Newer
Older
// Gmsh - Copyright (C) 1997-2016 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
#include "GmshConfig.h"

Christophe Geuzaine
committed
#include "GmshMessage.h"
#include "Numeric.h"
#include "Context.h"
#include "MLine.h"
#include "MTriangle.h"
#include "MQuadrangle.h"
#include "MTetrahedron.h"
#include "MHexahedron.h"
#include "MPrism.h"
#include "MPyramid.h"
#include "BoundaryLayers.h"
#include "CenterlineField.h"
#include "GFaceCompound.h"
#include "Field.h"
#include "yamakawa.h"
Paul-Emile Bernard
committed
#include "pointInsertion.h"
#if defined(HAVE_OPTHOM)
#include "OptHomRun.h"
#include "OptHomElastic.h"
#endif

Christophe Geuzaine
committed
#include "PView.h"
#include "PViewData.h"

Christophe Geuzaine
committed
#endif

Christophe Geuzaine
committed
template<class T>
static void GetQualityMeasure(std::vector<T*> &ele,
double &gamma, double &gammaMin, double &gammaMax,
double &minSICN, double &minSICNMin, double &minSICNMax,
double quality[3][100])
for(unsigned int i = 0; i < ele.size(); i++){
double g = ele[i]->gammaShapeMeasure();
gamma += g;
gammaMin = std::min(gammaMin, g);
double s = ele[i]->minSICNShapeMeasure();
minSICN += s;
minSICNMin = std::min(minSICNMin, s);
minSICNMax = std::max(minSICNMax, s);
rho += r;
rhoMin = std::min(rhoMin, r);
rhoMax = std::max(rhoMax, r);
for(int j = 0; j < 100; j++){
if(s > (2*j-100) / 100. && s <= (2*j-98) / 100.) quality[0][j]++;
if(g > j / 100. && g <= (j + 1) / 100.) quality[1][j]++;
if(r > j / 100. && r <= (j + 1) / 100.) quality[2][j]++;
}
}
void GetStatistics(double stat[50], double quality[3][100])
for(int i = 0; i < 50; i++) stat[i] = 0.;
stat[0] = m->getNumVertices();
stat[1] = m->getNumEdges();
stat[2] = m->getNumFaces();
stat[3] = m->getNumRegions();
std::map<int, std::vector<GEntity*> > physicals[4];
stat[45] = physicals[0].size() + physicals[1].size() +
physicals[2].size() + physicals[3].size();
for(GModel::eiter it = m->firstEdge(); it != m->lastEdge(); ++it)
for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it){
// TODO: make this an option! if((*it)->getVisibility()){
stat[5] += (*it)->mesh_vertices.size();
stat[7] += (*it)->triangles.size();
stat[8] += (*it)->quadrangles.size();
for(GModel::riter it = m->firstRegion(); it != m->lastRegion(); ++it){
stat[6] += (*it)->mesh_vertices.size();
stat[9] += (*it)->tetrahedra.size();
stat[10] += (*it)->hexahedra.size();
stat[11] += (*it)->prisms.size();
stat[12] += (*it)->pyramids.size();
stat[14] = CTX::instance()->meshTimer[0];
stat[15] = CTX::instance()->meshTimer[1];
stat[16] = CTX::instance()->meshTimer[2];
if(quality){
for(int i = 0; i < 3; i++)
for(int j = 0; j < 100; j++)
double minSICN = 0., minSICNMin = 1., minSICNMax = -1.;
double gamma = 0., gammaMin = 1., gammaMax = 0.;
double rho = 0., rhoMin = 1., rhoMax = 0.;
double N = stat[9] + stat[10] + stat[11] + stat[12] + stat[13];
for(GModel::riter it = m->firstRegion(); it != m->lastRegion(); ++it){
GetQualityMeasure((*it)->tetrahedra, gamma, gammaMin, gammaMax,
minSICN, minSICNMin, minSICNMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->hexahedra, gamma, gammaMin, gammaMax,
minSICN, minSICNMin, minSICNMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->prisms, gamma, gammaMin, gammaMax,
minSICN, minSICNMin, minSICNMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->pyramids, gamma, gammaMin, gammaMax,
minSICN, minSICNMin, minSICNMax, rho, rhoMin, rhoMax, quality);
else{ // 2D elements
N = stat[7] + stat[8];
for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it){
GetQualityMeasure((*it)->quadrangles, gamma, gammaMin, gammaMax,
minSICN, minSICNMin, minSICNMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->triangles, gamma, gammaMin, gammaMax,
minSICN, minSICNMin, minSICNMax, rho, rhoMin, rhoMax, quality);
stat[18] = minSICN / N; stat[19] = minSICNMin; stat[20] = minSICNMax;
stat[21] = gamma / N; stat[22] = gammaMin; stat[23] = gammaMax;
stat[25] = rho / N; stat[25] = rhoMin; stat[26] = rhoMax;
PViewData *data = PView::list[i]->getData(true);
stat[28] += data->getNumPoints();
stat[29] += data->getNumLines();
stat[30] += data->getNumTriangles();
stat[31] += data->getNumQuadrangles();
stat[32] += data->getNumTetrahedra();
stat[33] += data->getNumHexahedra();
stat[34] += data->getNumPrisms();
stat[35] += data->getNumPyramids();
stat[36] += data->getNumStrings2D() + data->getNumStrings3D();

Christophe Geuzaine
committed
#endif
if(CTX::instance()->expertMode || !m->getNumVertices()) return false;
// try to detect obvious mistakes in characteristic lenghts (one of
// the most common cause for erroneous bug reports on the mailing
// list)
for(GModel::viter it = m->firstVertex(); it != m->lastVertex(); ++it)
sumAllLc += (*it)->prescribedMeshSizeAtVertex() * CTX::instance()->mesh.lcFactor;
sumAllLc /= (double)m->getNumVertices();
if(!sumAllLc || pow(CTX::instance()->lc / sumAllLc, dim) > 1.e10)

Christophe Geuzaine
committed
("Your choice of mesh element sizes will likely produce a very\n"

Christophe Geuzaine
committed
"large mesh. Do you really want to continue?\n\n"
"(To disable this warning in the future, select `Enable expert mode'\n"

Christophe Geuzaine
committed
return false;
}
static bool CancelDelaunayHybrid(GModel *m)
{
if(CTX::instance()->expertMode) return false;

Christophe Geuzaine
committed
int n = 0;
for(GModel::riter it = m->firstRegion(); it != m->lastRegion(); ++it)
n += (*it)->getNumMeshElements();
if(n)

Christophe Geuzaine
committed
("You are trying to generate a mixed structured/unstructured grid using\n"
"the 3D Delaunay algorithm. This algorithm cannot garantee that the\n"
"final mesh will be conforming. (You should probably use the 3D Frontal\n"
"algorithm instead.) Do you really want to continue with the Delaunay?\n\n"

Christophe Geuzaine
committed
"(To disable this warning in the future, select `Enable expert mode'\n"
}
static void Mesh0D(GModel *m)
{
for(GModel::viter it = m->firstVertex(); it != m->lastVertex(); ++it){
if(gv->mesh_vertices.empty())
gv->mesh_vertices.push_back(new MVertex(gv->x(), gv->y(), gv->z(), gv));
if(gv->points.empty())
gv->points.push_back(new MPoint(gv->mesh_vertices.back()));
}
for(GModel::viter it = m->firstVertex(); it != m->lastVertex(); ++it){
if (gv->meshMaster() != gv){
GVertex *master = dynamic_cast<GVertex*> (gv->meshMaster());
Paul-Emile Bernard
committed
if(master)gv->correspondingVertices[gv->mesh_vertices[0]] = (master->mesh_vertices[0]);

Christophe Geuzaine
committed
Msg::StatusBar(true, "Meshing 1D...");
double t1 = Cpu();
for(GModel::eiter it = m->firstEdge(); it != m->lastEdge(); ++it)
(*it)->meshStatistics.status = GEdge::PENDING;
Msg::ResetProgressMeter();
int nIter = 0, nTot = m->getNumEdges();
// meshGEdge mesher;
for(GModel::eiter it = m->firstEdge(); it != m->lastEdge(); ++it){
if ((*it)->meshStatistics.status == GEdge::PENDING){
(*it)->mesh(true);
Paul-Emile Bernard
committed
nPending++;
if(!nIter) Msg::ProgressMeter(nPending, nTot, false, "Meshing 1D...");
if(nIter++ > 10) break;
}
double t2 = Cpu();
CTX::instance()->meshTimer[0] = t2 - t1;

Christophe Geuzaine
committed
Msg::StatusBar(true, "Done meshing 1D (%g s)", CTX::instance()->meshTimer[0]);
}
if(CTX::instance()->createAppendMeshStatReport == 1)
statreport = Fopen(CTX::instance()->meshStatReportFileName.c_str(), "w");
else if(CTX::instance()->createAppendMeshStatReport == 2)
statreport = Fopen(CTX::instance()->meshStatReportFileName.c_str(), "a");
if(!statreport){
Msg::Error("Could not open file '%s'",
CTX::instance()->meshStatReportFileName.c_str());
double worst = 1, best = 0, avg = 0;
double e_long = 0, e_short = 1.e22, e_avg = 0;
int nTotT = 0, nTotE = 0, nTotGoodLength = 0, nTotGoodQuality = 0;
int nUnmeshed = 0, numFaces = 0;
if(CTX::instance()->createAppendMeshStatReport == 1){
fprintf(statreport, "2D stats\tname\t\t#faces\t\t#fail\t\t"

Christophe Geuzaine
committed
"#t\t\tQavg\t\tQbest\t\tQworst\t\t#Q>90\t\t#Q>90/#t\t"
"#e\t\ttau\t\t#Egood\t\t#Egood/#e\tCPU\n");
if(m->empty()){
fclose(statreport);
return;
}
for(GModel::fiter it = m->firstFace() ; it != m->lastFace(); ++it){
worst = std::min((*it)->meshStatistics.worst_element_shape, worst);
best = std::max((*it)->meshStatistics.best_element_shape, best);
avg += (*it)->meshStatistics.average_element_shape * (*it)->meshStatistics.nbTriangle;
e_avg += (*it)->meshStatistics.efficiency_index;
e_long = std::max((*it)->meshStatistics.longest_edge_length, e_long);
e_short = std::min((*it)->meshStatistics.smallest_edge_length, e_short);
if ((*it)->meshStatistics.status == GFace::FAILED ||
Paul-Emile Bernard
committed
(*it)->meshStatistics.status == GFace::PENDING) nUnmeshed++;
nTotT += (*it)->meshStatistics.nbTriangle;
nTotE += (*it)->meshStatistics.nbEdge;
nTotGoodLength += (*it)->meshStatistics.nbGoodLength;
nTotGoodQuality += (*it)->meshStatistics.nbGoodQuality;
numFaces++;
}
Msg::Info("*** Efficiency index for surface mesh tau=%g ", 100*exp(e_avg/(double)nTotE));
fprintf(statreport,"\t%16s\t%d\t\t%d\t\t", m->getName().c_str(), numFaces, nUnmeshed);
fprintf(statreport,"%d\t\t%8.7f\t%8.7f\t%8.7f\t%d\t\t%8.7f\t",

Christophe Geuzaine
committed
nTotT, avg / (double)nTotT, best, worst, nTotGoodQuality,
(double)nTotGoodQuality / nTotT);
fprintf(statreport,"%d\t\t%8.7f\t%d\t\t%8.7f\t%8.1f\n",

Christophe Geuzaine
committed
nTotE, exp(e_avg / (double)nTotE), nTotGoodLength,
(double)nTotGoodLength / nTotE, CTX::instance()->meshTimer[1]);

Christophe Geuzaine
committed
Msg::StatusBar(true, "Meshing 2D...");
for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it)
(*it)->meshStatistics.status = GFace::PENDING;
// boundary layers are special: their generation (including vertices
// and curve meshes) is global as it depends on a smooth normal
// field generated from the surface mesh of the source surfaces

Christophe Geuzaine
committed
std::set<GFace*, GEntityLessThan> cf, f;

Christophe Geuzaine
committed
for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it)
if ((*it)->geomType() == GEntity::CompoundSurface)
cf.insert(*it);
else
f.insert(*it);
Msg::ResetProgressMeter();
int nIter = 0, nTot = m->getNumFaces();

Christophe Geuzaine
committed
std::vector<GFace*> temp;
temp.insert(temp.begin(), f.begin(), f.end());
#pragma omp parallel for schedule (dynamic)

Christophe Geuzaine
committed
for(size_t K = 0 ; K < temp.size() ; K++){
Paul-Emile Bernard
committed
if (temp[K]->meshStatistics.status == GFace::PENDING){
// meshGFace mesher(true);
temp[K]->mesh(true);
Tristan Carrier Baudouin
committed
#if defined(HAVE_BFGS)
if(CTX::instance()->mesh.optimizeLloyd){
if (temp[K]->geomType()==GEntity::CompoundSurface ||

Christophe Geuzaine
committed
temp[K]->geomType()==GEntity::Plane ||
temp[K]->geomType()==GEntity::RuledSurface) {
if (temp[K]->meshAttributes.method != MESH_TRANSFINITE &&
!temp[K]->meshAttributes.extrude) {
smoothing smm(CTX::instance()->mesh.optimizeLloyd,6);
//m->writeMSH("beforeLLoyd.msh");
smm.optimize_face(temp[K]);
int rec = ((CTX::instance()->mesh.recombineAll ||

Christophe Geuzaine
committed
temp[K]->meshAttributes.recombine) &&
!CTX::instance()->mesh.recombine3DAll);
//m->writeMSH("afterLLoyd.msh");
if (rec) recombineIntoQuads(temp[K]);
//m->writeMSH("afterRecombine.msh");
}
}
}
Tristan Carrier Baudouin
committed
#endif
Paul-Emile Bernard
committed
{
nPending++;
}
}
if(!nIter) Msg::ProgressMeter(nPending, nTot, false, "Meshing 2D...");

Christophe Geuzaine
committed
}

Christophe Geuzaine
committed
for(std::set<GFace*, GEntityLessThan>::iterator it = cf.begin();
it != cf.end(); ++it){
// meshGFace mesher(true);
(*it)->mesh(true);
Tristan Carrier Baudouin
committed
#if defined(HAVE_BFGS)
if(CTX::instance()->mesh.optimizeLloyd){
if ((*it)->geomType()==GEntity::CompoundSurface ||

Christophe Geuzaine
committed
(*it)->geomType()==GEntity::Plane ||
(*it)->geomType()==GEntity::RuledSurface) {
if ((*it)->meshAttributes.method != MESH_TRANSFINITE &&
!(*it)->meshAttributes.extrude) {
smoothing smm(CTX::instance()->mesh.optimizeLloyd,6);
//m->writeMSH("beforeLLoyd.msh");
smm.optimize_face(*it);
int rec = ((CTX::instance()->mesh.recombineAll ||

Christophe Geuzaine
committed
(*it)->meshAttributes.recombine) &&
!CTX::instance()->mesh.recombine3DAll);
//m->writeMSH("afterLLoyd.msh");
if (rec) recombineIntoQuads(*it);
//m->writeMSH("afterRecombine.msh");
}
}
}
Tristan Carrier Baudouin
committed
#endif
if(!nIter) Msg::ProgressMeter(nPending, nTot, false, "Meshing 2D...");

Christophe Geuzaine
committed
CTX::instance()->meshTimer[1] = t2 - t1;

Christophe Geuzaine
committed
Msg::StatusBar(true, "Done meshing 2D (%g s)", CTX::instance()->meshTimer[1]);
}
static void FindConnectedRegions(std::vector<GRegion*> &delaunay,

Christophe Geuzaine
committed
std::vector<std::vector<GRegion*> > &connected)
const unsigned int nbVolumes = delaunay.size();
if (!nbVolumes)return;
while (delaunay.size()){
std::set<GRegion*> oneDomain;
GRegion *r = delaunay[0];
while(!_stack.empty()){
r = _stack.top();
_stack.pop();
oneDomain.insert(r);
std::list<GFace*> faces = r->faces();
for (std::list<GFace*> :: iterator it = faces.begin(); it != faces.end() ; ++it){
Paul-Emile Bernard
committed
GFace *gf = *it;
GRegion *other = gf->getRegion(0) == r ? gf->getRegion(1) : gf->getRegion(0);
if (other != 0 && oneDomain.find(other) == oneDomain.end())
_stack.push (other);
}
}
std::vector<GRegion*> temp1,temp2;
for (unsigned int i=0;i<delaunay.size();i++){
r = delaunay[i];
if (oneDomain.find(r) == oneDomain.end())temp1.push_back(r);
else temp2.push_back(r);
}
connected.push_back(temp2);
delaunay=temp1;
}
Msg::Info("Delaunay Meshing %d volumes with %d connected components",

Christophe Geuzaine
committed
nbVolumes,connected.size());
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
template <class ITERATOR>
void fillv_(std::multimap<MVertex*, MElement*> &vertexToElement,
ITERATOR it_beg, ITERATOR it_end)
{
for (ITERATOR IT = it_beg; IT != it_end ; ++IT){
MElement *el = *IT;
for(int j = 0; j < el->getNumVertices(); j++) {
MVertex* e = el->getVertex(j);
vertexToElement.insert(std::make_pair(e, el));
}
}
}
int LaplaceSmoothing (GRegion *gr) {
std::multimap<MVertex*, MElement*> vertexToElement;
fillv_(vertexToElement, (gr)->tetrahedra.begin(), (gr)->tetrahedra.end());
fillv_(vertexToElement, (gr)->hexahedra.begin(), (gr)->hexahedra.end());
fillv_(vertexToElement, (gr)->prisms.begin(), (gr)->prisms.end());
fillv_(vertexToElement, (gr)->pyramids.begin(), (gr)->pyramids.end());
int N=0;
for (unsigned int i=0; i<gr->mesh_vertices.size();i++){
MVertex *v = gr->mesh_vertices[i];
std::multimap<MVertex*, MElement*>::iterator it = vertexToElement.lower_bound(v);
std::multimap<MVertex*, MElement*>::iterator it_low = it;
std::multimap<MVertex*, MElement*>::iterator it_up = vertexToElement.upper_bound(v);
double minQual = 1.e22;
double volTot = 0.0;
double xold=v->x(), yold=v->y(), zold=v->z();
SPoint3 pNew (0,0,0);
for (; it != it_up; ++it) {
minQual= std::min(minQual,it->second->minSICNShapeMeasure());
double vol = fabs(it->second->getVolume());
SPoint3 cog = it->second->barycenter();
pNew += cog * vol;
volTot += vol;
}
pNew *= (1./volTot);
v->setXYZ (pNew.x(),pNew.y(),pNew.z());
double minQual2 = 1.e22;
for (it = it_low; it != it_up; ++it) {
minQual2 = std::min(minQual2,it->second->minSICNShapeMeasure());
if (minQual2 < minQual){
v->setXYZ (xold,yold,zold);
break;
}
}
if (minQual < minQual2) N++;
}
return N;
}
// JFR : use hex-splitting to resolve non conformity
// : if howto == 1 ---> split hexes
// : if howto == 2 ---> create transition elements
/*
v3 v2
x--------x
|\ |
| \ |
| \ |
| \ |
x--------x
v0 v1
*/
void buildUniqueFaces (GRegion *gr, std::set<MFace,Less_Face> &bnd)
{
for (unsigned int i=0;i<gr->getNumMeshElements();i++){
MElement *e = gr->getMeshElement(i);
for(int j=0;j<e->getNumFaces();j++){
MFace f = e->getFace(j);
std::set<MFace,Less_Face>::iterator it = bnd.find(f);
if (it == bnd.end())bnd.insert(f);
else bnd.erase(it);
}
}
}
bool MakeMeshConformal (GModel *gm, int howto) {
fs_cont search;
buildFaceSearchStructure(gm, search);
std::set<MFace,Less_Face> bnd;
for (GModel::riter rit = gm->firstRegion(); rit != gm->lastRegion(); ++rit){
GRegion *gr = *rit;
buildUniqueFaces (gr,bnd);
}
// bnd2 contains non conforming faces
std::set<MFace,Less_Face> bnd2;
for (std::set<MFace,Less_Face>::iterator itf = bnd.begin(); itf != bnd.end(); ++itf){
GFace *gfound = findInFaceSearchStructure (*itf,search);
if (!gfound){
bnd2.insert(*itf);
}
}
bnd.clear();
Msg::Info("%d hanging faces",bnd2.size());
std::set<MFace,Less_Face> ncf;
for (std::set<MFace,Less_Face>::iterator itf = bnd2.begin(); itf != bnd2.end(); ++itf){
const MFace &f = *itf;
if (f.getNumVertices () == 4){ // quad face
std::set<MFace,Less_Face>::iterator it1 = bnd2.find (MFace(f.getVertex(0),f.getVertex(1),f.getVertex(2)));
std::set<MFace,Less_Face>::iterator it2 = bnd2.find (MFace(f.getVertex(2),f.getVertex(3),f.getVertex(0)));
if (it1 != bnd2.end() && it2 != bnd2.end()){
ncf.insert(MFace (f.getVertex(1),f.getVertex(2), f.getVertex(3),f.getVertex(0) ));
}
else {
it1 = bnd2.find (MFace(f.getVertex(0),f.getVertex(1),f.getVertex(3)));
it2 = bnd2.find (MFace(f.getVertex(3),f.getVertex(1),f.getVertex(2)));
if (it1 != bnd2.end() && it2 != bnd2.end()){
ncf.insert(MFace (f.getVertex(0),f.getVertex(1), f.getVertex(2),f.getVertex(3) ));
}
else {
Msg::Error ("MakeMeshConformal: wrong mesh topology");
return false;
}
}
}
}
bnd2.clear();
for (GModel::riter rit = gm->firstRegion(); rit != gm->lastRegion(); ++rit){
GRegion *gr = *rit;
std::vector<MHexahedron*> remainingHexes;
for (unsigned int i=0;i<gr->hexahedra.size();i++){
MHexahedron *e = gr->hexahedra[i];
std::vector<MFace> faces;
for(int j=0;j<e->getNumFaces();j++){
MFace f = e->getFace(j);
std::set<MFace,Less_Face>::iterator it = ncf.find(f);
if (it == ncf.end()){
faces.push_back(f);
}
else {
faces.push_back(MFace(it->getVertex(0),it->getVertex(1),it->getVertex(3)));
faces.push_back(MFace(it->getVertex(1),it->getVertex(2),it->getVertex(3)));
}
}
// HEX IS ONLY SURROUNED BY COMPATIBLE ELEMENTS
if (faces.size() == e->getNumFaces()){
remainingHexes.push_back(e);
}
else {
SPoint3 pp = e->barycenter();
MVertex *newv = new MVertex (pp.x(),pp.y(),pp.z(),gr);
gr->mesh_vertices.push_back(newv);
for (unsigned int j=0;j<faces.size();j++){
MFace &f = faces[j];
if (f.getNumVertices() == 4){
gr->pyramids.push_back(new MPyramid (f.getVertex(0), f.getVertex(1), f.getVertex(2), f.getVertex(3), newv));
}
else {
gr->tetrahedra.push_back(new MTetrahedron (f.getVertex(0), f.getVertex(1), f.getVertex(2), newv));
}
}
}
}
gr->hexahedra = remainingHexes;
remainingHexes.clear();
std::vector<MPrism*> remainingPrisms;
for (unsigned int i=0;i<gr->prisms.size();i++){
MPrism *e = gr->prisms[i];
std::vector<MFace> faces;
for(int j=0;j<e->getNumFaces();j++){
MFace f = e->getFace(j);
std::set<MFace,Less_Face>::iterator it = ncf.find(f);
if (it == ncf.end()){
faces.push_back(f);
}
else {
faces.push_back(MFace(it->getVertex(0),it->getVertex(1),it->getVertex(3)));
faces.push_back(MFace(it->getVertex(1),it->getVertex(2),it->getVertex(3)));
}
}
// HEX IS ONLY SURROUNED BY COMPATIBLE ELEMENTS
if (faces.size() == e->getNumFaces()){
remainingPrisms.push_back(e);
}
else {
SPoint3 pp = e->barycenter();
MVertex *newv = new MVertex (pp.x(),pp.y(),pp.z(),gr);
gr->mesh_vertices.push_back(newv);
for (unsigned int j=0;j<faces.size();j++){
MFace &f = faces[j];
if (f.getNumVertices() == 4){
gr->pyramids.push_back(new MPyramid (f.getVertex(0), f.getVertex(1), f.getVertex(2), f.getVertex(3), newv));
}
else {
gr->tetrahedra.push_back(new MTetrahedron (f.getVertex(0), f.getVertex(1), f.getVertex(2), newv));
}
}
}
}
gr->prisms = remainingPrisms;
}
return true;
}
void TestConformity (GModel *gm) {
fs_cont search;
buildFaceSearchStructure(gm, search);
int count = 0;
for (GModel::riter rit = gm->firstRegion(); rit != gm->lastRegion(); ++rit){
GRegion *gr = *rit;
std::set<MFace,Less_Face> bnd;
double vol = 0.0;
for (unsigned int i=0;i<gr->getNumMeshElements();i++){
MElement *e = gr->getMeshElement(i);
vol += fabs(e->getVolume());
for(int j=0;j<e->getNumFaces();j++){
MFace f = e->getFace(j);
std::set<MFace,Less_Face>::iterator it = bnd.find(f);
if (it == bnd.end())bnd.insert(f);
else bnd.erase(it);
}
}
printf("vol(%d) = %12.5E\n",gr->tag(),vol);
for (std::set<MFace,Less_Face>::iterator itf = bnd.begin(); itf != bnd.end(); ++itf){
GFace *gfound = findInFaceSearchStructure (*itf,search);
if (!gfound){
count ++;
}
}
}
if (!count)Msg::Info("Mesh Conformity: OK");
else Msg::Error ("Mesh is not conforming (%d hanging faces)!",count);
}

Christophe Geuzaine
committed
Msg::StatusBar(true, "Meshing 3D...");
double t1 = Cpu();
std::for_each(m->firstRegion(), m->lastRegion(), meshGRegionExtruded());
// then subdivide if necessary (unfortunately the subdivision is a
// global operation, which can require changing the surface mesh!)
// then mesh all the non-delaunay regions (front3D with netgen)
std::for_each(m->firstRegion(), m->lastRegion(), meshGRegion(delaunay));

Christophe Geuzaine
committed
// warn if attempting to use Delaunay for mixed meshes
if(delaunay.size() && CancelDelaunayHybrid(m)) return;
// and finally mesh the delaunay regions (again, this is global; but
// we mesh each connected part separately for performance and mesh
// quality reasons)
std::vector<std::vector<GRegion*> > connected;
FindConnectedRegions(delaunay, connected);
// remove quads elements for volumes that are recombined
for(unsigned int i = 0; i < connected.size(); i++){
if(CTX::instance()->mesh.recombine3DAll || gr->meshAttributes.recombine3D){
Paul-Emile Bernard
committed
std::list<GFace*> f = gr->faces();
for(std::list<GFace*>::iterator it = f.begin(); it != f.end() ; ++it)
quadsToTriangles(*it, 1000000);
double time_recombination = 0., vol_element_recombination = 0.;
double vol_hexa_recombination = 0.;
int nb_elements_recombination = 0, nb_hexa_recombination = 0;
// pragma OMP here ?
// additional code for experimental hex mesh
for(unsigned j = 0; j < connected[i].size(); j++){
Paul-Emile Bernard
committed
if (old_algo_hexa()){
Filler f;
f.treat_region(gr);
Paul-Emile Bernard
committed
}
else{
Filler3D f;
treat_region_ok = f.treat_region(gr);
}
if(treat_region_ok && (CTX::instance()->mesh.recombine3DAll ||
gr->meshAttributes.recombine3D)){
if (CTX::instance()->mesh.optimize){
optimizeMeshGRegionGmsh opt;
opt(gr);
}
if (CTX::instance()->mesh.recombine3DLevel >= 0){
Recombinator rec;
rec.execute(gr);
}
if (CTX::instance()->mesh.recombine3DLevel >= 1){
Supplementary sup;
sup.execute(gr);
}
Paul-Emile Bernard
committed
PostOp post;
post.execute(gr,CTX::instance()->mesh.recombine3DLevel, CTX::instance()->mesh.recombine3DConformity); //0: no pyramid, 1: single-step, 2: two-steps (conforming), true: fill non-conformities with trihedra
// while(LaplaceSmoothing (gr)){
// }
Paul-Emile Bernard
committed
nb_elements_recombination += post.get_nb_elements();
nb_hexa_recombination += post.get_nb_hexahedra();
vol_element_recombination += post.get_vol_elements();
vol_hexa_recombination += post.get_vol_hexahedra();
// stringstream ss;
// ss << "yamakawa_part_";
// ss << gr->tag();
// ss << ".msh";
// export_gregion_mesh(gr, ss.str().c_str());
Paul-Emile Bernard
committed
if(CTX::instance()->mesh.recombine3DAll){
Msg::Info("RECOMBINATION timing:");
Msg::Info(" --- CUMULATIVE TIME RECOMBINATION : %g s.", time_recombination);
Msg::Info("RECOMBINATION CUMULATIVE STATISTICS:");
Msg::Info(".... Percentage of hexahedra (#) : %g",
nb_hexa_recombination*100./nb_elements_recombination);
Msg::Info(".... Percentage of hexahedra (Vol) : %g",
vol_hexa_recombination*100./vol_element_recombination);
// MakeMeshConformal (m, 1);
TestConformity(m);
Paul-Emile Bernard
committed
}
Thomas Toulorge
committed
// Ensure that all volume Jacobians are positive
m->setAllVolumesPositive();
double t2 = Cpu();
CTX::instance()->meshTimer[2] = t2 - t1;

Christophe Geuzaine
committed
Msg::StatusBar(true, "Done meshing 3D (%g s)", CTX::instance()->meshTimer[2]);
}
void OptimizeMeshNetgen(GModel *m)
{

Christophe Geuzaine
committed
Msg::StatusBar(true, "Optimizing 3D mesh with Netgen...");
double t1 = Cpu();
std::for_each(m->firstRegion(), m->lastRegion(), optimizeMeshGRegionNetgen());
Thomas Toulorge
committed
// Ensure that all volume Jacobians are positive
m->setAllVolumesPositive();

Christophe Geuzaine
committed
Msg::StatusBar(true, "Done optimizing 3D mesh with Netgen (%g s)", t2 - t1);

Christophe Geuzaine
committed
Msg::StatusBar(true, "Optimizing 3D mesh...");
std::for_each(m->firstRegion(), m->lastRegion(), optimizeMeshGRegionGmsh());
Thomas Toulorge
committed
// Ensure that all volume Jacobians are positive
m->setAllVolumesPositive();

Christophe Geuzaine
committed
Msg::StatusBar(true, "Done optimizing 3D mesh (%g s)", t2 - t1);

Christophe Geuzaine
committed
Msg::StatusBar(true, "Adapting 3D mesh...");
for(int i = 0; i < 10; i++)
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());

Christophe Geuzaine
committed
Msg::StatusBar(true, "Done adaptating 3D mesh (%g s)", t2 - t1);
void RecombineMesh(GModel *m)
{

Christophe Geuzaine
committed
Msg::StatusBar(true, "Recombining 2D mesh...");
for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it){
GFace *gf = *it;
recombineIntoQuads(gf);
}
CTX::instance()->mesh.changed = ENT_ALL;
double t2 = Cpu();

Christophe Geuzaine
committed
Msg::StatusBar(true, "Done recombining 2D mesh (%g s)", t2 - t1);
//#include <google/profiler.h>
if(CTX::instance()->lock) {
Msg::Info("I'm busy! Ask me that later...");
CTX::instance()->lock = 1;
Msg::ResetErrorCounter();
// Initialize pseudo random mesh generator with the same seed
srand(1);
std::for_each(m->firstRegion(), m->lastRegion(), deMeshGRegion());
std::for_each(m->firstFace(), m->lastFace(), deMeshGFace());
}
std::for_each(m->firstRegion(), m->lastRegion(), deMeshGRegion());
}
}
// Orient the line and surface meshes so that they match the orientation of
// the geometrical entities and/or the user orientation constraints
if(m->getMeshStatus() >= 1)
std::for_each(m->firstEdge(), m->lastEdge(), orientMeshGEdge());
if(m->getMeshStatus() >= 2)
std::for_each(m->firstFace(), m->lastFace(), orientMeshGFace());
// Optimize quality of 3D tet mesh
if(m->getMeshStatus() == 3){
for(int i = 0; i < std::max(CTX::instance()->mesh.optimize,

Christophe Geuzaine
committed
CTX::instance()->mesh.optimizeNetgen); i++){
if(CTX::instance()->mesh.optimize > i) OptimizeMesh(m);
if(CTX::instance()->mesh.optimizeNetgen > i) OptimizeMeshNetgen(m);
if(m->getMeshStatus() == 2 && CTX::instance()->mesh.algoSubdivide == 1)
RefineMesh(m, CTX::instance()->mesh.secondOrderLinear, true);
else if(m->getMeshStatus() == 3 && CTX::instance()->mesh.algoSubdivide == 2)
RefineMesh(m, CTX::instance()->mesh.secondOrderLinear, false, true);
// Compute homology if necessary
if(!Msg::GetErrorCount()) m->computeHomology();
if(m->getMeshStatus() && CTX::instance()->mesh.order > 1)
SetOrderN(m, CTX::instance()->mesh.order, CTX::instance()->mesh.secondOrderLinear,

Christophe Geuzaine
committed
CTX::instance()->mesh.secondOrderIncomplete);
// Optimize high order elements
if(CTX::instance()->mesh.hoOptimize){
#if defined(HAVE_OPTHOM)
if(CTX::instance()->mesh.hoOptimize < 0){
Thomas Toulorge
committed
ElasticAnalogy(GModel::current(), false);
OptHomParameters p;
p.nbLayers = CTX::instance()->mesh.hoNLayers;
p.BARRIER_MIN = CTX::instance()->mesh.hoThresholdMin;
p.BARRIER_MAX = CTX::instance()->mesh.hoThresholdMax;
p.dim = GModel::current()->getDim();
p.optPrimSurfMesh = CTX::instance()->mesh.hoOptPrimSurfMesh;
HighOrderMeshOptimizer(GModel::current(), p);
}
#else
Msg::Error("High-order mesh optimization requires the OPTHOM module");
#endif
}
Msg::Info("%d vertices %d elements",

Christophe Geuzaine
committed
m->getNumMeshVertices(), m->getNumMeshElements());
Msg::PrintErrorCounter("Mesh generation error summary");
CTX::instance()->lock = 0;
CTX::instance()->mesh.changed = ENT_ALL;