Newer
Older
// $Id: Generator.cpp,v 1.133 2008-01-28 16:03:19 geuzaine Exp $
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software

Christophe Geuzaine
committed
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
#include "Numeric.h"
#include "Context.h"
extern Context_T CTX;
template<class T>
static void GetQualityMeasure(std::vector<T*>& ele,
double &gamma, double &gammaMin, double &gammaMax,
double &eta, double &etaMin, double &etaMax,
double &rho, double &rhoMin, double &rhoMax,
double quality[3][100])
for(unsigned int i = 0; i < ele.size(); i++){
double g = ele[i]->gammaShapeMeasure();
gamma += g;
gammaMin = std::min(gammaMin, g);
gammaMax = std::max(gammaMax, g);
double e = ele[i]->etaShapeMeasure();
eta += e;
etaMin = std::min(etaMin, e);
etaMax = std::max(etaMax, e);
double r = ele[i]->rhoShapeMeasure();
rho += r;
rhoMin = std::min(rhoMin, r);
rhoMax = std::max(rhoMax, r);
for(int j = 0; j < 100; j++){
if(g > j / 100. && g <= (j + 1) / 100.) quality[0][j]++;
if(e > j / 100. && e <= (j + 1) / 100.) quality[1][j]++;
if(r > j / 100. && r <= (j + 1) / 100.) quality[2][j]++;
}
}
void GetStatistics(double stat[50], double quality[3][100])
for(int i = 0; i < 50; i++) stat[i] = 0.;
GModel *m = GModel::current();
stat[0] = m->numVertex();
stat[1] = m->numEdge();
stat[2] = m->numFace();
stat[3] = m->numRegion();
std::map<int, std::vector<GEntity*> > physicals[4];
stat[45] = physicals[0].size() + physicals[1].size() +
physicals[2].size() + physicals[3].size();
for(GModel::eiter it = m->firstEdge(); it != m->lastEdge(); ++it)
stat[4] += (*it)->mesh_vertices.size();
for(GModel::fiter it = m->firstFace(); it != m->lastFace(); ++it){
stat[5] += (*it)->mesh_vertices.size();
stat[7] += (*it)->triangles.size();
stat[8] += (*it)->quadrangles.size();
}
for(GModel::riter it = m->firstRegion(); it != m->lastRegion(); ++it){
stat[6] += (*it)->mesh_vertices.size();
stat[9] += (*it)->tetrahedra.size();
stat[10] += (*it)->hexahedra.size();
stat[11] += (*it)->prisms.size();
stat[12] += (*it)->pyramids.size();
}
stat[13] = CTX.mesh_timer[0];
stat[14] = CTX.mesh_timer[1];
stat[15] = CTX.mesh_timer[2];
if(quality){
for(int i = 0; i < 3; i++)
for(int j = 0; j < 100; j++)
quality[i][j] = 0.;
double gamma=0., gammaMin=1., gammaMax=0.;
double eta=0., etaMin=1., etaMax=0.;
double rho=0., rhoMin=1., rhoMax=0.;
for(GModel::riter it = m->firstRegion(); it != m->lastRegion(); ++it){
GetQualityMeasure((*it)->tetrahedra, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->hexahedra, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->prisms, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
GetQualityMeasure((*it)->pyramids, gamma, gammaMin, gammaMax,
eta, etaMin, etaMax, rho, rhoMin, rhoMax, quality);
double N = stat[9] + stat[10] + stat[11] + stat[12];
stat[17] = N ? gamma / N : 0.;
stat[18] = gammaMin;
stat[19] = gammaMax;
stat[20] = N ? eta / N : 0.;
stat[21] = etaMin;
stat[22] = etaMax;
stat[23] = N ? rho / N : 0;
stat[24] = rhoMin;
stat[25] = rhoMax;
stat[26] = PView::list.size();
for(unsigned int i = 0; i < PView::list.size(); i++) {
PViewData *data = PView::list[i]->getData();
stat[27] += data->getNumElements(PViewData::Point);
stat[28] += data->getNumElements(PViewData::Line);
stat[29] += data->getNumElements(PViewData::Triangle);
stat[30] += data->getNumElements(PViewData::Quadrangle);
stat[31] += data->getNumElements(PViewData::Tetrahedron);
stat[32] += data->getNumElements(PViewData::Hexahedron);
stat[33] += data->getNumElements(PViewData::Prism);
stat[34] += data->getNumElements(PViewData::Pyramid);
stat[35] += data->getNumStrings2D() + data->getNumStrings3D();
if(CTX.expert_mode || !m->numVertex()) return false;
// try to detect obvious mistakes in characteristic lenghts (one of
// the most common cause for erroneous bug reports on the mailing
// list)
for(GModel::viter it = m->firstVertex(); it != m->lastVertex(); ++it)
sumAllLc += (*it)->prescribedMeshSizeAtVertex();
if(!sumAllLc || pow(CTX.lc / sumAllLc, dim) > 1.e10)
return !GetBinaryAnswer("Your choice of characteristic lengths will likely produce\n"
"a very large mesh. Do you really want to continue?\n\n"
"(To disable this warning in the future, select `Enable\n"
"expert mode' in the option dialog.)",
"Continue", "Cancel");
return false;
}
double t1 = Cpu();
std::for_each(m->firstEdge(), m->lastEdge(), meshGEdge());
double t2 = Cpu();
Msg(INFO, "Mesh 1D complete (%g s)", CTX.mesh_timer[0]);
Msg(STATUS1, "Mesh");
}
if(CTX.create_append_statreport == 1)
statreport = fopen(CTX.statreport, "w");
else if(CTX.create_append_statreport == 2)
statreport = fopen(CTX.statreport, "a");
double worst = 1, best = 0, avg = 0;
double e_long = 0, e_short = 1.e22, e_avg = 0;
int nTotT = 0, nTotE = 0, nTotGoodLength = 0, nTotGoodQuality = 0;
int nUnmeshed = 0, numFaces = 0;
Msg(INFO,"2D Mesh Statistics :");
for(GModel::fiter it = m->firstFace() ; it!=m->lastFace(); ++it){
worst = std::min((*it)->meshStatistics.worst_element_shape, worst);
best = std::max((*it)->meshStatistics.best_element_shape, best);
avg += (*it)->meshStatistics.average_element_shape * (*it)->meshStatistics.nbTriangle;
e_avg += (*it)->meshStatistics.efficiency_index;//* (*it)->meshStatistics.nbEdge;
e_long = std::max((*it)->meshStatistics.longest_edge_length, e_long);
e_short = std::min((*it)->meshStatistics.smallest_edge_length, e_short);
if ((*it)->meshStatistics.status == GFace::FAILED ||
(*it)->meshStatistics.status == GFace::PENDING) nUnmeshed++;
nTotT += (*it)->meshStatistics.nbTriangle;
nTotE += (*it)->meshStatistics.nbEdge;
nTotGoodLength += (*it)->meshStatistics.nbGoodLength;
nTotGoodQuality += (*it)->meshStatistics.nbGoodQuality;
numFaces++;
}
if(CTX.create_append_statreport == 1){
fprintf(statreport, "2D stats\tname\t\t#faces\t\t#fail\t\t"
"#t\t\tQavg\t\tQbest\t\tQworst\t\t#Q>90\t\t#Q>90/#t\t"
"#e\t\ttau\t\t#Egood\t\t#Egood/#e\tCPU\n");
fprintf(statreport,"\t%16s\t%d\t\t%d\t\t", CTX.base_filename, numFaces, nUnmeshed);
fprintf(statreport,"%d\t\t%8.7f\t%8.7f\t%8.7f\t%d\t\t%8.7f\t",
nTotT, avg / (double)nTotT, best, worst, nTotGoodQuality,
(double)nTotGoodQuality / nTotT);
fprintf(statreport,"%d\t\t%8.7f\t%d\t\t%8.7f\t%8.1f\n",
nTotE, exp(e_avg / (double)nTotE), nTotGoodLength,
(double)nTotGoodLength / nTotE, CTX.mesh_timer[1]);
fclose(statreport);
if(CTX.mesh.algo2d == ALGO_2D_DELAUNAY && !CTX.expert_mode){
if(!GetBinaryAnswer("The 2D Delaunay algorithm is still highly experimental\n"
"and produces triangles with random orientations. Do you\n"
"really want to continue?\n\n"
"(To disable this warning in the future, select `Enable\n"
"expert mode' in the option dialog.)",
"Continue", "Cancel")) return;
}
double t1 = Cpu();
// boundary layers are special: their generation (including vertices
// and curve meshes) is global as it depends on a smooth normal
// field generated from the surface mesh of the source surfaces
if(!Mesh2DWithBoundaryLayers(m)){
std::for_each(m->firstFace(), m->lastFace(), meshGFace());
int nIter = 0;
while(1){
meshGFace mesher;
int nbPending = 0;
for(GModel::fiter it = m->firstFace() ; it!=m->lastFace(); ++it){
if ((*it)->meshStatistics.status == GFace::PENDING){
mesher(*it);
nbPending++;
}
double t2 = Cpu();
Msg(INFO, "Mesh 2D complete (%g s)", CTX.mesh_timer[1]);
Msg(STATUS1, "Mesh");
}
void FindConnectedRegions(std::vector<GRegion*> &delaunay,
std::vector<std::vector<GRegion*> > &connected)
{
// FIXME: need to split region vector into connected components here!
connected.push_back(delaunay);
}
double t1 = Cpu();
std::for_each(m->firstRegion(), m->lastRegion(), meshGRegionExtruded());
// then subdivide if necessary (unfortunately the subdivision is a
// global operation, which can require changing the surface mesh!)
// then mesh all the non-delaunay regions
std::vector<GRegion*> delaunay;
std::for_each(m->firstRegion(), m->lastRegion(), meshGRegion(delaunay));
// and finally mesh the delaunay regions (again, this is global; but
// we mesh each connected part separately for performance and mesh
// quality reasons)
std::vector<std::vector<GRegion*> > connected;
FindConnectedRegions(delaunay, connected);
for(unsigned int i = 0; i < connected.size(); i++)
MeshDelaunayVolume(connected[i]);
double t2 = Cpu();
Msg(INFO, "Mesh 3D complete (%g s)", CTX.mesh_timer[2]);
Msg(STATUS1, "Mesh");
}
void OptimizeMeshNetgen(GModel *m)
{
Msg(STATUS1, "Optimizing 3D with Netgen...");
double t1 = Cpu();
std::for_each(m->firstRegion(), m->lastRegion(), optimizeMeshGRegionNetgen());
double t2 = Cpu();
Msg(INFO, "Mesh 3D optimization with Netgen complete (%g s)", t2 - t1);
Msg(STATUS1, "Mesh");
}
std::for_each(m->firstRegion(), m->lastRegion(), optimizeMeshGRegionGmsh());
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
void AdaptMesh()
{
Msg(STATUS1, "Adapting the 3D Mesh...");
double t1 = Cpu();
if(CTX.threads_lock) {
Msg(INFO, "I'm busy! Ask me that later...");
return;
}
CTX.threads_lock = 1;
GModel *m = GModel::current();
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
std::for_each(m->firstRegion(), m->lastRegion(), adaptMeshGRegion());
double t2 = Cpu();
Msg(INFO, "Mesh Adaptation complete (%g s)", t2 - t1);
Msg(STATUS1, "Mesh");
}
Msg(INFO, "I'm busy! Ask me that later...");
return;
}
GModel *m = GModel::current();
int old = m->getMeshStatus(false);
// Initialize pseudo random mesh generator with the same seed
srand(1);
std::for_each(m->firstRegion(), m->lastRegion(), deMeshGRegion());
std::for_each(m->firstFace(), m->lastFace(), deMeshGFace());
}
std::for_each(m->firstRegion(), m->lastRegion(), deMeshGRegion());
}
}
if(m->getMeshStatus() >= 2)
std::for_each(m->firstFace(), m->lastFace(), orientMeshGFace());
// Optimize quality of 3D tet mesh
if(m->getMeshStatus() == 3){
for(int i = 0; i < std::max(CTX.mesh.optimize, CTX.mesh.optimize_netgen); i++){
if(CTX.mesh.optimize > i) OptimizeMesh(m);
if(CTX.mesh.optimize_netgen > i) OptimizeMeshNetgen(m);
}
if(m->getMeshStatus() && CTX.mesh.order > 1)
SetOrderN(m, CTX.mesh.order, CTX.mesh.second_order_linear,
Msg(INFO, "%d vertices %d elements", m->numVertices(), m->numElements());