(double val[], double u, double v, double w,
int stride, int order)
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv, order);
interpolateGrad(&val[1], u, v, w, fy, stride, inv, order);
interpolateGrad(&val[2], u, v, w, fz, stride, inv, order);

Koen Hillewaert
committed
double MElement::integrate(double val[], int pOrder, int stride, int order)
{
int npts; IntPt *gp;
getIntegrationPoints(pOrder, &npts, &gp);
double sum = 0;
for (int i = 0; i < npts; i++){
double u = gp[i].pt[0];
double v = gp[i].pt[1];
double w = gp[i].pt[2];
double weight = gp[i].weight;
double detuvw = getJacobianDeterminant(u, v, w);
sum += interpolate(val, u, v, w, stride, order)*weight*detuvw;
}
return sum;
}
switch(order) {
case 0 : return MSH_TRI_1;
case 1 : return MSH_TRI_3;
case 2 : return MSH_TRI_6;
case 3 : return MSH_TRI_10;
case 4 : return MSH_TRI_15;
case 5 : return MSH_TRI_21;
case 6 : return MSH_TRI_28;
case 7 : return MSH_TRI_36;
case 8 : return MSH_TRI_45;
case 9 : return MSH_TRI_55;
case 10 : return MSH_TRI_66;
default : Msg::Error("triangle order %i unknown", order); return 0;
switch(order) {
case 0 : return MSH_QUA_1;
case 1 : return MSH_QUA_4;
case 2 : return MSH_QUA_9;
case 3 : return MSH_QUA_16;
case 4 : return MSH_QUA_25;
case 5 : return MSH_QUA_36;
case 6 : return MSH_QUA_49;
case 7 : return MSH_QUA_64;
case 8 : return MSH_QUA_81;
case 9 : return MSH_QUA_100;
case 10 : return MSH_QUA_121;
default : Msg::Error("quad order %i unknown", order); return 0;
switch(order) {
case 0 : return MSH_LIN_1;
case 1 : return MSH_LIN_2;
case 2 : return MSH_LIN_3;
case 3 : return MSH_LIN_4;
case 4 : return MSH_LIN_5;
case 5 : return MSH_LIN_6;
case 6 : return MSH_LIN_7;
case 7 : return MSH_LIN_8;
case 8 : return MSH_LIN_9;
case 9 : return MSH_LIN_10;
case 10 : return MSH_LIN_11;
default : Msg::Error("line order %i unknown", order); return 0;
}
}
double MElement::integrateCirc(double val[], int edge, int pOrder, int order)
{
if(edge > getNumEdges() - 1){
Msg::Error("No edge %d for this element", edge);
return 0;
}
std::vector<MVertex*> v;
getEdgeVertices(edge, v);
MElementFactory f;
int type = getLineType(getPolynomialOrder());
MElement* ee = f.create(type, v);
double intv[3];
for(int i = 0; i < 3; i++){
intv[i] = ee->integrate(&val[i], pOrder, 3, order);
double t[3] = {v[1]->x() - v[0]->x(), v[1]->y() - v[0]->y(), v[1]->z() - v[0]->z()};
norme(t);
double result;
prosca(t, intv, &result);
return result;
}
double MElement::integrateFlux(double val[], int face, int pOrder, int order)
{
if(face > getNumFaces() - 1){
Msg::Error("No face %d for this element", face);
return 0;
}
std::vector<MVertex*> v;
getFaceVertices(face, v);
MElementFactory f;
int type = 0;
switch(getType()) {
case TYPE_TRI : type = getTriangleType(getPolynomialOrder()); break;
case TYPE_TET : type = getTriangleType(getPolynomialOrder()); break;
case TYPE_QUA : type = getQuadType(getPolynomialOrder()); break;
case TYPE_HEX : type = getQuadType(getPolynomialOrder()); break;
if(face < 4) type = getTriangleType(getPolynomialOrder());
else type = getQuadType(getPolynomialOrder());
break;
case TYPE_PRI :
if(face < 2) type = getTriangleType(getPolynomialOrder());
else type = getQuadType(getPolynomialOrder());
break;
default: type = 0; break;
}
MElement* fe = f.create(type, v);
double intv[3];
for(int i = 0; i < 3; i++){
intv[i] = fe->integrate(&val[i], pOrder, 3, order);
}
delete fe;
double n[3];
normal3points(v[0]->x(), v[0]->y(), v[0]->z(),
v[1]->x(), v[1]->y(), v[1]->z(),
v[2]->x(), v[2]->y(), v[2]->z(), n);
double result;
prosca(n, intv, &result);
return result;
}
Gauthier Becker
committed
void MElement::writeMSH(FILE *fp, double version, bool binary, int num,
int elementary, int physical, int parentNum,
int dom1Num, int dom2Num, std::vector<short> *ghosts)
// if necessary, change the ordering of the vertices to get positive
// volume
setVolumePositive();
int n = getNumVerticesForMSH();
int par = (parentNum) ? 1 : 0;
bool poly = (type == MSH_POLYG_ || type == MSH_POLYH_ || type == MSH_POLYG_B);
Emilie Marchandise
committed
// if polygon loop over children (triangles and tets)
if(CTX::instance()->mesh.saveTri){
if(poly){
for (int i = 0; i < getNumChildren() ; i++){
MElement *t = getChild(i);
t->writeMSH(fp, version, binary, num++, elementary, physical, 0, 0, 0, ghosts);
}
return;
}
if(type == MSH_LIN_B || type == MSH_LIN_C){
MLine *l = new MLine(getVertex(0), getVertex(1));
l->writeMSH(fp, version, binary, num++, elementary, physical, 0, 0, 0, ghosts);
delete l;
return;
}
if(type == MSH_TRI_B){
MTriangle *t = new MTriangle(getVertex(0), getVertex(1), getVertex(2));
t->writeMSH(fp, version, binary, num++, elementary, physical, 0, 0, 0, ghosts);
delete t;
return;
Emilie Marchandise
committed
}
}
if(!binary){
fprintf(fp, "%d %d", num ? num : _num, type);
if(version < 2.0)
else if (version < 2.2)
fprintf(fp, " %d %d %d", abs(physical), elementary, _partition);
else if(!_partition && !par && !dom)
fprintf(fp, " %d %d %d", 2 + par + dom, abs(physical), elementary);
else if(!ghosts)
fprintf(fp, " %d %d %d 1 %d", 4 + par + dom, abs(physical), elementary, _partition);
else{
int numGhosts = ghosts->size();
fprintf(fp, " %d %d %d %d %d", 4 + numGhosts + par + dom, abs(physical),
elementary, 1 + numGhosts, _partition);
for(unsigned int i = 0; i < ghosts->size(); i++)
fprintf(fp, " %d", -(*ghosts)[i]);
}
if(version >= 2.0 && dom)
fprintf(fp, " %d %d", dom1Num, dom2Num);
if(version >= 2.0 && poly)
fprintf(fp, " %d", n);
int numTags, numGhosts = 0;
if(!_partition) numTags = 2;
else if(!ghosts) numTags = 4;
else{
numGhosts = ghosts->size();
numTags = 4 + numGhosts;
}
// we write elements in blobs of single elements; this will lead
// to suboptimal reads, but it's much simpler when the number of
// tags change from element to element (third-party codes can
// still write MSH file optimized for reading speed, by grouping
// elements with the same number of tags in blobs)
int blob[60] = {type, 1, numTags, num ? num : _num, abs(physical), elementary,
1 + numGhosts, _partition};
if(ghosts)
for(int i = 0; i < numGhosts; i++) blob[8 + i] = -(*ghosts)[i];
if(poly) Msg::Error("Unable to write polygons/polyhedra in binary files.");
fwrite(blob, sizeof(int), 4 + numTags, fp);

Christophe Geuzaine
committed
std::vector<int> verts;
getVerticesIdForMSH(verts);
if(!binary){
for(int i = 0; i < n; i++)
fprintf(fp, " %d", verts[i]);
fprintf(fp, "\n");
}
else{

Christophe Geuzaine
committed
fwrite(&verts[0], sizeof(int), n, fp);
Gauthier Becker
committed
void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printGamma, bool printEta, bool printRho,
bool printDisto, double scalingFactor, int elementary)
int n = getNumVertices();
fprintf(fp, "%s(", str);
for(int i = 0; i < n; i++){
if(i) fprintf(fp, ",");
Gauthier Becker
committed
fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor,
getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor);
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
bool first = true;
if(printElementary){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", elementary);
}
}
if(printElementNumber){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", getNum());
}
}
if(printGamma){
double gamma = gammaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", gamma);
}
}
if(printEta){
double eta = etaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", eta);
}
}
if(printRho){
double rho = rhoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
if(printDisto){
double disto = distoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", disto);
}
}
void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor)

Jean-François Remacle
committed
if(getType() != TYPE_TRI && getType() != TYPE_QUA) return;
int qid[3] = {0, 2, 3};
SVector3 n = getFace(0).normal();
if(!binary){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
Gauthier Becker
committed
fprintf(fp, " vertex %g %g %g\n",
getVertex(j)->x() * scalingFactor,
getVertex(j)->y() * scalingFactor,
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
if(getNumVertices() == 4){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
Gauthier Becker
committed
fprintf(fp, " vertex %g %g %g\n",
getVertex(qid[j])->x() * scalingFactor,
getVertex(qid[j])->y() * scalingFactor,
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
}
}
else{
char data[50];
float *coords = (float*)data;
coords[0] = (float)n[0];
coords[1] = (float)n[1];
coords[2] = (float)n[2];
coords[3 + 3 * j] = (float)(getVertex(j)->x() * scalingFactor);
coords[3 + 3 * j + 1] = (float)(getVertex(j)->y() * scalingFactor);
coords[3 + 3 * j + 2] = (float)(getVertex(j)->z() * scalingFactor);
fwrite(data, sizeof(char), 50, fp);
if(getNumVertices() == 4){
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = (float)(getVertex(qid[j])->x() * scalingFactor);
coords[3 + 3 * j + 1] = (float)(getVertex(qid[j])->y() * scalingFactor);
coords[3 + 3 * j + 2] = (float)(getVertex(qid[j])->z() * scalingFactor);
Emilie Marchandise
committed
void MElement::writePLY2(FILE *fp)
{
setVolumePositive();
fprintf(fp, "3 ");
for(int i = 0; i < getNumVertices(); i++)
fprintf(fp, " %d", getVertex(i)->getIndex() - 1);
fprintf(fp, "\n");
}
void MElement::writeVRML(FILE *fp)
{
for(int i = 0; i < getNumVertices(); i++)
void MElement::writeVTK(FILE *fp, bool binary, bool bigEndian)
{
setVolumePositive();
int n = getNumVertices();
if(binary){
verts[0] = n;
for(int i = 0; i < n; i++)
verts[i + 1] = getVertexVTK(i)->getIndex() - 1;
// VTK always expects big endian binary data
if(!bigEndian) SwapBytes((char*)verts, sizeof(int), n + 1);
fwrite(verts, sizeof(int), n + 1, fp);
}
else{
fprintf(fp, "%d", n);
for(int i = 0; i < n; i++)
fprintf(fp, " %d", getVertexVTK(i)->getIndex() - 1);
fprintf(fp, "\n");
}
}
void MElement::writeUNV(FILE *fp, int num, int elementary, int physical)
if(!type) return;
setVolumePositive();
int n = getNumVertices();
int physical_property = elementary;
num ? num : _num, type, physical_property, material_property, color, n);
if(type == 21 || type == 24) // linear beam or parabolic beam
fprintf(fp, "%10d%10d%10d\n", 0, 0, 0);
Gauthier Becker
committed
void MElement::writeMESH(FILE *fp, int elementTagType, int elementary,
int physical)
for(int i = 0; i < getNumVertices(); i++)
Gauthier Becker
committed
fprintf(fp, " %d\n", (elementTagType == 3) ? _partition :
(elementTagType == 2) ? physical : elementary);
void MElement::writeIR3(FILE *fp, int elementTagType, int num, int elementary,
int physical)
{
int numVert = getNumVertices();
bool ok = setVolumePositive();
if(getDim() == 3 && !ok) Msg::Error("Element %d has zero volume", num);
Gauthier Becker
committed
fprintf(fp, "%d %d %d", num, (elementTagType == 3) ? _partition :
(elementTagType == 2) ? physical : elementary, numVert);
for(int i = 0; i < numVert; i++)
fprintf(fp, " %d", getVertex(i)->getIndex());
fprintf(fp, "\n");
}
void MElement::writeBDF(FILE *fp, int format, int elementTagType, int elementary,
int physical)
if(!str) return;
setVolumePositive();
int n = getNumVertices();
const char *cont[4] = {"E", "F", "G", "H"};
int ncont = 0;
Gauthier Becker
committed
int tag = (elementTagType == 3) ? _partition : (elementTagType == 2) ?
physical : elementary;
fprintf(fp, "%s,%d,%d", str, _num, tag);
fprintf(fp, ",%d", getVertexBDF(i)->getIndex());
fprintf(fp, ",+%s%d\n+%s%d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, ",0.,0.,0.");
fprintf(fp, "\n");
}
else{ // small or large field format
fprintf(fp, "%-8s%-8d%-8d", str, _num, tag);
fprintf(fp, "%-8d", getVertexBDF(i)->getIndex());
fprintf(fp, "+%s%-6d\n+%s%-6d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, "%-8s%-8s%-8s", "0.", "0.", "0.");
fprintf(fp, "\n");
void MElement::writeDIFF(FILE *fp, int num, bool binary, int physical_property)
const char *str = getStringForDIFF();
if(!str) return;
setVolumePositive();
int n = getNumVertices();
if(binary){
fprintf(fp, "%d %s %d ", num, str, physical_property);
for(int i = 0; i < n; i++)
fprintf(fp, " %d", getVertexDIFF(i)->getIndex());
fprintf(fp, "\n");
}
}
void MElement::writeINP(FILE *fp, int num)
{
setVolumePositive();
fprintf(fp, "%d", num);
for(int i = 0; i < getNumVertices(); i++)
fprintf(fp, ", %d", getVertexINP(i)->getIndex());
fprintf(fp, "\n");
}
int MElement::getInfoMSH(const int typeMSH, const char **const name)
{
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
case MSH_PNT : if(name) *name = "Point"; return 1;
case MSH_LIN_2 : if(name) *name = "Line 2"; return 2;
case MSH_LIN_3 : if(name) *name = "Line 3"; return 2 + 1;
case MSH_LIN_4 : if(name) *name = "Line 4"; return 2 + 2;
case MSH_LIN_5 : if(name) *name = "Line 5"; return 2 + 3;
case MSH_LIN_6 : if(name) *name = "Line 6"; return 2 + 4;
case MSH_LIN_7 : if(name) *name = "Line 7"; return 2 + 5;
case MSH_LIN_8 : if(name) *name = "Line 8"; return 2 + 6;
case MSH_LIN_9 : if(name) *name = "Line 9"; return 2 + 7;
case MSH_LIN_10 : if(name) *name = "Line 10"; return 2 + 8;
case MSH_LIN_11 : if(name) *name = "Line 11"; return 2 + 9;
case MSH_LIN_B : if(name) *name = "Line Border"; return 2;
case MSH_LIN_C : if(name) *name = "Line Child"; return 2;
case MSH_TRI_3 : if(name) *name = "Triangle 3"; return 3;
case MSH_TRI_6 : if(name) *name = "Triangle 6"; return 3 + 3;
case MSH_TRI_9 : if(name) *name = "Triangle 9"; return 3 + 6;
case MSH_TRI_10 : if(name) *name = "Triangle 10"; return 3 + 6 + 1;
case MSH_TRI_12 : if(name) *name = "Triangle 12"; return 3 + 9;
case MSH_TRI_15 : if(name) *name = "Triangle 15"; return 3 + 9 + 3;
case MSH_TRI_15I : if(name) *name = "Triangle 15I"; return 3 + 12;
case MSH_TRI_21 : if(name) *name = "Triangle 21"; return 3 + 12 + 6;
case MSH_TRI_28 : if(name) *name = "Triangle 28"; return 3 + 15 + 10;
case MSH_TRI_36 : if(name) *name = "Triangle 36"; return 3 + 18 + 15;
case MSH_TRI_45 : if(name) *name = "Triangle 45"; return 3 + 21 + 21;
case MSH_TRI_55 : if(name) *name = "Triangle 55"; return 3 + 24 + 28;
case MSH_TRI_66 : if(name) *name = "Triangle 66"; return 3 + 27 + 36;
case MSH_TRI_18 : if(name) *name = "Triangle 18"; return 3 + 15;
case MSH_TRI_21I : if(name) *name = "Triangle 21I"; return 3 + 18;
case MSH_TRI_24 : if(name) *name = "Triangle 24"; return 3 + 21;
case MSH_TRI_27 : if(name) *name = "Triangle 27"; return 3 + 24;
case MSH_TRI_30 : if(name) *name = "Triangle 30"; return 3 + 27;
case MSH_TRI_B : if(name) *name = "Triangle Border"; return 3;
case MSH_QUA_4 : if(name) *name = "Quadrilateral 4"; return 4;
case MSH_QUA_8 : if(name) *name = "Quadrilateral 8"; return 4 + 4;
case MSH_QUA_9 : if(name) *name = "Quadrilateral 9"; return 9;
case MSH_QUA_16 : if(name) *name = "Quadrilateral 16"; return 16;
case MSH_QUA_25 : if(name) *name = "Quadrilateral 25"; return 25;
case MSH_QUA_36 : if(name) *name = "Quadrilateral 36"; return 36;
case MSH_QUA_49 : if(name) *name = "Quadrilateral 49"; return 49;
case MSH_QUA_64 : if(name) *name = "Quadrilateral 64"; return 64;
case MSH_QUA_81 : if(name) *name = "Quadrilateral 81"; return 81;
case MSH_QUA_100 : if(name) *name = "Quadrilateral 100";return 100;
case MSH_QUA_121 : if(name) *name = "Quadrilateral 121";return 121;
case MSH_QUA_12 : if(name) *name = "Quadrilateral 12"; return 12;
case MSH_QUA_16I : if(name) *name = "Quadrilateral 16I";return 16;
case MSH_QUA_20 : if(name) *name = "Quadrilateral 20"; return 20;
case MSH_POLYG_ : if(name) *name = "Polygon"; return 0;
case MSH_POLYG_B : if(name) *name = "Polygon Border"; return 0;
case MSH_TET_4 : if(name) *name = "Tetrahedron 4"; return 4;
case MSH_TET_10 : if(name) *name = "Tetrahedron 10"; return 4 + 6;
case MSH_TET_20 : if(name) *name = "Tetrahedron 20"; return 4 + 12 + 4;
case MSH_TET_34 : if(name) *name = "Tetrahedron 34"; return 4 + 18 + 12 + 0;
case MSH_TET_35 : if(name) *name = "Tetrahedron 35"; return 4 + 18 + 12 + 1;
case MSH_TET_52 : if(name) *name = "Tetrahedron 52"; return 4 + 24 + 24 + 0;
case MSH_TET_56 : if(name) *name = "Tetrahedron 56"; return 4 + 24 + 24 + 4;
case MSH_TET_84 : if(name) *name = "Tetrahedron 84"; return (7*8*9)/6;
case MSH_TET_120 : if(name) *name = "Tetrahedron 120"; return (8*9*10)/6;
case MSH_TET_165 : if(name) *name = "Tetrahedron 165"; return (9*10*11)/6;
case MSH_TET_220 : if(name) *name = "Tetrahedron 220"; return (10*11*12)/6;
case MSH_TET_286 : if(name) *name = "Tetrahedron 286"; return (11*12*13)/6;
case MSH_HEX_8 : if(name) *name = "Hexahedron 8"; return 8;
case MSH_HEX_20 : if(name) *name = "Hexahedron 20"; return 8 + 12;
case MSH_HEX_27 : if(name) *name = "Hexahedron 27"; return 8 + 12 + 6 + 1;
case MSH_HEX_64 : if(name) *name = "Hexahedron 64"; return 64;
case MSH_HEX_125 : if(name) *name = "Hexahedron 125"; return 125;
case MSH_HEX_216 : if(name) *name = "Hexahedron 216"; return 216;
case MSH_HEX_343 : if(name) *name = "Hexahedron 343"; return 343;
case MSH_HEX_512 : if(name) *name = "Hexahedron 512"; return 512;
case MSH_HEX_729 : if(name) *name = "Hexahedron 729"; return 729;
case MSH_HEX_1000: if(name) *name = "Hexahedron 1000"; return 1000;
case MSH_HEX_56 : if(name) *name = "Hexahedron 56"; return 56;
case MSH_HEX_98 : if(name) *name = "Hexahedron 98"; return 98;
case MSH_HEX_152 : if(name) *name = "Hexahedron 152"; return 152;
case MSH_HEX_222 : if(name) *name = "Hexahedron 222"; return 222;
case MSH_HEX_296 : if(name) *name = "Hexahedron 296"; return 296;
case MSH_HEX_386 : if(name) *name = "Hexahedron 386"; return 386;
case MSH_HEX_488 : if(name) *name = "Hexahedron 488"; return 488;
case MSH_PRI_6 : if(name) *name = "Prism 6"; return 6;
case MSH_PRI_15 : if(name) *name = "Prism 15"; return 6 + 9;
case MSH_PRI_18 : if(name) *name = "Prism 18"; return 6 + 9 + 3;
case MSH_PYR_5 : if(name) *name = "Pyramid 5"; return 5;
case MSH_PYR_13 : if(name) *name = "Pyramid 13"; return 5 + 8;
case MSH_PYR_14 : if(name) *name = "Pyramid 14"; return 5 + 8 + 1;
case MSH_POLYH_ : if(name) *name = "Polyhedron"; return 0;
Gauthier Becker
committed
default:
Msg::Error("Unknown type of element %d", typeMSH);
if(name) *name = "Unknown";
Gauthier Becker
committed
}

Christophe Geuzaine
committed
void MElement::getVerticesIdForMSH(std::vector<int> &verts)
{
int n = getNumVerticesForMSH();

Christophe Geuzaine
committed
verts.resize(n);
for(int i = 0; i < n; i++)
verts[i] = getVertex(i)->getIndex();
}
MElement *MElement::copy(std::map<int, MVertex*> &vertexMap,
std::map<MElement*, MElement*> &newParents,
std::map<MElement*, MElement*> &newDomains)
{
if(newDomains.count(this))
return newDomains.find(this)->second;
std::vector<MVertex*> vmv;
int eType = getTypeForMSH();
MElement *eParent = getParent();
if(getNumChildren() == 0) {
for(int i = 0; i < getNumVertices(); i++) {
MVertex *v = getVertex(i);
int numV = v->getNum(); //Index();
if(vertexMap.count(numV))
vmv.push_back(vertexMap[numV]);
else {
MVertex *mv = new MVertex(v->x(), v->y(), v->z(), 0, numV);
vmv.push_back(mv);
vertexMap[numV] = mv;
}
}
}
else {
for(int i = 0; i < getNumChildren(); i++) {
for(int j = 0; j < getChild(i)->getNumVertices(); j++) {
MVertex *v = getChild(i)->getVertex(j);
int numV = v->getNum(); //Index();
if(vertexMap.count(numV))
vmv.push_back(vertexMap[numV]);
else {
MVertex *mv = new MVertex(v->x(), v->y(), v->z(), 0, numV);
vmv.push_back(mv);
vertexMap[numV] = mv;
}
}
}
}
if(eParent && !getDomain(0) && !getDomain(1)) {
std::map<MElement*, MElement*>::iterator it = newParents.find(eParent);
MElement *newParent;
if(it == newParents.end()) {
newParent = eParent->copy(vertexMap, newParents, newDomains);
newParents[eParent] = newParent;
}
else
newParent = it->second;
MElementFactory factory;
MElement *newEl = factory.create(eType, vmv, getNum(), _partition, ownsParent(), parent);
for(int i = 0; i < 2; i++) {
MElement *dom = getDomain(i);
if(!dom) continue;
std::map<MElement*, MElement*>::iterator it = newDomains.find(dom);
MElement *newDom;
if(it == newDomains.end()) {
newDomains[dom] = newDom;
}
else
newDom = newDomains.find(dom)->second;
newEl->setDomain(newDom, i);
}
return newEl;
}
Gauthier Becker
committed
MElement *MElementFactory::create(int type, std::vector<MVertex*> &v,
int num, int part, bool owner, MElement *parent,
MElement *d1, MElement *d2)
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
case MSH_PNT: return new MPoint(v, num, part);
case MSH_LIN_2: return new MLine(v, num, part);
case MSH_LIN_3: return new MLine3(v, num, part);
case MSH_LIN_4: return new MLineN(v, num, part);
case MSH_LIN_5: return new MLineN(v, num, part);
case MSH_LIN_6: return new MLineN(v, num, part);
case MSH_LIN_7: return new MLineN(v, num, part);
case MSH_LIN_8: return new MLineN(v, num, part);
case MSH_LIN_9: return new MLineN(v, num, part);
case MSH_LIN_10: return new MLineN(v, num, part);
case MSH_LIN_11: return new MLineN(v, num, part);
case MSH_LIN_B: return new MLineBorder(v, num, part, d1, d2);
case MSH_LIN_C: return new MLineChild(v, num, part, owner, parent);
case MSH_TRI_3: return new MTriangle(v, num, part);
case MSH_TRI_6: return new MTriangle6(v, num, part);
case MSH_TRI_9: return new MTriangleN(v, 3, num, part);
case MSH_TRI_10: return new MTriangleN(v, 3, num, part);
case MSH_TRI_12: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15I: return new MTriangleN(v, 5, num, part);
case MSH_TRI_21: return new MTriangleN(v, 5, num, part);
case MSH_TRI_28: return new MTriangleN(v, 6, num, part);
case MSH_TRI_36: return new MTriangleN(v, 7, num, part);
case MSH_TRI_45: return new MTriangleN(v, 8, num, part);
case MSH_TRI_55: return new MTriangleN(v, 9, num, part);
case MSH_TRI_66: return new MTriangleN(v,10, num, part);
case MSH_TRI_B: return new MTriangleBorder(v, num, part, d1, d2);
case MSH_QUA_4: return new MQuadrangle(v, num, part);
case MSH_QUA_8: return new MQuadrangle8(v, num, part);
case MSH_QUA_9: return new MQuadrangle9(v, num, part);
case MSH_QUA_12: return new MQuadrangleN(v, 3, num, part);
case MSH_QUA_16: return new MQuadrangleN(v, 3, num, part);
case MSH_QUA_25: return new MQuadrangleN(v, 4, num, part);
case MSH_QUA_36: return new MQuadrangleN(v, 5, num, part);
case MSH_QUA_49: return new MQuadrangleN(v, 6, num, part);
case MSH_QUA_64: return new MQuadrangleN(v, 7, num, part);
case MSH_QUA_81: return new MQuadrangleN(v, 8, num, part);
case MSH_QUA_100: return new MQuadrangleN(v, 9, num, part);
case MSH_QUA_121: return new MQuadrangleN(v, 10, num, part);
case MSH_POLYG_: return new MPolygon(v, num, part, owner, parent);
case MSH_POLYG_B: return new MPolygonBorder(v, num, part, d1, d2);
case MSH_TET_4: return new MTetrahedron(v, num, part);
case MSH_TET_10: return new MTetrahedron10(v, num, part);
case MSH_HEX_8: return new MHexahedron(v, num, part);
case MSH_HEX_20: return new MHexahedron20(v, num, part);
case MSH_HEX_27: return new MHexahedron27(v, num, part);
case MSH_PRI_6: return new MPrism(v, num, part);
case MSH_PRI_15: return new MPrism15(v, num, part);
case MSH_PRI_18: return new MPrism18(v, num, part);
case MSH_PYR_5: return new MPyramid(v, num, part);
case MSH_PYR_13: return new MPyramid13(v, num, part);
case MSH_PYR_14: return new MPyramid14(v, num, part);
case MSH_TET_20: return new MTetrahedronN(v, 3, num, part);
case MSH_TET_34: return new MTetrahedronN(v, 3, num, part);
case MSH_TET_35: return new MTetrahedronN(v, 4, num, part);
case MSH_TET_52: return new MTetrahedronN(v, 5, num, part);
case MSH_TET_56: return new MTetrahedronN(v, 5, num, part);
case MSH_TET_84: return new MTetrahedronN(v, 6, num, part);
case MSH_TET_120: return new MTetrahedronN(v, 7, num, part);
case MSH_TET_165: return new MTetrahedronN(v, 8, num, part);
case MSH_TET_220: return new MTetrahedronN(v, 9, num, part);
case MSH_TET_286: return new MTetrahedronN(v, 10, num, part);
case MSH_POLYH_: return new MPolyhedron(v, num, part, owner, parent);
case MSH_HEX_56: return new MHexahedronN(v, 3, num, part);
case MSH_HEX_64: return new MHexahedronN(v, 3, num, part);
case MSH_HEX_125: return new MHexahedronN(v, 4, num, part);
case MSH_HEX_216: return new MHexahedronN(v, 5, num, part);
case MSH_HEX_343: return new MHexahedronN(v, 6, num, part);
case MSH_HEX_512: return new MHexahedronN(v, 7, num, part);
case MSH_HEX_729: return new MHexahedronN(v, 8, num, part);
case MSH_HEX_1000:return new MHexahedronN(v, 9, num, part);
default: return 0;
void MElement::xyzTouvw(fullMatrix<double> *xu)
{
double _xyz[3] = {(*xu)(0,0),(*xu)(0,1),(*xu)(0,2)}, _uvw[3];
xyz2uvw(_xyz, _uvw);
(*xu)(1,0) = _uvw[0];
(*xu)(1,1) = _uvw[1];
(*xu)(1,2) = _uvw[2];
}