Newer
Older
// Gmsh - Copyright (C) 1997-2008 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include <math.h>
#include "MElement.h"
#include "GEntity.h"

Christophe Geuzaine
committed
#include "GmshMessage.h"
#include "Numeric.h"
#include "GaussLegendre1D.h"
#include "Context.h"
#include "qualityMeasures.h"
#include "meshGFaceDelaunayInsertion.h"
#include "meshGRegionDelaunayInsertion.h"
{
x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z();
x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z();
if(faceIndex >= 0){
n[0] = n[1] = getFace(faceIndex).normal();
}
else{
MEdge e(v0, v1);
n[0] = n[1] = e.normal();
}
}
void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
{
x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x();
y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y();
z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z();
SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]);
SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]);
SVector3 normal = crossprod(t1, t2);
normal.normalize();
for(int i = 0; i < 3; i++) n[i] = normal;
}
char MElement::getVisibility()
{
if(CTX.hide_unselected && _visible < 2) return false;
return _visible;
}
double MElement::minEdge()
{
double m = 1.e25;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::maxEdge()
{
double m = 0.;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::rhoShapeMeasure()
{
double min = minEdge();
double max = maxEdge();
if(max)
return min / max;
else
return 0.;
}
void MElement::getShapeFunctions(double u, double v, double w, double s[], int o)
#if !defined(HAVE_GMSH_EMBEDDED)
const gmshFunctionSpace* fs = getFunctionSpace(o);
if(fs) fs->f(u, v, w, s);
void MElement::getGradShapeFunctions(double u, double v, double w, double s[][3], int o)
#if !defined(HAVE_GMSH_EMBEDDED)
const gmshFunctionSpace* fs = getFunctionSpace(o);
if(fs) fs->df(u, v, w, s);
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
p[0] += v->x();
p[1] += v->y();
p[2] += v->z();
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
std::string MElement::getInfoString()
{
char tmp[256];
sprintf(tmp, "Element %d", getNum());
return std::string(tmp);
}
static double _computeDeterminantAndRegularize(MElement *ele, double jac[3][3])
dJ = sqrt(SQU(jac[0][0]) + SQU(jac[0][1]) + SQU(jac[0][2]));
// regularize matrix
double a[3], b[3], c[3];
a[0] = ele->getVertex(1)->x() - ele->getVertex(0)->x();
a[1] = ele->getVertex(1)->y() - ele->getVertex(0)->y();
a[2] = ele->getVertex(1)->z() - ele->getVertex(0)->z();
if((fabs(a[0]) >= fabs(a[1]) && fabs(a[0]) >= fabs(a[2])) ||
(fabs(a[1]) >= fabs(a[0]) && fabs(a[1]) >= fabs(a[2]))) {
b[0] = a[1]; b[1] = -a[0]; b[2] = 0.;
}
else {
b[0] = 0.; b[1] = a[2]; b[2] = -a[1];
}
prodve(a, b, c);
jac[1][0] = b[0]; jac[1][1] = b[1]; jac[1][2] = b[2];
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
break;
}
case 2:
{
dJ = sqrt(SQU(jac[0][0] * jac[1][1] - jac[0][1] * jac[1][0]) +
SQU(jac[0][2] * jac[1][0] - jac[0][0] * jac[1][2]) +
SQU(jac[0][1] * jac[1][2] - jac[0][2] * jac[1][1]));
// regularize matrix
double a[3], b[3], c[3];
a[0] = jac[0][0];
a[1] = jac[0][1];
a[2] = jac[0][2];
b[0] = jac[1][0];
b[1] = jac[1][1];
b[2] = jac[1][2];
prodve(a, b, c);
norme(c);
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
case 3:
{
dJ = fabs(jac[0][0] * jac[1][1] * jac[2][2] + jac[0][2] * jac[1][0] * jac[2][1] +
jac[0][1] * jac[1][2] * jac[2][0] - jac[0][2] * jac[1][1] * jac[2][0] -
jac[0][0] * jac[1][2] * jac[2][1] - jac[0][1] * jac[1][0] * jac[2][2]);
}
return dJ;
}
double MElement::getJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
double gsf[256][3];
for (int i = 0; i < getNumVertices(); i++) {
const MVertex* v = getVertex(i);
double* gg = gsf[i];
jac[j][0] += v->x() * gg[j];
jac[j][1] += v->y() * gg[j];
jac[j][2] += v->z() * gg[j];
}
}
return _computeDeterminantAndRegularize(this, jac);
}
double MElement::getPrimaryJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for(int i = 0; i < getNumPrimaryVertices(); i++) {
const MVertex* v = getVertex(i);
double* gg = gsf[i];
for (int j = 0; j < 3; j++) {
jac[j][0] += v->x() * gg[j];
jac[j][1] += v->y() * gg[j];
jac[j][2] += v->z() * gg[j];
return _computeDeterminantAndRegularize(this, jac);
}
double sf[256];
getShapeFunctions(u, v, w, sf);
for (int j = 0; j < getNumVertices(); j++) {
const MVertex* v = getVertex(j);
x += sf[j] * v->x();
y += sf[j] * v->y();
z += sf[j] * v->z();
}
void MElement::primaryPnt(double u, double v, double w, SPoint3 &p)
double sf[256];
getShapeFunctions(u, v, w, sf, 1);
for (int j = 0; j < getNumPrimaryVertices(); j++) {
const MVertex* v = getVertex(j);
x += sf[j] * v->x();
y += sf[j] * v->y();
z += sf[j] * v->z();
}
p = SPoint3(x,y,z);
}
void MElement::xyz2uvw(double xyz[3], double uvw[3])
{
// general Newton routine for the nonlinear case (more efficient
// routines are implemented for simplices, where the basis functions
// are linear)
uvw[0] = uvw[1] = uvw[2] = 0.;
int iter = 1, maxiter = 20;
double error = 1., tol = 1.e-6;
while (error > tol && iter < maxiter){
double jac[3][3];
if(!getJacobian(uvw[0], uvw[1], uvw[2], jac)) break;
double xn = 0., yn = 0., zn = 0.;
double sf[256];
getShapeFunctions(uvw[0], uvw[1], uvw[2], sf);
for (int i = 0; i < getNumVertices(); i++) {
MVertex *v = getVertex(i);
xn += v->x() * sf[i];
yn += v->y() * sf[i];
zn += v->z() * sf[i];
}
double inv[3][3];
inv3x3(jac, inv);
double un = uvw[0] +
inv[0][0] * (xyz[0] - xn) + inv[1][0] * (xyz[1] - yn) + inv[2][0] * (xyz[2] - zn);
double vn = uvw[1] +
inv[0][1] * (xyz[0] - xn) + inv[1][1] * (xyz[1] - yn) + inv[2][1] * (xyz[2] - zn) ;
double wn = uvw[2] +
inv[0][2] * (xyz[0] - xn) + inv[1][2] * (xyz[1] - yn) + inv[2][2] * (xyz[2] - zn) ;
error = sqrt(SQU(un - uvw[0]) + SQU(vn - uvw[1]) + SQU(wn - uvw[2]));
uvw[0] = un;
uvw[1] = vn;
uvw[2] = wn;
iter++ ;
}
}
double MElement::interpolate(double val[], double u, double v, double w, int stride,
int order)
j += stride;
}
return sum;
}
void MElement::interpolateGrad(double val[], double u, double v, double w, double f[3],
double gsf[256][3];
getGradShapeFunctions(u, v, w, gsf, order);
dfdu[0] += val[j] * gsf[i][0];
dfdu[1] += val[j] * gsf[i][1];
dfdu[2] += val[j] * gsf[i][2];
j += stride;
}
if(invjac){
matvec(invjac, dfdu, f);
}
else{
double jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
matvec(inv, dfdu, f);
}
}
void MElement::interpolateCurl(double val[], double u, double v, double w, double f[3],
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv, order);
interpolateGrad(&val[1], u, v, w, fy, stride, inv, order);
interpolateGrad(&val[2], u, v, w, fz, stride, inv, order);
f[0] = fz[1] - fy[2];
f[1] = -(fz[0] - fx[2]);
f[2] = fy[0] - fx[1];
}
double MElement::interpolateDiv(double val[], double u, double v, double w, int stride,
int order)
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv, order);
interpolateGrad(&val[1], u, v, w, fy, stride, inv, order);
interpolateGrad(&val[2], u, v, w, fz, stride, inv, order);

Koen Hillewaert
committed
void MElement::writeMSH(FILE *fp, double version, bool binary, int num,
// if necessary, change the ordering of the vertices to get positive
// volume
setVolumePositive();
if(!binary){
fprintf(fp, "%d %d", num ? num : _num, type);
if(version < 2.0)
fprintf(fp, " 3 %d %d %d", abs(physical), elementary, _partition);
int tags[4] = {num ? num : _num, abs(physical), elementary, _partition};
if(!binary){
for(int i = 0; i < n; i++)
fprintf(fp, " %d", verts[i]);
fprintf(fp, "\n");
}
else{
fwrite(verts, sizeof(int), n, fp);
}
void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printDisto, double scalingFactor, int elementary)
if(!str) return;
int n = getNumVertices();
fprintf(fp, "%s(", str);
for(int i = 0; i < n; i++){
if(i) fprintf(fp, ",");
fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor,
getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor);
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
bool first = true;
if(printElementary){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", elementary);
}
}
if(printElementNumber){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", getNum());
}
}
if(printGamma){
double gamma = gammaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", gamma);
}
}
if(printEta){
double eta = etaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", eta);
}
}
if(printRho){
double rho = rhoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
if(printDisto){
double disto = distoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", disto);
}
}
void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor)
if(getNumEdges() != 3 && getNumEdges() != 4) return;
int qid[3] = {0, 2, 3};
SVector3 n = getFace(0).normal();
if(!binary){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
getVertex(j)->x() * scalingFactor,
getVertex(j)->y() * scalingFactor,
getVertex(j)->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
if(getNumVertices() == 4){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
fprintf(fp, " vertex %g %g %g\n",
getVertex(qid[j])->x() * scalingFactor,
getVertex(qid[j])->y() * scalingFactor,
getVertex(qid[j])->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
}
}
else{
char data[50];
float *coords = (float*)data;
coords[0] = n[0];
coords[1] = n[1];
coords[2] = n[2];
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(j)->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(j)->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(j)->z() * scalingFactor;
}
fwrite(data, sizeof(char), 50, fp);
if(getNumVertices() == 4){
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(qid[j])->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(qid[j])->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(qid[j])->z() * scalingFactor;
}
}
void MElement::writeVRML(FILE *fp)
{
for(int i = 0; i < getNumVertices(); i++)
void MElement::writeVTK(FILE *fp, bool binary, bool bigEndian)
{
setVolumePositive();
int n = getNumVertices();
if(binary){
verts[0] = n;
for(int i = 0; i < n; i++)
verts[i + 1] = getVertexVTK(i)->getIndex() - 1;
// VTK always expects big endian binary data
if(!bigEndian) SwapBytes((char*)verts, sizeof(int), n + 1);
fwrite(verts, sizeof(int), n + 1, fp);
}
else{
fprintf(fp, "%d", n);
for(int i = 0; i < n; i++)
fprintf(fp, " %d", getVertexVTK(i)->getIndex() - 1);
fprintf(fp, "\n");
}
}
void MElement::writeUNV(FILE *fp, int num, int elementary, int physical)
if(!type) return;
setVolumePositive();
int n = getNumVertices();
int physical_property = elementary;
num ? num : _num, type, physical_property, material_property, color, n);
if(type == 21 || type == 24) // linear beam or parabolic beam
fprintf(fp, "%10d%10d%10d\n", 0, 0, 0);
void MElement::writeMESH(FILE *fp, int elementary)
{
for(int i = 0; i < getNumVertices(); i++)
if(!str) return;
setVolumePositive();
int n = getNumVertices();
const char *cont[4] = {"E", "F", "G", "H"};
int ncont = 0;
if(format == 0){ // free field format
fprintf(fp, "%s,%d,%d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, ",%d", getVertexBDF(i)->getIndex());
fprintf(fp, ",+%s%d\n+%s%d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, ",0.,0.,0.");
fprintf(fp, "\n");
}
else{ // small or large field format
fprintf(fp, "%-8s%-8d%-8d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, "%-8d", getVertexBDF(i)->getIndex());
fprintf(fp, "+%s%-6d\n+%s%-6d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, "%-8s%-8s%-8s", "0.", "0.", "0.");
fprintf(fp, "\n");
void MElement::writeDIFF(FILE *fp, int num, bool binary, int physical_property)
const char *str = getStringForDIFF();
if(!str) return;
setVolumePositive();
int n = getNumVertices();
if(binary){
fprintf(fp, "%d %s %d ", num, str, physical_property);
for(int i = 0; i < n; i++)
fprintf(fp, " %d", getVertexDIFF(i)->getIndex());
fprintf(fp, "\n");
}
}
int MElement::getInfoMSH(const int typeMSH, const char **const name)
{
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
switch(typeMSH){
case MSH_PNT : if(name) *name = "Point"; return 1;
case MSH_LIN_2 : if(name) *name = "Line 2"; return 2;
case MSH_LIN_3 : if(name) *name = "Line 3"; return 2 + 1;
case MSH_LIN_4 : if(name) *name = "Line 4"; return 2 + 2;
case MSH_LIN_5 : if(name) *name = "Line 5"; return 2 + 3;
case MSH_LIN_6 : if(name) *name = "Line 6"; return 2 + 4;
case MSH_TRI_3 : if(name) *name = "Triangle 3"; return 3;
case MSH_TRI_6 : if(name) *name = "Triangle 6"; return 3 + 3;
case MSH_TRI_9 : if(name) *name = "Triangle 9"; return 3 + 6;
case MSH_TRI_10 : if(name) *name = "Triangle 10"; return 3 + 6 + 1;
case MSH_TRI_12 : if(name) *name = "Triangle 12"; return 3 + 9;
case MSH_TRI_15 : if(name) *name = "Triangle 15"; return 3 + 9 + 3;
case MSH_TRI_15I: if(name) *name = "Triangle 15I"; return 3 + 12;
case MSH_TRI_21 : if(name) *name = "Triangle 21"; return 3 + 12 + 6;
case MSH_QUA_4 : if(name) *name = "Quadrilateral 4"; return 4;
case MSH_QUA_8 : if(name) *name = "Quadrilateral 8"; return 4 + 4;
case MSH_QUA_9 : if(name) *name = "Quadrilateral 9"; return 4 + 4 + 1;
case MSH_TET_4 : if(name) *name = "Tetrahedron 4"; return 4;
case MSH_TET_10 : if(name) *name = "Tetrahedron 10"; return 4 + 6;
case MSH_TET_20 : if(name) *name = "Tetrahedron 20"; return 4 + 12 + 4;
case MSH_TET_34 : if(name) *name = "Tetrahedron 34"; return 4 + 18 + 12 + 0;
case MSH_TET_35 : if(name) *name = "Tetrahedron 35"; return 4 + 18 + 12 + 1;
case MSH_TET_52 : if(name) *name = "Tetrahedron 52"; return 4 + 24 + 24 + 0;
case MSH_TET_56 : if(name) *name = "Tetrahedron 56"; return 4 + 24 + 24 + 4;
case MSH_HEX_8 : if(name) *name = "Hexahedron 8"; return 8;
case MSH_HEX_20 : if(name) *name = "Hexahedron 20"; return 8 + 12;
case MSH_HEX_27 : if(name) *name = "Hexahedron 27"; return 8 + 12 + 6 + 1;
case MSH_PRI_6 : if(name) *name = "Prism 6"; return 6;
case MSH_PRI_15 : if(name) *name = "Prism 15"; return 6 + 9;
case MSH_PRI_18 : if(name) *name = "Prism 18"; return 6 + 9 + 3;
case MSH_PYR_5 : if(name) *name = "Pyramid 5"; return 5;
case MSH_PYR_13 : if(name) *name = "Pyramid 13"; return 5 + 8;
case MSH_PYR_14 : if(name) *name = "Pyramid 14"; return 5 + 8 + 1;
default:
Msg::Error("Unknown type of element %d", typeMSH);
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
MElement *MElementFactory::create(int type, std::vector<MVertex*> &v,
int num, int part)
{
switch (type) {
case MSH_PNT: return new MPoint(v, num, part);
case MSH_LIN_2: return new MLine(v, num, part);
case MSH_LIN_3: return new MLine3(v, num, part);
case MSH_LIN_4: return new MLineN(v, num, part);
case MSH_LIN_5: return new MLineN(v, num, part);
case MSH_LIN_6: return new MLineN(v, num, part);
case MSH_TRI_3: return new MTriangle(v, num, part);
case MSH_TRI_6: return new MTriangle6(v, num, part);
case MSH_TRI_9: return new MTriangleN(v, 3, num, part);
case MSH_TRI_10: return new MTriangleN(v, 3, num, part);
case MSH_TRI_12: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15I:return new MTriangleN(v, 5, num, part);
case MSH_TRI_21: return new MTriangleN(v, 5, num, part);
case MSH_QUA_4: return new MQuadrangle(v, num, part);
case MSH_QUA_8: return new MQuadrangle8(v, num, part);
case MSH_QUA_9: return new MQuadrangle9(v, num, part);
case MSH_TET_4: return new MTetrahedron(v, num, part);
case MSH_TET_10: return new MTetrahedron10(v, num, part);
case MSH_HEX_8: return new MHexahedron(v, num, part);
case MSH_HEX_20: return new MHexahedron20(v, num, part);
case MSH_HEX_27: return new MHexahedron27(v, num, part);
case MSH_PRI_6: return new MPrism(v, num, part);
case MSH_PRI_15: return new MPrism15(v, num, part);
case MSH_PRI_18: return new MPrism18(v, num, part);
case MSH_PYR_5: return new MPyramid(v, num, part);
case MSH_PYR_13: return new MPyramid13(v, num, part);
case MSH_PYR_14: return new MPyramid14(v, num, part);
case MSH_TET_20: return new MTetrahedronN(v, 3, num, part);
case MSH_TET_34: return new MTetrahedronN(v, 3, num, part);
case MSH_TET_35: return new MTetrahedronN(v, 4, num, part);
case MSH_TET_52: return new MTetrahedronN(v, 5, num, part);
case MSH_TET_56: return new MTetrahedronN(v, 5, num, part);
default: return 0;
}
}

Koen Hillewaert
committed
const gmshFunctionSpace* MLine::getFunctionSpace(int o) const
{
int order = (o == -1) ? getPolynomialOrder() : o;
case 1: return &gmshFunctionSpaces::find(MSH_LIN_2);
case 2: return &gmshFunctionSpaces::find(MSH_LIN_3);
case 3: return &gmshFunctionSpaces::find(MSH_LIN_4);
case 4: return &gmshFunctionSpaces::find(MSH_LIN_5);
case 5: return &gmshFunctionSpaces::find(MSH_LIN_6);
default: Msg::Error("Order %d line function space not implemented", order);
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
return 0;
}
void MLine::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
static IntPt GQL[100];
double *t, *w;
int nbP = pOrder / 2 + 1;
gmshGaussLegendre1D(nbP, &t, &w);
for (int i = 0; i < nbP; i++){
GQL[i].pt[0] = t[i];
GQL[i].pt[1] = 0;
GQL[i].pt[2] = 0;
GQL[i].weight = w[i];
}
*npts = nbP;
*pts = GQL;
#endif
}
SPoint3 MTriangle::circumcenter()
{
#if defined(HAVE_GMSH_EMBEDDED)
return SPoint3();
#else
double p1[3] = {_v[0]->x(), _v[0]->y(), _v[0]->z()};
double p2[3] = {_v[1]->x(), _v[1]->y(), _v[1]->z()};
double p3[3] = {_v[2]->x(), _v[2]->y(), _v[2]->z()};
double res[3];
circumCenterXYZ(p1, p2, p3, res);
return SPoint3(res[0], res[1], res[2]);
#endif
}
double MTriangle::distoShapeMeasure()
{
#if defined(HAVE_GMSH_EMBEDDED)
return 1.;
#else
return qmDistorsionOfMapping(this);
#endif
}
double MTriangle::gammaShapeMeasure()
{
#if defined(HAVE_GMSH_EMBEDDED)
return 0.;
#else
return qmTriangle(this, QMTRI_RHO);
#endif
}
const gmshFunctionSpace* MTriangle::getFunctionSpace(int o) const
{
int order = (o == -1) ? getPolynomialOrder() : o;
int nf = getNumFaceVertices();
if ((nf == 0) && (o == -1)) {
switch (order) {
case 1: return &gmshFunctionSpaces::find(MSH_TRI_3);
case 2: return &gmshFunctionSpaces::find(MSH_TRI_6);
case 3: return &gmshFunctionSpaces::find(MSH_TRI_9);
case 4: return &gmshFunctionSpaces::find(MSH_TRI_12);
case 5: return &gmshFunctionSpaces::find(MSH_TRI_15I);
default: Msg::Error("Order %d triangle function space not implemented", order);
}
}
else {
switch (order) {
case 1: return &gmshFunctionSpaces::find(MSH_TRI_3);
case 2: return &gmshFunctionSpaces::find(MSH_TRI_6);
case 3: return &gmshFunctionSpaces::find(MSH_TRI_10);
case 4: return &gmshFunctionSpaces::find(MSH_TRI_15);
case 5: return &gmshFunctionSpaces::find(MSH_TRI_21);
default: Msg::Error("Order %d triangle function space not implemented", order);
}
}
return 0;
int MTriangleN::getNumEdgesRep(){ return 3 * CTX.mesh.num_sub_edges; }
int MTriangle6::getNumEdgesRep(){ return 3 * CTX.mesh.num_sub_edges; }

Jean-François Remacle
committed
static void _myGetEdgeRep(MTriangle *t, int num, double *x, double *y, double *z,
SVector3 *n, int numSubEdges)

Jean-François Remacle
committed
n[0] = n[1] = n[2] = t->getFace(0).normal();
if (num < numSubEdges){
SPoint3 pnt1, pnt2;

Jean-François Remacle
committed
t->pnt((double)num / numSubEdges, 0., 0.,pnt1);
t->pnt((double)(num + 1) / numSubEdges, 0., 0, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
return;
}
if (num < 2 * numSubEdges){
SPoint3 pnt1, pnt2;
num -= numSubEdges;

Jean-François Remacle
committed
t->pnt(1. - (double)num / numSubEdges, (double)num / numSubEdges, 0, pnt1);
t->pnt(1. - (double)(num + 1) / numSubEdges, (double)(num + 1) / numSubEdges, 0, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
return ;
}
{
SPoint3 pnt1, pnt2;
num -= 2 * numSubEdges;

Jean-François Remacle
committed
t->pnt(0, (double)num / numSubEdges, 0,pnt1);
t->pnt(0, (double)(num + 1) / numSubEdges, 0,pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
}
}
void MTriangleN::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
{
_myGetEdgeRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}
void MTriangle6::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
{
_myGetEdgeRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}
int MTriangle6::getNumFacesRep(){ return SQU(CTX.mesh.num_sub_edges); }
int MTriangleN::getNumFacesRep(){ return SQU(CTX.mesh.num_sub_edges); }

Jean-François Remacle
committed
static void _myGetFaceRep(MTriangle *t, int num, double *x, double *y, double *z,
SVector3 *n, int numSubEdges)
// on the first layer, we have (numSubEdges-1) * 2 + 1 triangles
// on the second layer, we have (numSubEdges-2) * 2 + 1 triangles
// on the ith layer, we have (numSubEdges-1-i) * 2 + 1 triangles

Jean-François Remacle
committed
int nbt = 0;
for (int i = 0; i < numSubEdges; i++){
int nbl = (numSubEdges - i - 1) * 2 + 1;

Jean-François Remacle
committed
nbt += nbl;
if (nbt > num){
iy = i;

Jean-François Remacle
committed
break;
}
}

Jean-François Remacle
committed
SPoint3 pnt1, pnt2, pnt3;
double J1[3][3], J2[3][3], J3[3][3];

Jean-François Remacle
committed
t->pnt(ix / 2 * d, iy * d, 0, pnt1);
t->pnt((ix / 2 + 1) * d, iy * d, 0, pnt2);
t->pnt(ix / 2 * d, (iy + 1) * d, 0, pnt3);
t->getJacobian(ix / 2 * d, iy * d, 0, J1);
t->getJacobian((ix / 2 + 1) * d, iy * d, 0, J2);
t->getJacobian(ix / 2 * d, (iy + 1) * d, 0, J3);

Jean-François Remacle
committed
}
else{

Jean-François Remacle
committed
t->pnt((ix / 2 + 1) * d, iy * d, 0, pnt1);
t->pnt((ix / 2 + 1) * d, (iy + 1) * d, 0, pnt2);
t->pnt(ix / 2 * d, (iy + 1) * d, 0, pnt3);
t->getJacobian((ix / 2 + 1) * d, iy * d, 0, J1);
t->getJacobian((ix / 2 + 1) * d, (iy + 1) * d, 0, J2);
t->getJacobian(ix / 2 * d, (iy + 1) * d, 0, J3);

Jean-François Remacle
committed
}
{
SVector3 d1(J1[0][0], J1[0][1], J1[0][2]);
SVector3 d2(J1[1][0], J1[1][1], J1[1][2]);
n[0] = crossprod(d1, d2);

Jean-François Remacle
committed
n[0].normalize();
}
{
SVector3 d1(J2[0][0], J2[0][1], J2[0][2]);
SVector3 d2(J2[1][0], J2[1][1], J2[1][2]);
n[1] = crossprod(d1, d2);

Jean-François Remacle
committed
n[1].normalize();
}
{
SVector3 d1(J3[0][0], J3[0][1], J3[0][2]);
SVector3 d2(J3[1][0], J3[1][1], J3[1][2]);
n[2] = crossprod(d1, d2);

Jean-François Remacle
committed
n[2].normalize();
}
x[0] = pnt1.x(); x[1] = pnt2.x(); x[2] = pnt3.x();
y[0] = pnt1.y(); y[1] = pnt2.y(); y[2] = pnt3.y();
z[0] = pnt1.z(); z[1] = pnt2.z(); z[2] = pnt3.z();
}
void MTriangleN::getFaceRep(int num, double *x, double *y, double *z, SVector3 *n)
{
_myGetFaceRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}
void MTriangle6::getFaceRep(int num, double *x, double *y, double *z, SVector3 *n)
{
_myGetFaceRep(this, num, x, y, z, n, CTX.mesh.num_sub_edges);

Jean-François Remacle
committed
}
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
void MTriangle::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
extern int getNGQTPts(int order);
extern IntPt *getGQTPts (int order);
*npts = getNGQTPts(pOrder);
*pts = getGQTPts(pOrder);
#endif
}
void MQuadrangle::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
#if !defined(HAVE_GMSH_EMBEDDED)
extern int getNGQQPts(int order);
extern IntPt *getGQQPts(int order);
*npts = getNGQQPts(pOrder);
*pts = getGQQPts(pOrder);
#endif
}
SPoint3 MTetrahedron::circumcenter()
{
#if defined(HAVE_GMSH_EMBEDDED)
return SPoint3();
#else
MTet4 t(this,0);
double res[3];
t.circumcenter(res);
return SPoint3(res[0],res[1],res[2]);
#endif
}
double MTetrahedron::distoShapeMeasure()
{
#if defined(HAVE_GMSH_EMBEDDED)
return 1.;
#else
return qmDistorsionOfMapping(this);
#endif
}
double MTetrahedronN::distoShapeMeasure()
{
#if defined(HAVE_GMSH_EMBEDDED)
return 1.;
#else
_disto = qmDistorsionOfMapping(this);