Newer
Older
// $Id: MElement.cpp,v 1.57 2008-02-21 15:08:22 geuzaine Exp $
// Copyright (C) 1997-2008 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to <gmsh@geuz.org>.
#include <math.h>
#include "MElement.h"
#include "GEntity.h"
# include "Message.h"
# include "Context.h"
# include "qualityMeasures.h"
void MElement::_getEdgeRep(MVertex *v0, MVertex *v1,
double *x, double *y, double *z, SVector3 *n,
int faceIndex)
{
x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z();
x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z();
if(faceIndex >= 0){
n[0] = n[1] = getFace(faceIndex).normal();
}
else{
MEdge e(v0, v1);
n[0] = n[1] = e.normal();
}
}
void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
double *x, double *y, double *z, SVector3 *n)
{
x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x();
y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y();
z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z();
SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]);
SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]);
SVector3 normal = crossprod(t1, t2);
normal.normalize();
for(int i = 0; i < 3; i++) n[i] = normal;
}
char MElement::getVisibility()
{
if(CTX.hide_unselected && _visible < 2) return false;
return _visible;
}
double MElement::minEdge()
{
double m = 1.e25;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::maxEdge()
{
double m = 0.;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::rhoShapeMeasure()
{
double min = minEdge();
double max = maxEdge();
if(max)
return min / max;
else
return 0.;
}
double MTriangle::gammaShapeMeasure()
{
double MTetrahedron::gammaShapeMeasure()
{
}
double MTetrahedron::etaShapeMeasure()
{
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
void MTetrahedron::getMat(double mat[3][3])
{
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[2]->x() - _v[0]->x();
mat[0][2] = _v[3]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[2]->y() - _v[0]->y();
mat[1][2] = _v[3]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[2]->z() - _v[0]->z();
mat[2][2] = _v[3]->z() - _v[0]->z();
}
double MTetrahedron::getVolume()
{
double mat[3][3];
getMat(mat);
return det3x3(mat) / 6.;
}
bool MTetrahedron::invertmapping(double *p, double *uvw, double tol)
{
double mat[3][3];
double b[3], dum;
getMat(mat);
b[0] = p[0] - getVertex(0)->x();
b[1] = p[1] - getVertex(0)->y();
b[2] = p[2] - getVertex(0)->z();
sys3x3(mat, b, uvw, &dum);
if(uvw[0] >= -tol && uvw[1] >= -tol && uvw[2] >= -tol &&
uvw[0] <= 1. + tol && uvw[1] <= 1. + tol && uvw[2] <= 1. + tol &&
1. - uvw[0] - uvw[1] - uvw[2] > -tol) {
return true;
}
return false;
}
void MTetrahedron::circumcenter(double X[4], double Y[4], double Z[4], double *res)
{
double mat[3][3], b[3], dum;
b[0] = X[1] * X[1] - X[0] * X[0] +
Y[1] * Y[1] - Y[0] * Y[0] + Z[1] * Z[1] - Z[0] * Z[0];
b[1] = X[2] * X[2] - X[1] * X[1] +
Y[2] * Y[2] - Y[1] * Y[1] + Z[2] * Z[2] - Z[1] * Z[1];
b[2] = X[3] * X[3] - X[2] * X[2] +
Y[3] * Y[3] - Y[2] * Y[2] + Z[3] * Z[3] - Z[2] * Z[2];
for(int i = 0; i < 3; i++)
b[i] *= 0.5;
mat[0][0] = X[1] - X[0];
mat[0][1] = Y[1] - Y[0];
mat[0][2] = Z[1] - Z[0];
mat[1][0] = X[2] - X[1];
mat[1][1] = Y[2] - Y[1];
mat[1][2] = Z[2] - Z[1];
mat[2][0] = X[3] - X[2];
mat[2][1] = Y[3] - Y[2];
mat[2][2] = Z[3] - Z[2];
if(!sys3x3(mat, b, res, &dum)) {
res[0] = res[1] = res[2] = 10.0e10;
}
}
int MHexahedron::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPrism::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[2]->x() - _v[0]->x();
mat[0][2] = _v[3]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[2]->y() - _v[0]->y();
mat[1][2] = _v[3]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[2]->z() - _v[0]->z();
mat[2][2] = _v[3]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPyramid::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
p[0] += v->x();
p[1] += v->y();
p[2] += v->z();
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
std::string MElement::getInfoString()
{
char tmp[256];
sprintf(tmp, "Element %d", getNum());
return std::string(tmp);
}
void MElement::writeMSH(FILE *fp, double version, bool binary, int num,
int elementary, int physical)
// if necessary, change the ordering of the vertices to get positive
// volume
setVolumePositive();
if(!binary){
fprintf(fp, "%d %d", num ? num : _num, type);
if(version < 2.0)
fprintf(fp, " 3 %d %d %d", abs(physical), elementary, _partition);
int tags[4] = {num ? num : _num, abs(physical), elementary, _partition};
int verts[30];
for(int i = 0; i < n; i++)
verts[i] = getVertex(i)->getNum();
if(!binary){
for(int i = 0; i < n; i++)
fprintf(fp, " %d", verts[i]);
fprintf(fp, "\n");
}
else{
fwrite(verts, sizeof(int), n, fp);
}
void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printGamma, bool printEta, bool printRho,
double scalingFactor, int elementary)
if(!str) return;
int n = getNumVertices();
fprintf(fp, "%s(", str);
for(int i = 0; i < n; i++){
if(i) fprintf(fp, ",");
fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor,
getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor);
}
fprintf(fp, "){");
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
bool first = true;
if(printElementary){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", elementary);
}
}
if(printElementNumber){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", getNum());
}
}
if(printGamma){
double gamma = gammaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", gamma);
}
}
if(printEta){
double eta = etaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", eta);
}
}
if(printRho){
double rho = rhoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor)
if(getNumEdges() != 3 && getNumEdges() != 4) return;
int qid[3] = {0, 2, 3};
SVector3 n = getFace(0).normal();
if(!binary){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
for(int j = 0; j < 3; j++)
fprintf(fp, " vertex %g %g %g\n",
getVertex(j)->x() * scalingFactor,
getVertex(j)->y() * scalingFactor,
getVertex(j)->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
if(getNumVertices() == 4){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
fprintf(fp, " vertex %g %g %g\n",
getVertex(qid[j])->x() * scalingFactor,
getVertex(qid[j])->y() * scalingFactor,
getVertex(qid[j])->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
}
}
else{
char data[50];
float *coords = (float*)data;
coords[0] = n[0];
coords[1] = n[1];
coords[2] = n[2];
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(j)->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(j)->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(j)->z() * scalingFactor;
}
fwrite(data, sizeof(char), 50, fp);
if(getNumVertices() == 4){
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(qid[j])->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(qid[j])->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(qid[j])->z() * scalingFactor;
}
fwrite(data, sizeof(char), 50, fp);
}
}
}
void MElement::writeVRML(FILE *fp)
{
for(int i = 0; i < getNumVertices(); i++)
fprintf(fp, "%d,", getVertex(i)->getNum() - 1);
fprintf(fp, "-1,\n");
}
void MElement::writeUNV(FILE *fp, int num, int elementary, int physical)
if(!type) return;
setVolumePositive();
int n = getNumVertices();
int physical_property = elementary;
int color = 7;
fprintf(fp, "%10d%10d%10d%10d%10d%10d\n",
num ? num : _num, type, physical_property, material_property, color, n);
if(type == 21 || type == 24) // linear beam or parabolic beam
fprintf(fp, "%10d%10d%10d\n", 0, 0, 0);
for(int k = 0; k < n; k++) {
fprintf(fp, "%10d", getVertexUNV(k)->getNum());
if(k % 8 == 7)
void MElement::writeMESH(FILE *fp, int elementary)
{
for(int i = 0; i < getNumVertices(); i++)
fprintf(fp, " %d", getVertex(i)->getNum());
fprintf(fp, " %d\n", elementary);
}
if(!str) return;
setVolumePositive();
int n = getNumVertices();
const char *cont[4] = {"E", "F", "G", "H"};
int ncont = 0;
if(format == 0){ // free field format
fprintf(fp, "%s,%d,%d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, ",%d", getVertex(i)->getNum());
if(i != n - 1 && !((i + 3) % 8)){
fprintf(fp, ",+%s%d\n+%s%d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, ",0.,0.,0.");
fprintf(fp, "\n");
}
else{ // small or large field format
fprintf(fp, "%-8s%-8d%-8d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, "%-8d", getVertex(i)->getNum());
if(i != n - 1 && !((i + 3) % 8)){
fprintf(fp, "+%s%-6d\n+%s%-6d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, "%-8s%-8s%-8s", "0.", "0.", "0.");
fprintf(fp, "\n");
bool MTriangle::invertmappingXY(double *p, double *uv, double tol)
{
double mat[2][2];
getMat(mat);
b[0] = p[0] - getVertex(0)->x();
b[1] = p[1] - getVertex(0)->y();
sys2x2(mat, b, uv);
if(uv[0] >= -tol &&
uv[1] >= -tol &&
uv[0] <= 1. + tol &&
uv[1] <= 1. + tol &&
1. - uv[0] - uv[1] > -tol) {
return true;
}
return false;
}
bool MTriangle::invertmappingUV(GFace* gf, double *p, double *uv, double tol)
{
double mat[2][2];
double b[2];
parametricCoordinates(getVertex(0), gf, u0, v0);
parametricCoordinates(getVertex(1), gf, u1, v1);
parametricCoordinates(getVertex(2), gf, u2, v2);
mat[0][0] = u1 - u0;
mat[0][1] = u2 - u0;
mat[1][0] = v1 - v0;
mat[1][1] = v2 - v0;
b[0] = p[0] - u0;
b[1] = p[1] - v0;
sys2x2(mat, b, uv);
if(uv[0] >= -tol &&
uv[1] >= -tol &&
uv[0] <= 1. + tol &&
uv[1] <= 1. + tol &&
1. - uv[0] - uv[1] > -tol) {
return true;
}
return false;
}
double MTriangle::getSurfaceUV(GFace *gf)
{
parametricCoordinates(getVertex(0), gf, u1, v1);
parametricCoordinates(getVertex(1), gf, u2, v2);
parametricCoordinates(getVertex(2), gf, u3, v3);
const double vv1 [2] = {u2 - u1, v2 - v1};
const double vv2 [2] = {u3 - u1, v3 - v1};
double s = vv1[0] * vv2[1] - vv1[1] * vv2[0];
return s * 0.5;
}
double MTriangle::getSurfaceXY() const
{
const double x1 = _v[0]->x();
const double x2 = _v[1]->x();
const double x3 = _v[2]->x();
const double y1 = _v[0]->y();
const double y2 = _v[1]->y();
const double y3 = _v[2]->y();
const double v1 [2] = {x2 - x1, y2 - y1};
const double v2 [2] = {x3 - x1, y3 - y1};
double s = v1[0] * v2[1] - v1[1] * v2[0];
return s * 0.5;
void MTriangle::circumcenterXYZ(double *p1, double *p2, double *p3,
double *res, double *uv)
double v1[3] = {p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2]};
double v2[3] = {p3[0] - p1[0], p3[1] - p1[1], p3[2] - p1[2]};
double vx[3] = {p2[0] - p1[0], p2[1] - p1[1], p2[2] - p1[2]};
double vy[3] = {p3[0] - p1[0], p3[1] - p1[1], p3[2] - p1[2]};
double vz[3]; prodve(vx, vy, vz); prodve(vz, vx, vy);
norme(vx); norme(vy); norme(vz);
double p1P[2] = {0.0, 0.0};
double p2P[2]; prosca(v1, vx, &p2P[0]); prosca(v1, vy, &p2P[1]);
double p3P[2]; prosca(v2, vx, &p3P[0]); prosca(v2, vy, &p3P[1]);
double resP[2];
circumcenterXY(p1P, p2P, p3P,resP);
if(uv){
double mat[2][2] = {{p2P[0] - p1P[0], p3P[0] - p1P[0]},
{p2P[1] - p1P[1], p3P[1] - p1P[1]}};
double rhs[2] = {resP[0] - p1P[0], resP[1] - p1P[1]};
sys2x2(mat, rhs, uv);
}
res[0] = p1[0] + resP[0] * vx[0] + resP[1] * vy[0];
res[1] = p1[1] + resP[0] * vx[1] + resP[1] * vy[1];
res[2] = p1[2] + resP[0] * vx[2] + resP[1] * vy[2];
}
void MTriangle::circumcenterXY(double *p1, double *p2, double *p3, double *res)
{
double d, a1, a2, a3;
const double x1 = p1[0];
const double x2 = p2[0];
const double x3 = p3[0];
const double y1 = p1[1];
const double y2 = p2[1];
const double y3 = p3[1];
d = 2. * (double)(y1 * (x2 - x3) + y2 * (x3 - x1) + y3 * (x1 - x2));
if(d == 0.0) {
res[0] = res[1] = -99999.;
return ;
}
a1 = x1 * x1 + y1 * y1;
a2 = x2 * x2 + y2 * y2;
a3 = x3 * x3 + y3 * y3;
res[0] = (double)((a1 * (y3 - y2) + a2 * (y1 - y3) + a3 * (y2 - y1)) / d);
res[1] = (double)((a1 * (x2 - x3) + a2 * (x3 - x1) + a3 * (x1 - x2)) / d);
}
void MTriangle::circumcenterUV(GFace *gf, double *res)
{
double u3, v3, u1, v1, u2, v2;
parametricCoordinates(getVertex(0), gf, u1, v1);
parametricCoordinates(getVertex(1), gf, u2, v2);
parametricCoordinates(getVertex(2), gf, u3, v3);
double p1[2] = {u1, v1};
double p2[2] = {u2, v2};
double p3[2] = {u3, v3};
circumcenterXY(p1, p2, p3, res);
void MTriangle::circumcenterXY(double *res) const
{
double p1[2] = {_v[0]->x(), _v[0]->y()};
double p2[2] = {_v[1]->x(), _v[1]->y()};
double p3[2] = {_v[2]->x(), _v[2]->y()};
circumcenterXY(p1, p2, p3, res);
void MTriangle::jac(int ord, MVertex *vs[], double uu, double vv, double j[2][3])
double grads[256][2];
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).df(uu, vv, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).df(uu, vv, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).df(uu, vv, grads); break;
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).df(uu, vv, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).df(uu, vv, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).df(uu, vv, grads); break;
j[0][0] = 0 ; for(int i = 0; i < 3; i++) j[0][0] += grads [i][0] * _v[i]->x();
j[1][0] = 0 ; for(int i = 0; i < 3; i++) j[1][0] += grads [i][1] * _v[i]->x();
j[0][1] = 0 ; for(int i = 0; i < 3; i++) j[0][1] += grads [i][0] * _v[i]->y();
j[1][1] = 0 ; for(int i = 0; i < 3; i++) j[1][1] += grads [i][1] * _v[i]->y();
j[0][2] = 0 ; for(int i = 0; i < 3; i++) j[0][2] += grads [i][0] * _v[i]->z();
j[1][2] = 0 ; for(int i = 0; i < 3; i++) j[1][2] += grads [i][1] * _v[i]->z();
if (ord == 1) return;
for(int i = 3; i < 3 * ord + nf; i++) j[0][0] += grads[i][0] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[1][0] += grads[i][1] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[0][1] += grads[i][0] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[1][1] += grads[i][1] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[0][2] += grads[i][0] * vs[i - 3]->z();
for(int i = 3; i < 3 * ord + nf; i++) j[1][2] += grads[i][1] * vs[i - 3]->z();
#endif
}
void MTriangle::pnt(int ord, MVertex *vs[], double uu, double vv, SPoint3 &p)
{
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).f(uu, vv, sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).f(uu, vv, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).f(uu, vv, sf); break;
default: throw;
}
}
else{
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).f(uu, vv, sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).f(uu, vv, sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).f(uu, vv, sf); break;
double x = 0 ; for(int i = 0; i < 3; i++) x += sf[i] * _v[i]->x();
double y = 0 ; for(int i = 0; i < 3; i++) y += sf[i] * _v[i]->y();
double z = 0 ; for(int i = 0; i < 3; i++) z += sf[i] * _v[i]->z();
for(int i = 3; i < 3 * ord + nf; i++) x += sf[i] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) y += sf[i] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) z += sf[i] * vs[i - 3]->z();
void MTriangleN::jac(double uu, double vv , double j[2][3])
void MTriangleN::pnt(double uu, double vv, SPoint3 &p){
MTriangle::pnt(_order, &(*(_vs.begin())), uu, vv, p);
}
void MTriangle6::jac(double uu, double vv , double j[2][3])
void MTriangle6::pnt(double uu, double vv, SPoint3 &p){
MTriangle::pnt(2, _vs, uu, vv, p);
}
void MTriangle::jac(double uu, double vv, double j[2][3])
void MTriangle::pnt(double uu, double vv, SPoint3 &p)
{
MTriangle::pnt(1, 0, uu, vv, p);
}
int MTriangle6::getNumEdgesRep(){ return 3 * 9; }
void MTriangle6::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
n[0] = n[1] = getFace(0).normal();
int N = getNumEdgesRep() / 3;
if (num < N){
pnt((double)num / N, 0., pnt1);
pnt((double)(num + 1) / N, 0., pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
num -= N;
pnt(1. - (double)num / N, (double)num / N, pnt1);
pnt(1. - (double)(num + 1) / N, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
num -= 2 * N;
pnt(0, (double)num / N, pnt1);
pnt(0, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
int MTriangleN::getNumEdgesRep(){ return 3 * 9; }
void MTriangleN::getEdgeRep (int num, double *x, double *y, double *z, SVector3 *n)
{
n[0] = n[1] = getFace(0).normal();
int N = getNumEdgesRep() / 3;
if (num < N){
pnt((double)num / N, 0., pnt1);
pnt((double)(num + 1) / N, 0., pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
num -= N;
pnt(1. - (double)num / N, (double)num / N, pnt1);
pnt(1. - (double)(num + 1) / N, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
num -= 2 * N;
pnt(0, (double)num / N, pnt1);
pnt(0, (double)(num + 1) / N, pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();