Newer
Older
// Gmsh - Copyright (C) 1997-2012 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include "GmshConfig.h"
#include "GmshMessage.h"
#include "MPoint.h"
#include "MLine.h"
#include "MTriangle.h"
#include "MQuadrangle.h"
#include "MTetrahedron.h"
#include "MHexahedron.h"
#include "MPrism.h"
#include "MPyramid.h"
#include "MElementCut.h"
Éric Béchet
committed
#include "MSubElement.h"
double MElement::_isInsideTolerance = 1.e-6;
Gauthier Becker
committed
MElement::MElement(int num, int part) : _visible(1)
{
#pragma omp critical
{
if(num){
_num = num;
_globalNum = std::max(_globalNum, _num);
}
else{
_num = ++_globalNum;
}
Gauthier Becker
committed
_partition = (short)part;
Gauthier Becker
committed
void MElement::_getEdgeRep(MVertex *v0, MVertex *v1,
double *x, double *y, double *z, SVector3 *n,
{
x[0] = v0->x(); y[0] = v0->y(); z[0] = v0->z();
x[1] = v1->x(); y[1] = v1->y(); z[1] = v1->z();
if(faceIndex >= 0){
n[0] = n[1] = getFace(faceIndex).normal();
}
else{
MEdge e(v0, v1);
n[0] = n[1] = e.normal();
}
}
Gauthier Becker
committed
void MElement::_getFaceRep(MVertex *v0, MVertex *v1, MVertex *v2,
Gauthier Becker
committed
x[0] = v0->x(); x[1] = v1->x(); x[2] = v2->x();
y[0] = v0->y(); y[1] = v1->y(); y[2] = v2->y();
z[0] = v0->z(); z[1] = v1->z(); z[2] = v2->z();
SVector3 t1(x[1] - x[0], y[1] - y[0], z[1] - z[0]);
SVector3 t2(x[2] - x[0], y[2] - y[0], z[2] - z[0]);
SVector3 normal = crossprod(t1, t2);
normal.normalize();
for(int i = 0; i < 3; i++) n[i] = normal;
}
if(CTX::instance()->hideUnselected && _visible < 2) return false;
Gauthier Becker
committed
return _visible;
double MElement::minEdge()
{
double m = 1.e25;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::maxEdge()
{
double m = 0.;
for(int i = 0; i < getNumEdges(); i++){
}
return m;
}
double MElement::rhoShapeMeasure()
{
double min = minEdge();
double max = maxEdge();
if(max)
return min / max;
else
return 0.;
}
void MElement::scaledJacRange(double &jmin, double &jmax)
{
jmin = jmax = 1.0;
#if defined(HAVE_MESH)
extern double mesh_functional_distorsion(MElement*,double,double);
if (getPolynomialOrder() == 1) return;
const bezierBasis *jac = getJacobianFuncSpace()->bezier;
fullVector<double>Ji(jac->points.size1());
for (int i=0;i<jac->points.size1();i++){
double u = jac->points(i,0);
double v = jac->points(i,1);
if (getType() == TYPE_QUA){
u = -1 + 2*u;
v = -1 + 2*v;
}
Ji(i) = mesh_functional_distorsion(this,u,v);
}
fullVector<double> Bi( jac->matrixLag2Bez.size1() );
jac->matrixLag2Bez.mult(Ji,Bi);
jmin = *std::min_element(Bi.getDataPtr(),Bi.getDataPtr()+Bi.size());
jmax = *std::max_element(Bi.getDataPtr(),Bi.getDataPtr()+Bi.size());
#endif
}
void MElement::getNode(int num, double &u, double &v, double &w)
{
// only for MElements that don't have a lookup table for this
// (currently only 1st order elements have)
double uvw[3];
MVertex* ver = getVertex(num);
double xyz[3] = {ver->x(), ver->y(), ver->z()};
xyz2uvw(xyz, uvw);
u = uvw[0];
v = uvw[1];
w = uvw[2];
}
void MElement::getShapeFunctions(double u, double v, double w, double s[], int o)

Christophe Geuzaine
committed
const polynomialBasis* fs = getFunctionSpace(o);
else Msg::Error("Function space not implemented for this type of element");
Gauthier Becker
committed
void MElement::getGradShapeFunctions(double u, double v, double w, double s[][3],

Christophe Geuzaine
committed
const polynomialBasis* fs = getFunctionSpace(o);
else Msg::Error("Function space not implemented for this type of element");
Gauthier Becker
committed
void MElement::getHessShapeFunctions(double u, double v, double w, double s[][3][3],
int o)
{
const polynomialBasis* fs = getFunctionSpace(o);
if(fs) fs->ddf(u, v, w, s);
else Msg::Error("Function space not implemented for this type of element");
}
void MElement::getThirdDerivativeShapeFunctions(double u, double v, double w, double s[][3][3][3],
int o){
const polynomialBasis* fs = getFunctionSpace(o);
if(fs) fs->dddf(u, v, w, s);
else Msg::Error("Function space not implemented for this type of element");
};
SPoint3 MElement::barycenter_infty ()
{
double xmin = getVertex(0)->x();
double xmax = xmin;
double ymin = getVertex(0)->y();
double ymax = ymin;
double zmin = getVertex(0)->z();
double zmax = zmin;
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
xmin = std::min(xmin,v->x());
xmax = std::max(xmax,v->x());
ymin = std::min(ymin,v->y());
ymax = std::max(ymax,v->y());
zmin = std::min(zmin,v->z());
zmax = std::max(zmax,v->z());
}
return SPoint3(0.5*(xmin+xmax),0.5*(ymin+ymax),0.5*(zmin+zmax));
}
int n = getNumVertices();
for(int i = 0; i < n; i++) {
MVertex *v = getVertex(i);
p[0] += v->x();
p[1] += v->y();
p[2] += v->z();
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
Thomas De Maet
committed
SPoint3 MElement::barycenterUVW()
{
SPoint3 p(0., 0., 0.);
int n = getNumVertices();
for(int i = 0; i < n; i++) {
double x, y, z;
getNode(i, x, y, z);
p[0] += x;
p[1] += y;
p[2] += z;
}
p[0] /= (double)n;
p[1] /= (double)n;
p[2] /= (double)n;
return p;
}
double MElement::getVolume()
{
int npts;
IntPt *pts;
getIntegrationPoints(getDim() * (getPolynomialOrder() - 1), &npts, &pts);
double vol = 0.;
for (int i = 0; i < npts; i++){
vol += getJacobianDeterminant(pts[i].pt[0], pts[i].pt[1], pts[i].pt[2])
}
return vol;
}
int MElement::getVolumeSign()
{
double v = getVolume();
if(v < 0.) return -1;
else if(v > 0.) return 1;
else return 0;
}
bool MElement::setVolumePositive()
{
int s = getVolumeSign();
if(s < 0) revert();
if(!s) return false;
return true;
}
std::string MElement::getInfoString()
{
char tmp[256];
sprintf(tmp, "Element %d", getNum());
return std::string(tmp);
}
static double _computeDeterminantAndRegularize(MElement *ele, double jac[3][3])
Gauthier Becker
committed
jac[0][0] = jac[1][1] = jac[2][2] = 1.0;
jac[0][1] = jac[1][0] = jac[2][0] = 0.0;
Gauthier Becker
committed
jac[0][2] = jac[1][2] = jac[2][1] = 0.0;
Gauthier Becker
committed
}
case 1:
dJ = sqrt(SQU(jac[0][0]) + SQU(jac[0][1]) + SQU(jac[0][2]));
// regularize matrix
double a[3], b[3], c[3];
if((fabs(a[0]) >= fabs(a[1]) && fabs(a[0]) >= fabs(a[2])) ||
(fabs(a[1]) >= fabs(a[0]) && fabs(a[1]) >= fabs(a[2]))) {
b[0] = a[1]; b[1] = -a[0]; b[2] = 0.;
}
else {
b[0] = 0.; b[1] = a[2]; b[2] = -a[1];
}
Jonathan Lambrechts
committed
jac[1][0] = b[0]; jac[1][1] = b[1]; jac[1][2] = b[2];
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
break;
}
case 2:
{
dJ = sqrt(SQU(jac[0][0] * jac[1][1] - jac[0][1] * jac[1][0]) +
SQU(jac[0][2] * jac[1][0] - jac[0][0] * jac[1][2]) +
SQU(jac[0][1] * jac[1][2] - jac[0][2] * jac[1][1]));
// regularize matrix
double a[3], b[3], c[3];
a[0] = jac[0][0];
a[1] = jac[0][1];
a[2] = jac[0][2];
b[0] = jac[1][0];
b[1] = jac[1][1];
b[2] = jac[1][2];
prodve(a, b, c);
norme(c);
jac[2][0] = c[0]; jac[2][1] = c[1]; jac[2][2] = c[2];
dJ = (jac[0][0] * jac[1][1] * jac[2][2] + jac[0][2] * jac[1][0] * jac[2][1] +
jac[0][1] * jac[1][2] * jac[2][0] - jac[0][2] * jac[1][1] * jac[2][0] -
jac[0][0] * jac[1][2] * jac[2][1] - jac[0][1] * jac[1][0] * jac[2][2]);
Gauthier Becker
committed
return dJ;
double MElement::getJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for (int i = 0; i < getNumShapeFunctions(); i++) {

Jean-François Remacle
committed
const MVertex *ver = getShapeFunctionNode(i);

Jean-François Remacle
committed
for (int j = 0; j < getDim(); j++) {
jac[j][0] += ver->x() * gg[j];
jac[j][1] += ver->y() * gg[j];
jac[j][2] += ver->z() * gg[j];
// printf("GSF (%d,%g %g) = %g %g \n",i,u,v,gg[0],gg[1]);
return _computeDeterminantAndRegularize(this, jac);
}
double MElement::getJacobian(const fullMatrix<double> &gsf, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for (int i = 0; i < getNumShapeFunctions(); i++) {
const MVertex *v = getShapeFunctionNode(i);
for (int j = 0; j < gsf.size2(); j++) {
jac[j][0] += v->x() * gsf(i, j);
jac[j][1] += v->y() * gsf(i, j);
jac[j][2] += v->z() * gsf(i, j);
}
}
return _computeDeterminantAndRegularize(this, jac);
}
double MElement::getJacobian(const std::vector<SVector3> &gsf, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for (int i = 0; i < getNumShapeFunctions(); i++) {
const MVertex *v = getShapeFunctionNode(i);
for (int j = 0; j < 3; j++) {
double mult = gsf[i][j];
jac[j][0] += v->x() * mult;
jac[j][1] += v->y() * mult;
jac[j][2] += v->z() * mult;
}
}
return _computeDeterminantAndRegularize(this, jac);
}
double MElement::getPrimaryJacobian(double u, double v, double w, double jac[3][3])
{
jac[0][0] = jac[0][1] = jac[0][2] = 0.;
jac[1][0] = jac[1][1] = jac[1][2] = 0.;
jac[2][0] = jac[2][1] = jac[2][2] = 0.;
for(int i = 0; i < getNumPrimaryShapeFunctions(); i++) {
const MVertex *v = getShapeFunctionNode(i);
double* gg = gsf[i];
for (int j = 0; j < 3; j++) {
jac[j][0] += v->x() * gg[j];
jac[j][1] += v->y() * gg[j];
jac[j][2] += v->z() * gg[j];
return _computeDeterminantAndRegularize(this, jac);
}
for (int j = 0; j < getNumShapeFunctions(); j++) {
const MVertex *v = getShapeFunctionNode(j);
x += sf[j] * v->x();
y += sf[j] * v->y();
z += sf[j] * v->z();
Gauthier Becker
committed
}
}
void MElement::pnt(const std::vector<double> &sf, SPoint3 &p)
{
double x = 0., y = 0., z = 0.;
for (int j = 0; j < getNumShapeFunctions(); j++) {
const MVertex *v = getShapeFunctionNode(j);
x += sf[j] * v->x();
y += sf[j] * v->y();
z += sf[j] * v->z();
}
p = SPoint3(x, y, z);
void MElement::primaryPnt(double u, double v, double w, SPoint3 &p)
for (int j = 0; j < getNumPrimaryShapeFunctions(); j++) {
const MVertex *v = getShapeFunctionNode(j);
x += sf[j] * v->x();
y += sf[j] * v->y();
z += sf[j] * v->z();
}
p = SPoint3(x,y,z);
}
void MElement::xyz2uvw(double xyz[3], double uvw[3])
{
// general Newton routine for the nonlinear case (more efficient
// routines are implemented for simplices, where the basis functions
// are linear)
uvw[0] = uvw[1] = uvw[2] = 0.;
int iter = 1, maxiter = 20;
double error = 1., tol = 1.e-6;
while (error > tol && iter < maxiter){
double jac[3][3];
if(!getJacobian(uvw[0], uvw[1], uvw[2], jac)) break;
double xn = 0., yn = 0., zn = 0.;
for (int i = 0; i < getNumShapeFunctions(); i++) {
MVertex *v = getShapeFunctionNode(i);
xn += v->x() * sf[i];
yn += v->y() * sf[i];
zn += v->z() * sf[i];
Gauthier Becker
committed
double un = uvw[0] + inv[0][0] * (xyz[0] - xn) +
inv[1][0] * (xyz[1] - yn) + inv[2][0] * (xyz[2] - zn);
double vn = uvw[1] + inv[0][1] * (xyz[0] - xn) +
inv[1][1] * (xyz[1] - yn) + inv[2][1] * (xyz[2] - zn);
double wn = uvw[2] + inv[0][2] * (xyz[0] - xn) +
inv[1][2] * (xyz[1] - yn) + inv[2][2] * (xyz[2] - zn);
error = sqrt(SQU(un - uvw[0]) + SQU(vn - uvw[1]) + SQU(wn - uvw[2]));
uvw[0] = un;
uvw[1] = vn;
uvw[2] = wn;
iter++ ;
}
}
void MElement::movePointFromParentSpaceToElementSpace(double &u, double &v, double &w)
{
if(!getParent()) return;
SPoint3 p;
getParent()->pnt(u, v, w, p);
double xyz[3] = {p.x(), p.y(), p.z()};
double uvwE[3];
xyz2uvw(xyz, uvwE);
u = uvwE[0]; v = uvwE[1]; w = uvwE[2];
}
void MElement::movePointFromElementSpaceToParentSpace(double &u, double &v, double &w)
{
if(!getParent()) return;
SPoint3 p;
pnt(u, v, w, p);
double xyz[3] = {p.x(), p.y(), p.z()};
double uvwP[3];
getParent()->xyz2uvw(xyz, uvwP);
u = uvwP[0]; v = uvwP[1]; w = uvwP[2];
}
double MElement::interpolate(double val[], double u, double v, double w, int stride,
int order)
for(int i = 0; i < getNumShapeFunctions(); i++){
void MElement::interpolateGrad(double val[], double u, double v, double w, double f[],
for(int i = 0; i < getNumShapeFunctions(); i++){
dfdu[0] += val[j] * gsf[i][0];
dfdu[1] += val[j] * gsf[i][1];
dfdu[2] += val[j] * gsf[i][2];
j += stride;
}
if(invjac){
matvec(invjac, dfdu, f);
}
else{
double jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
matvec(inv, dfdu, f);
}
}
void MElement::interpolateCurl(double val[], double u, double v, double w, double f[],
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv, order);
interpolateGrad(&val[1], u, v, w, fy, stride, inv, order);
interpolateGrad(&val[2], u, v, w, fz, stride, inv, order);
f[0] = fz[1] - fy[2];
f[1] = -(fz[0] - fx[2]);
f[2] = fy[0] - fx[1];
}
double MElement::interpolateDiv(double val[], double u, double v, double w,
int stride, int order)
{
double fx[3], fy[3], fz[3], jac[3][3], inv[3][3];
getJacobian(u, v, w, jac);
inv3x3(jac, inv);
interpolateGrad(&val[0], u, v, w, fx, stride, inv, order);
interpolateGrad(&val[1], u, v, w, fy, stride, inv, order);
interpolateGrad(&val[2], u, v, w, fz, stride, inv, order);

Koen Hillewaert
committed
double MElement::integrate(double val[], int pOrder, int stride, int order)
{
int npts; IntPt *gp;
getIntegrationPoints(pOrder, &npts, &gp);
double sum = 0;
for (int i = 0; i < npts; i++){
double u = gp[i].pt[0];
double v = gp[i].pt[1];
double w = gp[i].pt[2];
double weight = gp[i].weight;
double detuvw = getJacobianDeterminant(u, v, w);
sum += interpolate(val, u, v, w, stride, order)*weight*detuvw;
}
return sum;
}
switch(order) {
case 0 : return MSH_TRI_1;
case 1 : return MSH_TRI_3;
case 2 : return MSH_TRI_6;
case 3 : return MSH_TRI_10;
case 4 : return MSH_TRI_15;
case 5 : return MSH_TRI_21;
case 6 : return MSH_TRI_28;
case 7 : return MSH_TRI_36;
case 8 : return MSH_TRI_45;
case 9 : return MSH_TRI_55;
case 10 : return MSH_TRI_66;
default : Msg::Error("triangle order %i unknown", order); return 0;
switch(order) {
case 0 : return MSH_QUA_1;
case 1 : return MSH_QUA_4;
case 2 : return MSH_QUA_9;
case 3 : return MSH_QUA_16;
case 4 : return MSH_QUA_25;
case 5 : return MSH_QUA_36;
case 6 : return MSH_QUA_49;
case 7 : return MSH_QUA_64;
case 8 : return MSH_QUA_81;
case 9 : return MSH_QUA_100;
case 10 : return MSH_QUA_121;
default : Msg::Error("quad order %i unknown", order); return 0;
switch(order) {
case 0 : return MSH_LIN_1;
case 1 : return MSH_LIN_2;
case 2 : return MSH_LIN_3;
case 3 : return MSH_LIN_4;
case 4 : return MSH_LIN_5;
case 5 : return MSH_LIN_6;
case 6 : return MSH_LIN_7;
case 7 : return MSH_LIN_8;
case 8 : return MSH_LIN_9;
case 9 : return MSH_LIN_10;
case 10 : return MSH_LIN_11;
default : Msg::Error("line order %i unknown", order); return 0;
}
}
double MElement::integrateCirc(double val[], int edge, int pOrder, int order)
{
if(edge > getNumEdges() - 1){
Msg::Error("No edge %d for this element", edge);
return 0;
}
std::vector<MVertex*> v;
getEdgeVertices(edge, v);
MElementFactory f;
int type = getLineType(getPolynomialOrder());
MElement* ee = f.create(type, v);
double intv[3];
for(int i = 0; i < 3; i++){
intv[i] = ee->integrate(&val[i], pOrder, 3, order);
double t[3] = {v[1]->x() - v[0]->x(), v[1]->y() - v[0]->y(), v[1]->z() - v[0]->z()};
norme(t);
double result;
prosca(t, intv, &result);
return result;
}
double MElement::integrateFlux(double val[], int face, int pOrder, int order)
{
if(face > getNumFaces() - 1){
Msg::Error("No face %d for this element", face);
return 0;
}
std::vector<MVertex*> v;
getFaceVertices(face, v);
MElementFactory f;
int type = 0;
switch(getType()) {
case TYPE_TRI : type = getTriangleType(getPolynomialOrder()); break;
case TYPE_TET : type = getTriangleType(getPolynomialOrder()); break;
case TYPE_QUA : type = getQuadType(getPolynomialOrder()); break;
case TYPE_HEX : type = getQuadType(getPolynomialOrder()); break;
if(face < 4) type = getTriangleType(getPolynomialOrder());
else type = getQuadType(getPolynomialOrder());
break;
case TYPE_PRI :
if(face < 2) type = getTriangleType(getPolynomialOrder());
else type = getQuadType(getPolynomialOrder());
break;
default: type = 0; break;
}
MElement* fe = f.create(type, v);
double intv[3];
for(int i = 0; i < 3; i++){
intv[i] = fe->integrate(&val[i], pOrder, 3, order);
}
delete fe;
double n[3];
normal3points(v[0]->x(), v[0]->y(), v[0]->z(),
v[1]->x(), v[1]->y(), v[1]->z(),
v[2]->x(), v[2]->y(), v[2]->z(), n);
double result;
prosca(n, intv, &result);
return result;
}
void MElement::writeMSH(FILE *fp, bool binary, int elementary,
std::vector<short> *ghosts)
{
int type = getTypeForMSH();
if(!type) return;
// if necessary, change the ordering of the vertices to get positive volume
setVolumePositive();
std::vector<int> info;
info.push_back(0);
info.push_back(elementary);
if(getParent())
info.push_back(getParent()->getNum());
if(getPartition()){
if(ghosts){
info.push_back(1 + ghosts->size());
info.push_back(getPartition());
info.insert(info.end(), ghosts->begin(), ghosts->end());
}
else{
info.push_back(1);
info.push_back(getPartition());
}
}
info[0] = info.size() - 1;
std::vector<int> verts;
getVerticesIdForMSH(verts);
info.insert(info.end(), verts.begin(), verts.end());
for(unsigned int i = 0; i < info.size(); i++)
fprintf(fp, " %d", info[i]);
fprintf(fp, "\n");
}
else{
fwrite(&type, sizeof(int), 1, fp);
fwrite(&info[0], sizeof(int), info.size(), fp);
}
}
void MElement::writeMSH2(FILE *fp, double version, bool binary, int num,
int elementary, int physical, int parentNum,
int dom1Num, int dom2Num, std::vector<short> *ghosts)
// if necessary, change the ordering of the vertices to get positive
// volume
setVolumePositive();
int n = getNumVerticesForMSH();
int par = (parentNum) ? 1 : 0;
bool poly = (type == MSH_POLYG_ || type == MSH_POLYH_ || type == MSH_POLYG_B);
Emilie Marchandise
committed
// if polygon loop over children (triangles and tets)
if(CTX::instance()->mesh.saveTri){
if(poly){
for (int i = 0; i < getNumChildren() ; i++){
MElement *t = getChild(i);
t->writeMSH2(fp, version, binary, num++, elementary, physical, 0, 0, 0, ghosts);
MTriangle *t = new MTriangle(getVertex(0), getVertex(1), getVertex(2));
t->writeMSH2(fp, version, binary, num++, elementary, physical, 0, 0, 0, ghosts);
Emilie Marchandise
committed
}
Éric Béchet
committed
MLine *l = new MLine(getVertex(0), getVertex(1));
l->writeMSH2(fp, version, binary, num++, elementary, physical, 0, 0, 0, ghosts);
Éric Béchet
committed
delete l;
return;
}
Emilie Marchandise
committed
}
if(!binary){
fprintf(fp, "%d %d", num ? num : _num, type);
if(version < 2.0)
else if (version < 2.2)
fprintf(fp, " %d %d %d", abs(physical), elementary, _partition);
else if(!_partition && !par && !dom)
fprintf(fp, " %d %d %d", 2 + par + dom, abs(physical), elementary);
else if(!ghosts)
fprintf(fp, " %d %d %d 1 %d", 4 + par + dom, abs(physical), elementary, _partition);
else{
int numGhosts = ghosts->size();
fprintf(fp, " %d %d %d %d %d", 4 + numGhosts + par + dom, abs(physical),
elementary, 1 + numGhosts, _partition);
for(unsigned int i = 0; i < ghosts->size(); i++)
fprintf(fp, " %d", -(*ghosts)[i]);
}
if(version >= 2.0 && dom)
fprintf(fp, " %d %d", dom1Num, dom2Num);
if(version >= 2.0 && poly)
fprintf(fp, " %d", n);
int numTags, numGhosts = 0;
if(!_partition) numTags = 2;
else if(!ghosts) numTags = 4;
else{
numGhosts = ghosts->size();
numTags = 4 + numGhosts;
}
// we write elements in blobs of single elements; this will lead
// to suboptimal reads, but it's much simpler when the number of
// tags change from element to element (third-party codes can
// still write MSH file optimized for reading speed, by grouping
// elements with the same number of tags in blobs)
int blob[60] = {type, 1, numTags, num ? num : _num, abs(physical), elementary,
1 + numGhosts, _partition};
if(ghosts)
for(int i = 0; i < numGhosts; i++) blob[8 + i] = -(*ghosts)[i];
if(poly) Msg::Error("Unable to write polygons/polyhedra in binary files.");
fwrite(blob, sizeof(int), 4 + numTags, fp);

Christophe Geuzaine
committed
std::vector<int> verts;
getVerticesIdForMSH(verts);
if(!binary){
for(int i = 0; i < n; i++)
fprintf(fp, " %d", verts[i]);
fprintf(fp, "\n");
}
else{

Christophe Geuzaine
committed
fwrite(&verts[0], sizeof(int), n, fp);
Gauthier Becker
committed
void MElement::writePOS(FILE *fp, bool printElementary, bool printElementNumber,
bool printGamma, bool printEta, bool printRho,
bool printDisto, double scalingFactor, int elementary)
int n = getNumVertices();
fprintf(fp, "%s(", str);
for(int i = 0; i < n; i++){
if(i) fprintf(fp, ",");
Gauthier Becker
committed
fprintf(fp, "%g,%g,%g", getVertex(i)->x() * scalingFactor,
getVertex(i)->y() * scalingFactor, getVertex(i)->z() * scalingFactor);
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
bool first = true;
if(printElementary){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", elementary);
}
}
if(printElementNumber){
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%d", getNum());
}
}
if(printGamma){
double gamma = gammaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", gamma);
}
}
if(printEta){
double eta = etaShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", eta);
}
}
if(printRho){
double rho = rhoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
if(printDisto){
double disto = distoShapeMeasure();
for(int i = 0; i < n; i++){
if(first) first = false; else fprintf(fp, ",");
fprintf(fp, "%g", disto);
}
}
void MElement::writeSTL(FILE *fp, bool binary, double scalingFactor)

Jean-François Remacle
committed
if(getType() != TYPE_TRI && getType() != TYPE_QUA) return;
int qid[3] = {0, 2, 3};
SVector3 n = getFace(0).normal();
if(!binary){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
Gauthier Becker
committed
fprintf(fp, " vertex %g %g %g\n",
getVertex(j)->x() * scalingFactor,
getVertex(j)->y() * scalingFactor,
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
if(getNumVertices() == 4){
fprintf(fp, "facet normal %g %g %g\n", n[0], n[1], n[2]);
fprintf(fp, " outer loop\n");
for(int j = 0; j < 3; j++)
Gauthier Becker
committed
fprintf(fp, " vertex %g %g %g\n",
getVertex(qid[j])->x() * scalingFactor,
getVertex(qid[j])->y() * scalingFactor,
fprintf(fp, " endloop\n");
fprintf(fp, "endfacet\n");
}
}
else{
char data[50];
float *coords = (float*)data;
coords[0] = (float)n[0];
coords[1] = (float)n[1];
coords[2] = (float)n[2];
coords[3 + 3 * j] = (float)(getVertex(j)->x() * scalingFactor);
coords[3 + 3 * j + 1] = (float)(getVertex(j)->y() * scalingFactor);
coords[3 + 3 * j + 2] = (float)(getVertex(j)->z() * scalingFactor);
fwrite(data, sizeof(char), 50, fp);
if(getNumVertices() == 4){
for(int j = 0; j < 3; j++){
coords[3 + 3 * j] = (float)(getVertex(qid[j])->x() * scalingFactor);
coords[3 + 3 * j + 1] = (float)(getVertex(qid[j])->y() * scalingFactor);
coords[3 + 3 * j + 2] = (float)(getVertex(qid[j])->z() * scalingFactor);
Emilie Marchandise
committed
void MElement::writePLY2(FILE *fp)
{
setVolumePositive();
fprintf(fp, "3 ");
for(int i = 0; i < getNumVertices(); i++)
fprintf(fp, " %d", getVertex(i)->getIndex() - 1);
fprintf(fp, "\n");
}
void MElement::writeVRML(FILE *fp)
{
for(int i = 0; i < getNumVertices(); i++)
void MElement::writeVTK(FILE *fp, bool binary, bool bigEndian)
{
setVolumePositive();
int n = getNumVertices();
if(binary){
verts[0] = n;
for(int i = 0; i < n; i++)
verts[i + 1] = getVertexVTK(i)->getIndex() - 1;
// VTK always expects big endian binary data
if(!bigEndian) SwapBytes((char*)verts, sizeof(int), n + 1);