Newer
Older
// Gmsh - Copyright (C) 1997-2008 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include <math.h>
#include "MElement.h"
#include "GEntity.h"
# include "Message.h"
# include "Context.h"
# include "qualityMeasures.h"
{
x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z();
x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z();
if(faceIndex >= 0){
n[0] = n[1] = getFace(faceIndex).normal();
}
else{
MEdge e(v0, v1);
n[0] = n[1] = e.normal();
}
}
void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
{
x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x();
y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y();
z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z();
SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]);
SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]);
SVector3 normal = crossprod(t1, t2);
normal.normalize();
for(int i = 0; i < 3; i++) n[i] = normal;
}
char MElement::getVisibility()
{
if(CTX.hide_unselected && _visible < 2) return false;
return _visible;
}
double MElement::minEdge()
{
double m = 1.e25;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::maxEdge()
{
double m = 0.;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::rhoShapeMeasure()
{
double min = minEdge();
double max = maxEdge();
if(max)
return min / max;
else
return 0.;
}
void MElement::getIntegrationPoints(int pOrder, int *npts, IntPt **pts) const
{
Msg::Error("No integration points defined for this type of element");
}
double MTriangle::gammaShapeMeasure()
{
double MTetrahedron::gammaShapeMeasure()
{
}
double MTetrahedron::etaShapeMeasure()
{
double mat[3][3];
getMat(mat);
return det3x3(mat) / 6.;
}
b[0] = xyz[0] - getVertex(0)->x();
b[1] = xyz[1] - getVertex(0)->y();
b[2] = xyz[2] - getVertex(0)->z();
sys3x3(mat, b, uvw, &det);
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
}
int MHexahedron::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPrism::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[2]->x() - _v[0]->x();
mat[0][2] = _v[3]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[2]->y() - _v[0]->y();
mat[1][2] = _v[3]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[2]->z() - _v[0]->z();
mat[2][2] = _v[3]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPyramid::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
p[0] += v->x();
p[1] += v->y();
p[2] += v->z();
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
std::string MElement::getInfoString()
{
char tmp[256];
sprintf(tmp, "Element %d", getNum());
return std::string(tmp);
}
double MElement::getJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
double s[3];
switch(getDim()){
case 3 :
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1];
jac[2][0] += p->x() * s[2]; jac[2][1] += p->y() * s[2]; jac[2][2] += p->z() * s[2];
}
return fabs(jac[0][0] * jac[1][1] * jac[2][2] + jac[0][2] * jac[1][0] * jac[2][1] +
jac[0][1] * jac[1][2] * jac[2][0] - jac[0][2] * jac[1][1] * jac[2][0] -
jac[0][0] * jac[1][2] * jac[2][1] - jac[0][1] * jac[1][0] * jac[2][2]);
case 2 :
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1];
}
{
double a[3], b[3], c[3];
a[0] = getVertex(1)->x() - getVertex(0)->x();
a[1] = getVertex(1)->y() - getVertex(0)->y();
a[2] = getVertex(1)->z() - getVertex(0)->z();
b[0] = getVertex(2)->x() - getVertex(0)->x();
b[1] = getVertex(2)->y() - getVertex(0)->y();
b[2] = getVertex(2)->z() - getVertex(0)->z();
prodve(a, b, c);
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
}
return sqrt(SQU(jac[0][0] * jac[1][1] - jac[0][1] * jac[1][0]) +
SQU(jac[0][2] * jac[1][0] - jac[0][0] * jac[1][2]) +
SQU(jac[0][1] * jac[1][2] - jac[0][2] * jac[1][1]));
case 1:
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
}
{
double a[3], b[3], c[3];
a[0] = getVertex(1)->x() - getVertex(0)->x();
a[1] = getVertex(1)->y() - getVertex(0)->y();
a[2] = getVertex(1)->z() - getVertex(0)->z();
(fabs(a[1]) >= fabs(a[0]) && fabs(a[1]) >= fabs(a[2]))) {
b[0] = a[1]; b[1] = -a[0]; b[2] = 0.;
}
prodve(a, b, c);
jac[1][0] = b[0]; jac[1][1] = b[1]; jac[1][2] = b[2];
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
}
return sqrt(SQU(jac[0][0]) + SQU(jac[0][1]) + SQU(jac[0][2]));
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
default:
return 1.;
}
}
void MElement::xyz2uvw(double xyz[3], double uvw[3])
{
// general Newton routine for the nonlinear case (more efficient
// routines are implemented for simplices, where the basis functions
// are linear)
uvw[0] = uvw[1] = uvw[2] = 0.;
int iter = 1, maxiter = 20;
double error = 1., tol = 1.e-6;
while (error > tol && iter < maxiter){
double jac[3][3];
if(!getJacobian(uvw[0], uvw[1], uvw[2], jac)) break;
double xn = 0., yn = 0., zn = 0.;
for (int i = 0; i < getNumVertices(); i++) {
double s;
getShapeFunction(i, uvw[0], uvw[1], uvw[2], s);
MVertex *v = getVertex(i);
xn += v->x() * s;
yn += v->y() * s;
zn += v->z() * s;
}
double inv[3][3];
inv3x3(jac, inv);
double un = uvw[0] +
inv[0][0] * (xyz[0] - xn) + inv[1][0] * (xyz[1] - yn) + inv[2][0] * (xyz[2] - zn);
double vn = uvw[1] +
inv[0][1] * (xyz[0] - xn) + inv[1][1] * (xyz[1] - yn) + inv[2][1] * (xyz[2] - zn) ;
double wn = uvw[2] +
inv[0][2] * (xyz[0] - xn) + inv[1][2] * (xyz[1] - yn) + inv[2][2] * (xyz[2] - zn) ;
error = sqrt(SQU(un - uvw[0]) + SQU(vn - uvw[1]) + SQU(wn - uvw[2]));
uvw[0] = un;
uvw[1] = vn;
uvw[2] = wn;
iter++ ;
}
}
double MElement::interpolate(double val[], double u, double v, double w, int stride)
{
double sum = 0;
int j = 0;
for(int i = 0; i < getNumVertices(); i++){
double s;
getShapeFunction(i, u, v, w, s);
sum += val[j] * s;
j += stride;
}
return sum;
}
void MElement::interpolateGrad(double val[], double u, double v, double w, double f[3],
{
double dfdu[3] = {0., 0., 0.};
int j = 0;
for(int i = 0; i < getNumVertices(); i++){
double s[3];
getGradShapeFunction(i, u, v, w, s);
dfdu[0] += val[j] * s[0];
dfdu[1] += val[j] * s[1];
dfdu[2] += val[j] * s[2];
j += stride;
}
if(invjac){
matvec(invjac, dfdu, f);
}
else{
double jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
matvec(inv, dfdu, f);
}
}
void MElement::interpolateCurl(double val[], double u, double v, double w, double f[3],
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv);
interpolateGrad(&val[1], u, v, w, fy, stride, inv);
interpolateGrad(&val[2], u, v, w, fz, stride, inv);
f[0] = fz[1] - fy[2];
f[1] = -(fz[0] - fx[2]);
f[2] = fy[0] - fx[1];
}
double MElement::interpolateDiv(double val[], double u, double v, double w, int stride)
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv);
interpolateGrad(&val[1], u, v, w, fy, stride, inv);
interpolateGrad(&val[2], u, v, w, fz, stride, inv);
return fx[0] + fy[1] + fz[2];
}
void MElement::writeMSH(FILE *fp, double version, bool binary, int num,
// if necessary, change the ordering of the vertices to get positive
// volume
setVolumePositive();
if(!binary){
fprintf(fp, "%d %d", num ? num : _num, type);
if(version < 2.0)
fprintf(fp, " 3 %d %d %d", abs(physical), elementary, _partition);
int tags[4] = {num ? num : _num, abs(physical), elementary, _partition};
if(!binary){
for(int i = 0; i < n; i++)
fprintf(fp, " %d", verts[i]);
fprintf(fp, "\n");
}
else{
fwrite(verts, sizeof(int), n, fp);
}
void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printGamma, bool printEta, bool printRho,
double scalingFactor, int elementary)
if(!str) return;
int n = getNumVertices();
fprintf(fp, "%s(", str);
for(int i = 0; i < n; i++){
if(i) fprintf(fp, ",");
fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor,
getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor);
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
bool first = true;
if(printElementary){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", elementary);
}
}
if(printElementNumber){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", getNum());
}
}
if(printGamma){
double gamma = gammaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", gamma);
}
}
if(printEta){
double eta = etaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", eta);
}
}
if(printRho){
double rho = rhoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor)
if(getNumEdges() != 3 && getNumEdges() != 4) return;
int qid[3] = {0, 2, 3};
SVector3 n = getFace(0).normal();
if(!binary){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
getVertex(j)->x() * scalingFactor,
getVertex(j)->y() * scalingFactor,
getVertex(j)->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
if(getNumVertices() == 4){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
fprintf(fp, " vertex %g %g %g\n",
getVertex(qid[j])->x() * scalingFactor,
getVertex(qid[j])->y() * scalingFactor,
getVertex(qid[j])->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
}
}
else{
char data[50];
float *coords = (float*)data;
coords[0] = n[0];
coords[1] = n[1];
coords[2] = n[2];
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(j)->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(j)->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(j)->z() * scalingFactor;
}
fwrite(data, sizeof(char), 50, fp);
if(getNumVertices() == 4){
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(qid[j])->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(qid[j])->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(qid[j])->z() * scalingFactor;
}
}
void MElement::writeVRML(FILE *fp)
{
for(int i = 0; i < getNumVertices(); i++)
void MElement::writeVTK(FILE *fp, bool binary)
{
int type = getTypeForUNV();
if(!type) return;
setVolumePositive();
int n = getNumVertices();
if(binary){
verts[0] = n;
for(int i = 0; i < n; i++)
verts[i + 1] = getVertexVTK(i)->getIndex() - 1;
fwrite(verts, sizeof(int), n + 1, fp);
}
else{
fprintf(fp, "%d", n);
for(int i = 0; i < n; i++)
fprintf(fp, " %d", getVertexVTK(i)->getIndex() - 1);
fprintf(fp, "\n");
}
}
void MElement::writeUNV(FILE *fp, int num, int elementary, int physical)
if(!type) return;
setVolumePositive();
int n = getNumVertices();
int physical_property = elementary;
num ? num : _num, type, physical_property, material_property, color, n);
if(type == 21 || type == 24) // linear beam or parabolic beam
fprintf(fp, "%10d%10d%10d\n", 0, 0, 0);
void MElement::writeMESH(FILE *fp, int elementary)
{
for(int i = 0; i < getNumVertices(); i++)
if(!str) return;
setVolumePositive();
int n = getNumVertices();
const char *cont[4] = {"E", "F", "G", "H"};
int ncont = 0;
if(format == 0){ // free field format
fprintf(fp, "%s,%d,%d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, ",%d", getVertexBDF(i)->getIndex());
fprintf(fp, ",+%s%d\n+%s%d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, ",0.,0.,0.");
fprintf(fp, "\n");
}
else{ // small or large field format
fprintf(fp, "%-8s%-8d%-8d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, "%-8d", getVertexBDF(i)->getIndex());
fprintf(fp, "+%s%-6d\n+%s%-6d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, "%-8s%-8s%-8s", "0.", "0.", "0.");
fprintf(fp, "\n");
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
// Returns number of vertices and name if 'name' != 0. 'name' has a default
// argument of 0.
int MElement::getInfoMSH(const int typeMSH, const char **const name)
{
static const int numVert[MSH_NUM_TYPE] = {
2, // MSH_LIN_2
3, // MSH_TRI_3
4, // MSH_QUA_4
4, // MSH_TET_4
8, // MSH_HEX_8
6, // MSH_PRI_6
5, // MSH_PYR_5
3, // MSH_LIN_3
6, // MSH_TRI_6
9, // MSH_QUA_9
10, // MSH_TET_10
27, // MSH_HEX_27
18, // MSH_PRI_18
14, // MSH_PYR_14
1, // MSH_PNT
8, // MSH_QUA_8
20, // MSH_HEX_20
15, // MSH_PRI_15
13, // MSH_PYR_13
9, // MSH_TRI_9
10, // MSH_TRI_10
12, // MSH_TRI_12
15, // MSH_TRI_15
15, // MSH_TRI_15I
21, // MSH_TRI_21
4, // MSH_LIN_4
5, // MSH_LIN_5
6, // MSH_LIN_6
20, // MSH_TET_20
35, // MSH_TET_35
56, // MSH_TET_56
34, // MSH_TET_34
52 // MSH_TET_52
};
static const char *const elemName[MSH_NUM_TYPE] = {
"Line 2",
"Triangle 3",
"Quadrilateral 4",
"Tetrahedron 4",
"Hexahedron 8",
"Prism 6",
"Pyramid 5",
"Line 3",
"Triangle 6",
"Quadrilateral 9",
"Tetrahedron 10",
"Hexahedron 27",
"Prism 18",
"Pyramid 14",
"Point",
"Quadrilateral 8",
"Hexahedron 20",
"Prism 15",
"Pyramid 13",
"Triangle 9",
"Triangle 10",
"Triangle 12",
"Triangle 15",
"Triangle 15I",
"Triangle 21",
"Line 4",
"Line 5",
"Line 6",
"Tetrahedron 20",
"Tetrahedron 35",
"Tetrahedron 56",
"Tetrahedron 34",
"Tetrahedron 52"
};
if(typeMSH >= MSH_NUM_TYPE) {
Message::Error("Unknown type of element %d", typeMSH);
*name = 0;
return 0;
}
if(name) *name = elemName[typeMSH];
return numVert[typeMSH];
}
void MTriangle::jac(int ord, MVertex *vs[], double uu, double vv, double ww,
double j[2][3])
double grads[256][2];
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, ww, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, ww, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).df(uu, vv, ww, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).df(uu, vv, ww, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).df(uu, vv, ww, grads); break;
default: Msg::Error("Order %d triangle jac not implemented", ord); break;
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, ww, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, ww, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).df(uu, vv, ww, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).df(uu, vv, ww, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).df(uu, vv, ww, grads); break;
default: Msg::Error("Order %d triangle jac not implemented", ord); break;
j[0][0] = 0 ; for(int i = 0; i < 3; i++) j[0][0] += grads [i][0] * _v[i]->x();
j[1][0] = 0 ; for(int i = 0; i < 3; i++) j[1][0] += grads [i][1] * _v[i]->x();
j[0][1] = 0 ; for(int i = 0; i < 3; i++) j[0][1] += grads [i][0] * _v[i]->y();
j[1][1] = 0 ; for(int i = 0; i < 3; i++) j[1][1] += grads [i][1] * _v[i]->y();
j[0][2] = 0 ; for(int i = 0; i < 3; i++) j[0][2] += grads [i][0] * _v[i]->z();
j[1][2] = 0 ; for(int i = 0; i < 3; i++) j[1][2] += grads [i][1] * _v[i]->z();
if (ord == 1) return;
for(int i = 3; i < 3 * ord + nf; i++) j[0][0] += grads[i][0] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[1][0] += grads[i][1] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[0][1] += grads[i][0] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[1][1] += grads[i][1] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[0][2] += grads[i][0] * vs[i - 3]->z();
for(int i = 3; i < 3 * ord + nf; i++) j[1][2] += grads[i][1] * vs[i - 3]->z();
#endif
void MTriangle::pnt(int ord, MVertex *vs[], double uu, double vv, double ww,
SPoint3 &p)
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).f(uu, vv, sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).f(uu, vv, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).f(uu, vv, sf); break;
default: Msg::Error("Order %d triangle pnt not implemented", ord); break;
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).f(uu, vv, sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).f(uu, vv, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).f(uu, vv, sf); break;
default: Msg::Error("Order %d triangle pnt not implemented", ord); break;
double x = 0 ; for(int i = 0; i < 3; i++) x += sf[i] * _v[i]->x();
double y = 0 ; for(int i = 0; i < 3; i++) y += sf[i] * _v[i]->y();
double z = 0 ; for(int i = 0; i < 3; i++) z += sf[i] * _v[i]->z();
for(int i = 3; i < 3 * ord + nf; i++) x += sf[i] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) y += sf[i] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) z += sf[i] * vs[i - 3]->z();
void MTetrahedron::jac(int ord, MVertex *vs[], double uu, double vv, double ww,
double j[3][3])
{
#if !defined(HAVE_GMSH_EMBEDDED)
double grads[256][3];
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TET_4) .df(uu, vv, ww, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TET_10).df(uu, vv, ww, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TET_20).df(uu, vv, ww, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TET_35).df(uu, vv, ww, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TET_56).df(uu, vv, ww, grads); break;
default: Msg::Error("Order %d tetrahedron jac not implemented", ord); break;
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
}
j[0][0] = 0 ; for(int i = 0; i < 4; i++) j[0][0] += grads [i][0] * _v[i]->x();
j[1][0] = 0 ; for(int i = 0; i < 4; i++) j[1][0] += grads [i][1] * _v[i]->x();
j[2][0] = 0 ; for(int i = 0; i < 4; i++) j[2][0] += grads [i][2] * _v[i]->x();
j[0][1] = 0 ; for(int i = 0; i < 4; i++) j[0][1] += grads [i][0] * _v[i]->y();
j[1][1] = 0 ; for(int i = 0; i < 4; i++) j[1][1] += grads [i][1] * _v[i]->y();
j[2][1] = 0 ; for(int i = 0; i < 4; i++) j[2][1] += grads [i][2] * _v[i]->y();
j[0][2] = 0 ; for(int i = 0; i < 4; i++) j[0][2] += grads [i][0] * _v[i]->z();
j[1][2] = 0 ; for(int i = 0; i < 4; i++) j[1][2] += grads [i][1] * _v[i]->z();
j[2][2] = 0 ; for(int i = 0; i < 4; i++) j[2][2] += grads [i][2] * _v[i]->z();
if (ord == 1) return;
const int N = (ord+1)*(ord+2)*(ord+3)/6;
for(int i = 4; i < N; i++) j[0][0] += grads[i][0] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[1][0] += grads[i][1] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[2][0] += grads[i][2] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[0][1] += grads[i][0] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[1][1] += grads[i][1] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[2][1] += grads[i][2] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[0][2] += grads[i][0] * vs[i - 4]->z();
for(int i = 4; i < N; i++) j[1][2] += grads[i][1] * vs[i - 4]->z();
for(int i = 4; i < N; i++) j[2][2] += grads[i][2] * vs[i - 4]->z();
#endif
}
void MTetrahedron::pnt(int ord, MVertex *vs[], double uu, double vv, double ww,
SPoint3 &p)

Jean-François Remacle
committed

Jean-François Remacle
committed
if (!nv){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TET_4).f(uu, vv, ww, sf); break;
case 2: gmshFunctionSpaces::find(MSH_TET_10).f(uu, vv, ww, sf); break;
case 3: gmshFunctionSpaces::find(MSH_TET_20).f(uu, vv, ww, sf); break;
case 4: gmshFunctionSpaces::find(MSH_TET_34).f(uu, vv, ww, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TET_52).f(uu, vv, ww, sf); break;
default: Msg::Error("Order %d tetrahedron pnt not implemented", ord); break;
}
}
else{
switch(ord){
case 4: gmshFunctionSpaces::find(MSH_TET_35).f(uu, vv, ww, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TET_56).f(uu, vv, ww, sf); break;
default: Msg::Error("Order %d tetrahedron pnt not implemented", ord); break;
}
}
double x = 0 ; for(int i = 0; i < 4; i++) x += sf[i] * _v[i]->x();
double y = 0 ; for(int i = 0; i < 4; i++) y += sf[i] * _v[i]->y();
double z = 0 ; for(int i = 0; i < 4; i++) z += sf[i] * _v[i]->z();

Jean-François Remacle
committed
for(int i = 4; i < N; i++) x += sf[i] * vs[i - 4]->x();
for(int i = 4; i < N; i++) y += sf[i] * vs[i - 4]->y();
for(int i = 4; i < N; i++) z += sf[i] * vs[i - 4]->z();

Jean-François Remacle
committed

Jean-François Remacle
committed
int MTriangleN::getNumFacesRep(){ return numSubEdges * numSubEdges; }
void MTriangleN::getFaceRep(int num, double *x, double *y, double *z, SVector3 *n)
{

Jean-François Remacle
committed
// on the first layer, we have (numSubEdges-1) * 2 + 1 triangles
// on the second layer, we have (numSubEdges-2) * 2 + 1 triangles
// on the ith layer, we have (numSubEdges-1-i) * 2 + 1 triangles
int ix, iy;
int nbt = 0;
for (int i = 0; i < numSubEdges; i++){
int nbl = (numSubEdges - i - 1) * 2 + 1;

Jean-François Remacle
committed
nbt += nbl;
if (nbt > num){
iy = i;

Jean-François Remacle
committed
break;
}
}

Jean-François Remacle
committed
SPoint3 pnt1, pnt2, pnt3;
double J1[2][3], J2[2][3], J3[2][3];
if (ix % 2 == 0){
pnt(ix / 2 * d, iy * d, 0, pnt1);
pnt((ix / 2 + 1) * d, iy * d, 0, pnt2);
pnt(ix / 2 * d, (iy + 1) * d, 0, pnt3);
jac(ix / 2 * d, iy * d, 0, J1);
jac((ix / 2 + 1) * d, iy * d, 0, J2);
jac(ix / 2 * d, (iy + 1) * d, 0, J3);

Jean-François Remacle
committed
}
else{
pnt((ix / 2 + 1) * d, iy * d, 0, pnt1);
pnt((ix / 2 + 1) * d, (iy + 1) * d, 0, pnt2);
pnt(ix / 2 * d, (iy + 1) * d, 0, pnt3);
jac((ix / 2 + 1) * d, iy * d, 0, J1);
jac((ix / 2 + 1) * d, (iy + 1) * d, 0, J2);
jac(ix / 2 * d, (iy + 1) * d, 0, J3);

Jean-François Remacle
committed
}
{
SVector3 d1(J1[0][0], J1[0][1], J1[0][2]);
SVector3 d2(J1[1][0], J1[1][1], J1[1][2]);
n[0] = crossprod(d1, d2);

Jean-François Remacle
committed
n[0].normalize();
}
{
SVector3 d1(J2[0][0], J2[0][1], J2[0][2]);
SVector3 d2(J2[1][0], J2[1][1], J2[1][2]);
n[1] = crossprod(d1, d2);

Jean-François Remacle
committed
n[1].normalize();
}
{
SVector3 d1(J3[0][0], J3[0][1], J3[0][2]);
SVector3 d2(J3[1][0], J3[1][1], J3[1][2]);
n[2] = crossprod(d1, d2);

Jean-François Remacle
committed
n[2].normalize();
}
x[0] = pnt1.x(); x[1] = pnt2.x(); x[2] = pnt3.x();
y[0] = pnt1.y(); y[1] = pnt2.y(); y[2] = pnt3.y();
z[0] = pnt1.z(); z[1] = pnt2.z(); z[2] = pnt3.z();
}
int MTriangleN::getNumEdgesRep(){ return 3 * numSubEdges; }
void MTriangleN::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
n[0] = n[1] = getFace(0).normal();
int N = getNumEdgesRep() / 3;
if (num < N){
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
pnt(1. - (double)num / N, (double)num / N, 0, pnt1);
pnt(1. - (double)(num + 1) / N, (double)(num + 1) / N, 0, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
pnt(0, (double)num / N, 0,pnt1);
pnt(0, (double)(num + 1) / N, 0,pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
MElement *MElementFactory::create(int type, std::vector<MVertex*> &v,
int num, int part)
{
switch (type) {
case MSH_PNT: return 0;
case MSH_LIN_2: return new MLine(v, num, part);
case MSH_LIN_3: return new MLine3(v, num, part);
case MSH_LIN_4: return new MLineN(v, num, part);
case MSH_LIN_5: return new MLineN(v, num, part);
case MSH_LIN_6: return new MLineN(v, num, part);
case MSH_TRI_3: return new MTriangle(v, num, part);
case MSH_TRI_6: return new MTriangle6(v, num, part);
case MSH_TRI_9: return new MTriangleN(v, 3, num, part);
case MSH_TRI_10: return new MTriangleN(v, 3, num, part);
case MSH_TRI_12: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15I:return new MTriangleN(v, 5, num, part);
case MSH_TRI_21: return new MTriangleN(v, 5, num, part);
case MSH_QUA_4: return new MQuadrangle(v, num, part);
case MSH_QUA_8: return new MQuadrangle8(v, num, part);