Newer
Older
// $Id: MElement.cpp,v 1.76 2008-06-27 08:33:36 koen Exp $
// Copyright (C) 1997-2008 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to <gmsh@geuz.org>.
#include <math.h>
#include "MElement.h"
#include "GEntity.h"
# include "Message.h"
# include "Context.h"
# include "qualityMeasures.h"
{
x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z();
x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z();
if(faceIndex >= 0){
n[0] = n[1] = getFace(faceIndex).normal();
}
else{
MEdge e(v0, v1);
n[0] = n[1] = e.normal();
}
}
void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
{
x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x();
y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y();
z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z();
SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]);
SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]);
SVector3 normal = crossprod(t1, t2);
normal.normalize();
for(int i = 0; i < 3; i++) n[i] = normal;
}
char MElement::getVisibility()
{
if(CTX.hide_unselected && _visible < 2) return false;
return _visible;
}
double MElement::minEdge()
{
double m = 1.e25;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::maxEdge()
{
double m = 0.;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::rhoShapeMeasure()
{
double min = minEdge();
double max = maxEdge();
if(max)
return min / max;
else
return 0.;
}
double MTriangle::gammaShapeMeasure()
{
double MTetrahedron::gammaShapeMeasure()
{
}
double MTetrahedron::etaShapeMeasure()
{
double mat[3][3];
getMat(mat);
return det3x3(mat) / 6.;
}
b[0] = xyz[0] - getVertex(0)->x();
b[1] = xyz[1] - getVertex(0)->y();
b[2] = xyz[2] - getVertex(0)->z();
sys3x3(mat, b, uvw, &det);
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
}
int MHexahedron::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPrism::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[2]->x() - _v[0]->x();
mat[0][2] = _v[3]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[2]->y() - _v[0]->y();
mat[1][2] = _v[3]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[2]->z() - _v[0]->z();
mat[2][2] = _v[3]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int MPyramid::getVolumeSign()
{
double mat[3][3];
mat[0][0] = _v[1]->x() - _v[0]->x();
mat[0][1] = _v[3]->x() - _v[0]->x();
mat[0][2] = _v[4]->x() - _v[0]->x();
mat[1][0] = _v[1]->y() - _v[0]->y();
mat[1][1] = _v[3]->y() - _v[0]->y();
mat[1][2] = _v[4]->y() - _v[0]->y();
mat[2][0] = _v[1]->z() - _v[0]->z();
mat[2][1] = _v[3]->z() - _v[0]->z();
mat[2][2] = _v[4]->z() - _v[0]->z();
return sign(det3x3(mat));
}
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
p[0] += v->x();
p[1] += v->y();
p[2] += v->z();
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
std::string MElement::getInfoString()
{
char tmp[256];
sprintf(tmp, "Element %d", getNum());
return std::string(tmp);
}
double MElement::getJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
double s[3];
switch(getDim()){
case 3 :
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1];
jac[2][0] += p->x() * s[2]; jac[2][1] += p->y() * s[2]; jac[2][2] += p->z() * s[2];
}
return fabs(jac[0][0] * jac[1][1] * jac[2][2] + jac[0][2] * jac[1][0] * jac[2][1] +
jac[0][1] * jac[1][2] * jac[2][0] - jac[0][2] * jac[1][1] * jac[2][0] -
jac[0][0] * jac[1][2] * jac[2][1] - jac[0][1] * jac[1][0] * jac[2][2]);
case 2 :
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
jac[1][0] += p->x() * s[1]; jac[1][1] += p->y() * s[1]; jac[1][2] += p->z() * s[1];
}
{
double a[3], b[3], c[3];
a[0] = getVertex(1)->x() - getVertex(0)->x();
a[1] = getVertex(1)->y() - getVertex(0)->y();
a[2] = getVertex(1)->z() - getVertex(0)->z();
b[0] = getVertex(2)->x() - getVertex(0)->x();
b[1] = getVertex(2)->y() - getVertex(0)->y();
b[2] = getVertex(2)->z() - getVertex(0)->z();
prodve(a, b, c);
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
}
return sqrt(SQR(jac[0][0] * jac[1][1] - jac[0][1] * jac[1][0]) +
SQR(jac[0][2] * jac[1][0] - jac[0][0] * jac[1][2]) +
SQR(jac[0][1] * jac[1][2] - jac[0][2] * jac[1][1]));
case 1:
for(int i = 0; i < getNumVertices(); i++) {
getGradShapeFunction(i, u, v, w, s);
MVertex *p = getVertex(i);
jac[0][0] += p->x() * s[0]; jac[0][1] += p->y() * s[0]; jac[0][2] += p->z() * s[0];
}
{
double a[3], b[3], c[3];
a[0] = getVertex(1)->x() - getVertex(0)->x();
a[1] = getVertex(1)->y() - getVertex(0)->y();
a[2] = getVertex(1)->z() - getVertex(0)->z();
(fabs(a[1]) >= fabs(a[0]) && fabs(a[1]) >= fabs(a[2]))) {
b[0] = a[1]; b[1] = -a[0]; b[2] = 0.;
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
}
prodve(a, b, c);
jac[1][0] = b[0]; jac[1][1] = b[1]; jac[1][2] = b[2];
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
}
return sqrt(SQR(jac[0][0]) + SQR(jac[0][1]) + SQR(jac[0][2]));
default:
return 1.;
}
}
void MElement::xyz2uvw(double xyz[3], double uvw[3])
{
// general Newton routine for the nonlinear case (more efficient
// routines are implemented for simplices, where the basis functions
// are linear)
uvw[0] = uvw[1] = uvw[2] = 0.;
int iter = 1, maxiter = 20;
double error = 1., tol = 1.e-6;
while (error > tol && iter < maxiter){
double jac[3][3];
if(!getJacobian(uvw[0], uvw[1], uvw[2], jac)) break;
double xn = 0., yn = 0., zn = 0.;
for (int i = 0; i < getNumVertices(); i++) {
double s;
getShapeFunction(i, uvw[0], uvw[1], uvw[2], s);
MVertex *v = getVertex(i);
xn += v->x() * s;
yn += v->y() * s;
zn += v->z() * s;
}
double inv[3][3];
inv3x3(jac, inv);
double un = uvw[0] +
inv[0][0] * (xyz[0] - xn) + inv[1][0] * (xyz[1] - yn) + inv[2][0] * (xyz[2] - zn);
double vn = uvw[1] +
inv[0][1] * (xyz[0] - xn) + inv[1][1] * (xyz[1] - yn) + inv[2][1] * (xyz[2] - zn) ;
double wn = uvw[2] +
inv[0][2] * (xyz[0] - xn) + inv[1][2] * (xyz[1] - yn) + inv[2][2] * (xyz[2] - zn) ;
error = sqrt(SQR(un - uvw[0]) + SQR(vn - uvw[1]) + SQR(wn - uvw[2]));
uvw[0] = un;
uvw[1] = vn;
uvw[2] = wn;
iter++ ;
}
}
double MElement::interpolate(double val[], double u, double v, double w, int stride)
{
double sum = 0;
int j = 0;
for(int i = 0; i < getNumVertices(); i++){
double s;
getShapeFunction(i, u, v, w, s);
sum += val[j] * s;
j += stride;
}
return sum;
}
void MElement::interpolateGrad(double val[], double u, double v, double w, double f[3],
{
double dfdu[3] = {0., 0., 0.};
int j = 0;
for(int i = 0; i < getNumVertices(); i++){
double s[3];
getGradShapeFunction(i, u, v, w, s);
dfdu[0] += val[j] * s[0];
dfdu[1] += val[j] * s[1];
dfdu[2] += val[j] * s[2];
j += stride;
}
if(invjac){
matvec(invjac, dfdu, f);
}
else{
double jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
matvec(inv, dfdu, f);
}
}
void MElement::interpolateCurl(double val[], double u, double v, double w, double f[3],
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv);
interpolateGrad(&val[1], u, v, w, fy, stride, inv);
interpolateGrad(&val[2], u, v, w, fz, stride, inv);
f[0] = fz[1] - fy[2];
f[1] = -(fz[0] - fx[2]);
f[2] = fy[0] - fx[1];
}
double MElement::interpolateDiv(double val[], double u, double v, double w, int stride)
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv);
interpolateGrad(&val[1], u, v, w, fy, stride, inv);
interpolateGrad(&val[2], u, v, w, fz, stride, inv);
return fx[0] + fy[1] + fz[2];
}
void MElement::writeMSH(FILE *fp, double version, bool binary, int num,
// if necessary, change the ordering of the vertices to get positive
// volume
setVolumePositive();
if(!binary){
fprintf(fp, "%d %d", num ? num : _num, type);
if(version < 2.0)
fprintf(fp, " 3 %d %d %d", abs(physical), elementary, _partition);
int tags[4] = {num ? num : _num, abs(physical), elementary, _partition};
if(!binary){
for(int i = 0; i < n; i++)
fprintf(fp, " %d", verts[i]);
fprintf(fp, "\n");
}
else{
fwrite(verts, sizeof(int), n, fp);
}
void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printGamma, bool printEta, bool printRho,
double scalingFactor, int elementary)
if(!str) return;
int n = getNumVertices();
fprintf(fp, "%s(", str);
for(int i = 0; i < n; i++){
if(i) fprintf(fp, ",");
fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor,
getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor);
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
bool first = true;
if(printElementary){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", elementary);
}
}
if(printElementNumber){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", getNum());
}
}
if(printGamma){
double gamma = gammaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", gamma);
}
}
if(printEta){
double eta = etaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", eta);
}
}
if(printRho){
double rho = rhoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor)
if(getNumEdges() != 3 && getNumEdges() != 4) return;
int qid[3] = {0, 2, 3};
SVector3 n = getFace(0).normal();
if(!binary){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
getVertex(j)->x() * scalingFactor,
getVertex(j)->y() * scalingFactor,
getVertex(j)->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
if(getNumVertices() == 4){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
fprintf(fp, " vertex %g %g %g\n",
getVertex(qid[j])->x() * scalingFactor,
getVertex(qid[j])->y() * scalingFactor,
getVertex(qid[j])->z() * scalingFactor);
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
}
}
else{
char data[50];
float *coords = (float*)data;
coords[0] = n[0];
coords[1] = n[1];
coords[2] = n[2];
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(j)->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(j)->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(j)->z() * scalingFactor;
}
fwrite(data, sizeof(char), 50, fp);
if(getNumVertices() == 4){
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = getVertex(qid[j])->x() * scalingFactor;
coords[3 + 3 * j + 1] = getVertex(qid[j])->y() * scalingFactor;
coords[3 + 3 * j + 2] = getVertex(qid[j])->z() * scalingFactor;
}
}
void MElement::writeVRML(FILE *fp)
{
for(int i = 0; i < getNumVertices(); i++)
void MElement::writeVTK(FILE *fp, bool binary)
{
int type = getTypeForUNV();
if(!type) return;
setVolumePositive();
int n = getNumVertices();
if(binary){
int verts[30];
verts[0] = n;
for(int i = 0; i < n; i++)
verts[i + 1] = getVertexVTK(i)->getIndex() - 1;
fwrite(verts, sizeof(int), n + 1, fp);
}
else{
fprintf(fp, "%d", n);
for(int i = 0; i < n; i++)
fprintf(fp, " %d", getVertexVTK(i)->getIndex() - 1);
fprintf(fp, "\n");
}
}
void MElement::writeUNV(FILE *fp, int num, int elementary, int physical)
if(!type) return;
setVolumePositive();
int n = getNumVertices();
int physical_property = elementary;
num ? num : _num, type, physical_property, material_property, color, n);
if(type == 21 || type == 24) // linear beam or parabolic beam
fprintf(fp, "%10d%10d%10d\n", 0, 0, 0);
void MElement::writeMESH(FILE *fp, int elementary)
{
for(int i = 0; i < getNumVertices(); i++)
if(!str) return;
setVolumePositive();
int n = getNumVertices();
const char *cont[4] = {"E", "F", "G", "H"};
int ncont = 0;
if(format == 0){ // free field format
fprintf(fp, "%s,%d,%d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, ",%d", getVertexBDF(i)->getIndex());
fprintf(fp, ",+%s%d\n+%s%d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, ",0.,0.,0.");
fprintf(fp, "\n");
}
else{ // small or large field format
fprintf(fp, "%-8s%-8d%-8d", str, _num, elementary);
for(int i = 0; i < n; i++){
fprintf(fp, "%-8d", getVertexBDF(i)->getIndex());
fprintf(fp, "+%s%-6d\n+%s%-6d", cont[ncont], _num, cont[ncont], _num);
ncont++;
if(n == 2) // CBAR
fprintf(fp, "%-8s%-8s%-8s", "0.", "0.", "0.");
fprintf(fp, "\n");
void MTriangle::jac(int ord, MVertex *vs[], double uu, double vv, double ww, double j[2][3])
double grads[256][2];
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, ww, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, ww, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).df(uu, vv, ww, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).df(uu, vv, ww, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).df(uu, vv,ww, grads); break;
case 1: gmshFunctionSpaces::find(MSH_TRI_3).df(uu, vv, ww,grads); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).df(uu, vv, ww,grads); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).df(uu, vv, ww,grads); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).df(uu, vv, ww,grads); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).df(uu, vv, ww,grads); break;
j[0][0] = 0 ; for(int i = 0; i < 3; i++) j[0][0] += grads [i][0] * _v[i]->x();
j[1][0] = 0 ; for(int i = 0; i < 3; i++) j[1][0] += grads [i][1] * _v[i]->x();
j[0][1] = 0 ; for(int i = 0; i < 3; i++) j[0][1] += grads [i][0] * _v[i]->y();
j[1][1] = 0 ; for(int i = 0; i < 3; i++) j[1][1] += grads [i][1] * _v[i]->y();
j[0][2] = 0 ; for(int i = 0; i < 3; i++) j[0][2] += grads [i][0] * _v[i]->z();
j[1][2] = 0 ; for(int i = 0; i < 3; i++) j[1][2] += grads [i][1] * _v[i]->z();
if (ord == 1) return;
for(int i = 3; i < 3 * ord + nf; i++) j[0][0] += grads[i][0] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[1][0] += grads[i][1] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) j[0][1] += grads[i][0] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[1][1] += grads[i][1] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) j[0][2] += grads[i][0] * vs[i - 3]->z();
for(int i = 3; i < 3 * ord + nf; i++) j[1][2] += grads[i][1] * vs[i - 3]->z();
#endif
void MTriangle::pnt(int ord, MVertex *vs[], double uu, double vv, double ww, SPoint3 &p)
int nf = getNumFaceVertices();
if (!nf){
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, ww,sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, ww,sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_9).f(uu, vv, ww,sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_12).f(uu, vv, ww,sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_15I).f(uu, vv, ww,sf); break;
default: throw;
}
}
else{
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TRI_3).f(uu, vv, ww,sf); break;
case 2: gmshFunctionSpaces::find(MSH_TRI_6).f(uu, vv, ww,sf); break;
case 3: gmshFunctionSpaces::find(MSH_TRI_10).f(uu, vv, ww,sf); break;
case 4: gmshFunctionSpaces::find(MSH_TRI_15).f(uu, vv, ww,sf); break;
case 5: gmshFunctionSpaces::find(MSH_TRI_21).f(uu, vv, ww,sf); break;
double x = 0 ; for(int i = 0; i < 3; i++) x += sf[i] * _v[i]->x();
double y = 0 ; for(int i = 0; i < 3; i++) y += sf[i] * _v[i]->y();
double z = 0 ; for(int i = 0; i < 3; i++) z += sf[i] * _v[i]->z();
for(int i = 3; i < 3 * ord + nf; i++) x += sf[i] * vs[i - 3]->x();
for(int i = 3; i < 3 * ord + nf; i++) y += sf[i] * vs[i - 3]->y();
for(int i = 3; i < 3 * ord + nf; i++) z += sf[i] * vs[i - 3]->z();
void MTetrahedron::pnt(int ord, MVertex *vs[], double uu, double vv, double ww,SPoint3 &p)

Jean-François Remacle
committed
{
#if !defined(HAVE_GMSH_EMBEDDED)
double sf[256];
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TET_4).f(uu, vv, ww,sf); break;
case 2: gmshFunctionSpaces::find(MSH_TET_10).f(uu, vv, ww,sf); break;
case 3: gmshFunctionSpaces::find(MSH_TET_20).f(uu, vv, ww,sf); break;
case 4: gmshFunctionSpaces::find(MSH_TET_35).f(uu, vv, ww,sf); break;
case 5: gmshFunctionSpaces::find(MSH_TET_56).f(uu, vv, ww,sf); break;

Jean-François Remacle
committed
default : throw;
}
double x = 0 ; for(int i = 0; i < 4; i++) x += sf[i] * _v[i]->x();
double y = 0 ; for(int i = 0; i < 4; i++) y += sf[i] * _v[i]->y();
double z = 0 ; for(int i = 0; i < 4; i++) z += sf[i] * _v[i]->z();
const int N = (ord+1)*(ord+2)*(ord+3)/6;
for(int i = 4; i < N; i++) x += sf[i] * vs[i - 4]->x();
for(int i = 4; i < N; i++) y += sf[i] * vs[i - 4]->y();
for(int i = 4; i < N; i++) z += sf[i] * vs[i - 4]->z();
p = SPoint3(x,y,z);
#endif
}
void MTetrahedron::pnt(int ord, std::vector<MVertex *> & vs, double uu, double vv, double ww,SPoint3 &p)
{
#if !defined(HAVE_GMSH_EMBEDDED)
double sf[256];
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TET_4) .f(uu, vv, ww,sf); break;
case 2: gmshFunctionSpaces::find(MSH_TET_10).f(uu, vv, ww,sf); break;
case 3: gmshFunctionSpaces::find(MSH_TET_20).f(uu, vv, ww,sf); break;
case 4: gmshFunctionSpaces::find(MSH_TET_35).f(uu, vv, ww,sf); break;
case 5: gmshFunctionSpaces::find(MSH_TET_56).f(uu, vv, ww,sf); break;
default : throw;
}
double x = 0 ; for(int i = 0; i < 4; i++) x += sf[i] * _v[i]->x();
double y = 0 ; for(int i = 0; i < 4; i++) y += sf[i] * _v[i]->y();
double z = 0 ; for(int i = 0; i < 4; i++) z += sf[i] * _v[i]->z();

Jean-François Remacle
committed
const int N = (ord+1)*(ord+2)*(ord+3)/6;
for(int i = 4; i < N; i++) x += sf[i] * vs[i - 4]->x();
for(int i = 4; i < N; i++) y += sf[i] * vs[i - 4]->y();
for(int i = 4; i < N; i++) z += sf[i] * vs[i - 4]->z();

Jean-François Remacle
committed
p = SPoint3(x,y,z);
#endif
}
void MTetrahedron::pnt(double uu, double vv ,double ww, SPoint3& p) {
return pnt(1,0,uu,vv,ww,p);
}
void MTetrahedron::jac(int ord, MVertex *vs[], double uu, double vv, double ww, double j[3][3])

Jean-François Remacle
committed
{
#if defined(HAVE_GMSH_EMBEDDED)
return;
#else
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
double grads[256][3];
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TET_4) .df(uu, vv, ww, grads); break;
case 2: gmshFunctionSpaces::find(MSH_TET_10).df(uu, vv, ww, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TET_20).df(uu, vv, ww, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TET_35).df(uu, vv, ww, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TET_56).df(uu, vv, ww, grads); break;
default: throw;
}
j[0][0] = 0 ; for(int i = 0; i < 4; i++) j[0][0] += grads [i][0] * _v[i]->x();
j[1][0] = 0 ; for(int i = 0; i < 4; i++) j[1][0] += grads [i][1] * _v[i]->x();
j[2][0] = 0 ; for(int i = 0; i < 4; i++) j[2][0] += grads [i][2] * _v[i]->x();
j[0][1] = 0 ; for(int i = 0; i < 4; i++) j[0][1] += grads [i][0] * _v[i]->y();
j[1][1] = 0 ; for(int i = 0; i < 4; i++) j[1][1] += grads [i][1] * _v[i]->y();
j[2][1] = 0 ; for(int i = 0; i < 4; i++) j[2][1] += grads [i][2] * _v[i]->y();
j[0][2] = 0 ; for(int i = 0; i < 4; i++) j[0][2] += grads [i][0] * _v[i]->z();
j[1][2] = 0 ; for(int i = 0; i < 4; i++) j[1][2] += grads [i][1] * _v[i]->z();
j[2][2] = 0 ; for(int i = 0; i < 4; i++) j[2][2] += grads [i][2] * _v[i]->z();
if (ord == 1) return;
const int N = (ord+1)*(ord+2)*(ord+3)/6;
for(int i = 4; i < N; i++) j[0][0] += grads[i][0] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[1][0] += grads[i][1] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[2][0] += grads[i][2] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[0][1] += grads[i][0] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[1][1] += grads[i][1] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[2][1] += grads[i][2] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[0][2] += grads[i][0] * vs[i - 4]->z();
for(int i = 4; i < N; i++) j[1][2] += grads[i][1] * vs[i - 4]->z();
for(int i = 4; i < N; i++) j[2][2] += grads[i][2] * vs[i - 4]->z();
#endif
}
void MTetrahedron::jac(int ord, std::vector<MVertex *>& vs, double uu, double vv, double ww, double j[3][3])
{
#if defined(HAVE_GMSH_EMBEDDED)
return;
#else
double grads[256][3];

Jean-François Remacle
committed
switch(ord){
case 1: gmshFunctionSpaces::find(MSH_TET_4).df(uu, vv, ww,grads); break;
case 2: gmshFunctionSpaces::find(MSH_TET_10).df(uu, vv, ww, grads); break;
case 3: gmshFunctionSpaces::find(MSH_TET_20).df(uu, vv, ww, grads); break;
case 4: gmshFunctionSpaces::find(MSH_TET_35).df(uu, vv, ww, grads); break;
case 5: gmshFunctionSpaces::find(MSH_TET_56).df(uu, vv, ww, grads); break;

Jean-François Remacle
committed
default: throw;
}
j[0][0] = 0 ; for(int i = 0; i < 4; i++) j[0][0] += grads [i][0] * _v[i]->x();
j[1][0] = 0 ; for(int i = 0; i < 4; i++) j[1][0] += grads [i][1] * _v[i]->x();
j[2][0] = 0 ; for(int i = 0; i < 4; i++) j[2][0] += grads [i][2] * _v[i]->x();
j[0][1] = 0 ; for(int i = 0; i < 4; i++) j[0][1] += grads [i][0] * _v[i]->y();
j[1][1] = 0 ; for(int i = 0; i < 4; i++) j[1][1] += grads [i][1] * _v[i]->y();
j[2][1] = 0 ; for(int i = 0; i < 4; i++) j[2][1] += grads [i][2] * _v[i]->y();
j[0][2] = 0 ; for(int i = 0; i < 4; i++) j[0][2] += grads [i][0] * _v[i]->z();
j[1][2] = 0 ; for(int i = 0; i < 4; i++) j[1][2] += grads [i][1] * _v[i]->z();
j[2][2] = 0 ; for(int i = 0; i < 4; i++) j[2][2] += grads [i][2] * _v[i]->z();

Jean-François Remacle
committed
if (ord == 1) return;
const int N = (ord+1)*(ord+2)*(ord+3)/6;
for(int i = 4; i < N; i++) j[0][0] += grads[i][0] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[1][0] += grads[i][1] * vs[i - 4]->x();
for(int i = 4; i < N; i++) j[2][0] += grads[i][2] * vs[i - 4]->x();

Jean-François Remacle
committed
for(int i = 4; i < N; i++) j[0][1] += grads[i][0] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[1][1] += grads[i][1] * vs[i - 4]->y();
for(int i = 4; i < N; i++) j[2][1] += grads[i][2] * vs[i - 4]->y();

Jean-François Remacle
committed
for(int i = 4; i < N; i++) j[0][2] += grads[i][0] * vs[i - 4]->z();
for(int i = 4; i < N; i++) j[1][2] += grads[i][1] * vs[i - 4]->z();
for(int i = 4; i < N; i++) j[2][2] += grads[i][2] * vs[i - 4]->z();

Jean-François Remacle
committed
#endif
}
void MTetrahedron::jac( double uu, double vv, double ww, double j[3][3]) {
return jac(1,0,uu,vv,ww,j);
}

Jean-François Remacle
committed
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
int MTriangleN::getNumFacesRep(){ return numSubEdges * numSubEdges; }
void MTriangleN::getFaceRep(int num, double *x, double *y, double *z, SVector3 *n){
// on the first layer, we have (numSubEdges-1) * 2 + 1 triangles
// on the second layer, we have (numSubEdges-2) * 2 + 1 triangles
// on the ith layer, we have (numSubEdges-1-i) * 2 + 1 triangles
int ix, iy;
int nbt = 0;
for (int i=0;i<numSubEdges;i++){
int nbl = (numSubEdges-i-1)*2 + 1;
nbt += nbl;
if (nbt > num){
iy = i;
ix = nbl-(nbt-num);
break;
}
}
const double d = 1./numSubEdges;
SPoint3 pnt1, pnt2, pnt3;
double J1[2][3],J2[2][3],J3[2][3];
if (ix %2 == 0){
pnt(ix/2*d, iy*d, 0,pnt1);
pnt((ix/2+1)*d, iy*d, 0,pnt2);
pnt(ix/2*d, (iy+1)*d, 0,pnt3);
jac(ix/2*d, iy*d, 0,J1);
jac((ix/2+1)*d, iy*d, 0,J2);
jac(ix/2*d, (iy+1)*d, 0,J3);

Jean-François Remacle
committed
}
else{
pnt((ix/2+1)*d, iy*d, 0,pnt1);
pnt((ix/2+1)*d, (iy+1)*d, 0,pnt2);
pnt(ix/2*d, (iy+1)*d, 0,pnt3);
jac((ix/2+1)*d, iy*d, 0,J1);
jac((ix/2+1)*d, (iy+1)*d, 0,J2);
jac(ix/2*d, (iy+1)*d, 0,J3);

Jean-François Remacle
committed
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
}
{
SVector3 d1 (J1[0][0],J1[0][1],J1[0][2]);
SVector3 d2 (J1[1][0],J1[1][1],J1[1][2]);
n[0] = crossprod(d1,d2);
n[0].normalize();
}
{
SVector3 d1 (J2[0][0],J2[0][1],J2[0][2]);
SVector3 d2 (J2[1][0],J2[1][1],J2[1][2]);
n[1] = crossprod(d1,d2);
n[1].normalize();
}
{
SVector3 d1 (J3[0][0],J3[0][1],J3[0][2]);
SVector3 d2 (J3[1][0],J3[1][1],J3[1][2]);
n[2] = crossprod(d1,d2);
n[2].normalize();
}
x[0] = pnt1.x(); x[1] = pnt2.x(); x[2] = pnt3.x();
y[0] = pnt1.y(); y[1] = pnt2.y(); y[2] = pnt3.y();
z[0] = pnt1.z(); z[1] = pnt2.z(); z[2] = pnt3.z();
}
int MTriangleN::getNumEdgesRep(){ return 3 * numSubEdges; }
void MTriangleN::getEdgeRep(int num, double *x, double *y, double *z, SVector3 *n)
n[0] = n[1] = getFace(0).normal();
int N = getNumEdgesRep() / 3;
if (num < N){
pnt((double)num / N, 0., 0,pnt1);
pnt((double)(num + 1) / N, 0., 0,pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
pnt(1. - (double)num / N, (double)num / N, 0,pnt1);
pnt(1. - (double)(num + 1) / N, (double)(num + 1) / N, 0,pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
pnt(0, (double)num / N, 0,pnt1);
pnt(0, (double)(num + 1) / N, 0,pnt2);
x[0] = pnt1.x(); x[1] = pnt2.x();
y[0] = pnt1.y(); y[1] = pnt2.y();
z[0] = pnt1.z(); z[1] = pnt2.z();
MElement *MElementFactory::create(int type, std::vector<MVertex*> &v,
int num, int part)
{
switch (type) {
case MSH_PNT: return 0;
case MSH_LIN_2: return new MLine(v, num, part);
case MSH_LIN_3: return new MLine3(v, num, part);
case MSH_LIN_4: return new MLineN(v, num, part);
case MSH_LIN_5: return new MLineN(v, num, part);
case MSH_LIN_6: return new MLineN(v, num, part);
case MSH_TRI_3: return new MTriangle(v, num, part);
case MSH_TRI_6: return new MTriangle6(v, num, part);
case MSH_TRI_9: return new MTriangleN(v, 3, num, part);
case MSH_TRI_10: return new MTriangleN(v, 3, num, part);
case MSH_TRI_12: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15: return new MTriangleN(v, 4, num, part);
case MSH_TRI_15I:return new MTriangleN(v, 5, num, part);
case MSH_TRI_21: return new MTriangleN(v, 5, num, part);
case MSH_QUA_4: return new MQuadrangle(v, num, part);
case MSH_QUA_8: return new MQuadrangle8(v, num, part);
case MSH_QUA_9: return new MQuadrangle9(v, num, part);