Newer
Older
// $Id: Generator.cpp,v 1.83 2006-07-11 13:41:22 remacle Exp $
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software

Christophe Geuzaine
committed
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
#include "Gmsh.h"
#include "Numeric.h"
#include "Mesh.h"
#include "Create.h"
#include "Context.h"
#include "meshGEdge.h"
#include "GModel.h"
extern Context_T CTX;
Vertex *v = *(Vertex**)a;
if(v->Degree == 2) nbOrder2++;
}
void GetStatistics(double stat[50])
{
for(int i = 0; i < 50; i++)
stat[i] = 0.;
if(!THEM)
return;
stat[0] = Tree_Nbr(THEM->Points);
stat[1] = Tree_Nbr(THEM->Curves);
stat[2] = Tree_Nbr(THEM->Surfaces);
stat[3] = Tree_Nbr(THEM->Volumes);
stat[4] = 0.;
if(Tree_Nbr(THEM->Curves)) {
List_T *curves = Tree2List(THEM->Curves);
for(int i = 0; i < List_Nbr(curves); i++){
Curve *c;
List_Read(curves, i, &c);
stat[4] += List_Nbr(c->Vertices);
}
List_Delete(curves);
stat[5] = stat[7] = stat[8] = 0.;
if(Tree_Nbr(THEM->Surfaces)) {
List_T *surfaces = Tree2List(THEM->Surfaces);
for(int i = 0; i < List_Nbr(surfaces); i++){
Surface *s;
List_Read(surfaces, i, &s);
stat[5] += Tree_Nbr(s->Vertices);
stat[8] += Tree_Nbr(s->Quadrangles);
}
List_Delete(surfaces);
}
stat[6] = stat[9] = stat[10] = stat[11] = stat[12] = 0.;
if(Tree_Nbr(THEM->Volumes)) {
List_T *volumes = Tree2List(THEM->Volumes);
for(int i = 0; i < List_Nbr(volumes); i++){
Volume *v;
List_Read(volumes, i, &v);
stat[6] += Tree_Nbr(v->Vertices);
stat[10] += Tree_Nbr(v->Hexahedra);
stat[11] += Tree_Nbr(v->Prisms);
stat[12] += Tree_Nbr(v->Pyramids);
}
List_Delete(volumes);
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
// hack... (Read_Mesh does not fill-in the vertices)
int nbnod = Tree_Nbr(THEM->Vertices);
if(nbnod && !stat[4] && !stat[5] && !stat[6]){
if(stat[9] || stat[10] || stat[11] || stat[12])
stat[6] = nbnod;
else if(stat[7] || stat[8])
stat[5] = nbnod;
else
stat[4] = nbnod;
}
stat[13] = THEM->timing[0];
stat[14] = THEM->timing[1];
stat[15] = THEM->timing[2];
nbOrder2 = 0;
Tree_Action(THEM->Vertices, countOrder2);
stat[16] = nbOrder2;
stat[17] = THEM->quality_gamma[0];
stat[18] = THEM->quality_gamma[1];
stat[19] = THEM->quality_gamma[2];
stat[20] = THEM->quality_eta[0];
stat[21] = THEM->quality_eta[1];
stat[22] = THEM->quality_eta[2];
stat[23] = THEM->quality_rho[0];
stat[24] = THEM->quality_rho[1];
stat[25] = THEM->quality_rho[2];
stat[26] = List_Nbr(CTX.post.list);
for(int i = 0; i < List_Nbr(CTX.post.list); i++) {
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
stat[27] += v->NbSP + v->NbVP + v->NbTP;
stat[28] += v->NbSL + v->NbVL + v->NbTL;
stat[29] += v->NbST + v->NbVT + v->NbTT;
stat[30] += v->NbSQ + v->NbVQ + v->NbTQ;
stat[31] += v->NbSS + v->NbVS + v->NbTS;
stat[32] += v->NbSH + v->NbVH + v->NbTH;
stat[33] += v->NbSI + v->NbVI + v->NbTI;
stat[34] += v->NbSY + v->NbVY + v->NbTY;
stat[35] += v->NbT2 + v->NbT3;
if(v->Visible) {
if(v->DrawPoints)
stat[36] +=
(v->DrawScalars ? v->NbSP : 0) + (v->DrawVectors ? v->NbVP : 0) +
(v->DrawTensors ? v->NbTP : 0);
if(v->DrawLines)
stat[37] +=
(v->DrawScalars ? v->NbSL : 0) + (v->DrawVectors ? v->NbVL : 0) +
(v->DrawTensors ? v->NbTL : 0);
if(v->DrawTriangles)
stat[38] +=
(v->DrawScalars ? v->NbST : 0) + (v->DrawVectors ? v->NbVT : 0) +
(v->DrawTensors ? v->NbTT : 0);
if(v->DrawQuadrangles)
stat[39] +=
(v->DrawScalars ? v->NbSQ : 0) + (v->DrawVectors ? v->NbVQ : 0) +
(v->DrawTensors ? v->NbTQ : 0);
if(v->DrawTetrahedra)
stat[40] +=
(v->DrawScalars ? v->NbSS : 0) + (v->DrawVectors ? v->NbVS : 0) +
(v->DrawTensors ? v->NbTS : 0);
if(v->DrawHexahedra)
stat[41] +=
(v->DrawScalars ? v->NbSH : 0) + (v->DrawVectors ? v->NbVH : 0) +
(v->DrawTensors ? v->NbTH : 0);
if(v->DrawPrisms)
stat[42] +=
(v->DrawScalars ? v->NbSI : 0) + (v->DrawVectors ? v->NbVI : 0) +
(v->DrawTensors ? v->NbTI : 0);
if(v->DrawPyramids)
stat[43] +=
(v->DrawScalars ? v->NbSY : 0) + (v->DrawVectors ? v->NbVY : 0) +
(v->DrawTensors ? v->NbTY : 0);
if(v->DrawStrings)
stat[44] += v->NbT2 + v->NbT3;
}
}
static double SumOfAllLc = 0.;
void GetSumOfAllLc(void *a, void *b)
{
Vertex *v = *(Vertex **) a;
SumOfAllLc += v->lc;
}
void ApplyLcFactor_Point(void *a, void *b)
{
Vertex *v = *(Vertex **) a;
if(v->lc <= 0.0) {
Msg(GERROR,
"Wrong characteristic length (%g <= 0) for Point %d, defaulting to 1.0",
void ApplyLcFactor_Attractor(void *a, void *b)
{
Attractor *v = *(Attractor **) a;
v->lc1 *= CTX.mesh.lc_factor;
v->lc2 *= CTX.mesh.lc_factor;
}
Tree_Action(M->Points, ApplyLcFactor_Point);
List_Action(M->Metric->Attractors, ApplyLcFactor_Attractor);
}
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
void Move_SimplexBaseToSimplex(Mesh * M, int dimension)
{
if(dimension >= 1){
List_T *Curves = Tree2List(M->Curves);
for(int i = 0; i < List_Nbr(Curves); i++) {
Curve *c;
List_Read(Curves, i, &c);
Move_SimplexBaseToSimplex(&c->SimplexesBase, c->Simplexes);
}
List_Delete(Curves);
}
if(dimension >= 2){
List_T *Surfaces = Tree2List(M->Surfaces);
for(int i = 0; i < List_Nbr(Surfaces); i++){
Surface *s;
List_Read(Surfaces, i, &s);
Move_SimplexBaseToSimplex(&s->SimplexesBase, s->Simplexes);
}
List_Delete(Surfaces);
}
if(dimension >= 3){
List_T *Volumes = Tree2List(M->Volumes);
for(int i = 0; i < List_Nbr(Volumes); i++){
Volume *v;
List_Read(Volumes, i, &v);
Move_SimplexBaseToSimplex(&v->SimplexesBase, v->Simplexes);
}
List_Delete(Volumes);
}
}
bool TooManyElements(Mesh *M, int dim){
if(CTX.expert_mode || !Tree_Nbr(M->Points)) return false;
// try to detect obvious mistakes in characteristic lenghts (one of
// the most common cause for erroneous bug reports on the mailing
// list)
SumOfAllLc = 0.;
Tree_Action(M->Points, GetSumOfAllLc);
SumOfAllLc /= (double)Tree_Nbr(M->Points);
if(pow(CTX.lc / SumOfAllLc, dim) < 1.e7) return false;
return !GetBinaryAnswer("Your choice of characteristic lengths will likely produce\n"
"a very large mesh. Do you really want to continue?\n\n"
"(To disable this warning in the future, select `Enable\n"
"expert mode' in the option dialog.)",
"Continue", "Cancel");
}
if(TooManyElements(M, 1)) return;
double t1 = Cpu();
std::for_each (GMODEL->firstEdge(),GMODEL->lastEdge(), meshGEdge() );
double t2 = Cpu();
}
if(TooManyElements(M, 2)) return;
double shortest = 1.e300;
double t1 = Cpu();
for(int i = 0; i < List_Nbr(Curves); i++) {
Curve *c;
List_Read(Curves, i, &c);
if(c->Num > 0) {
if(c->l < shortest)
shortest = c->l;
Curve C;
Curve *neew = &C;
neew->Num = -c->Num;
Tree_Query(M->Curves, &neew);
neew->Vertices =
List_Create(List_Nbr(c->Vertices), 1, sizeof(Vertex *));
List_Invert(c->Vertices, neew->Vertices);
}
}
Msg(DEBUG, "Shortest curve has length %g", shortest);
// global "all-quad" recombine
if(CTX.mesh.algo_recombine == 2)
double t2 = Cpu();
}
static Volume *IVOL;
void TransferData(void *a, void *b)
{
Simplex *s = *(Simplex**)a;
if(s->iEnt == IVOL->Num){
Tree_Add(IVOL->Simplexes, &s);
for(int i = 0; i < 4; i++)
Tree_Insert(IVOL->Vertices, &s->V[i]);
}
}
if(TooManyElements(M, 3)) return;
double t1 = Cpu();
Volume *v = Create_Volume(99999, 99999);
List_T *list = Tree2List(M->Volumes);
for(int i = 0; i < List_Nbr(list); i++) {
Volume *vol;
List_Read(list, i, &vol);
if((!vol->Extrude || !vol->Extrude->mesh.ExtrudeMesh) &&
(vol->Method != TRANSFINI)) {
for(int j = 0; j < List_Nbr(vol->Surfaces); j++) {
List_Replace(v->Surfaces, List_Pointer(vol->Surfaces, j),
compareSurface);
}
}
}
}
Extrude_Mesh(M->Volumes); // new extrusion
Tree_Action(M->Volumes, Maillage_Volume); // delaunay of remaining parts
}
// transfer data back to individual volumes and remove special volume
for(int i = 0; i < List_Nbr(list); i++){
List_Read(list, i, &IVOL);
Tree_Action(v->Simplexes, TransferData);
}
Tree_Suppress(M->Volumes, &v);
Free_Volume_But_Not_Elements(&v, NULL);
List_Delete(list);
double t2 = Cpu();
}
M->bds = 0;
M->bds_mesh = 0;
M->Vertices = NULL;
M->Simplexes = NULL;
M->Points = NULL;
M->Curves = NULL;
M->SurfaceLoops = NULL;
M->EdgeLoops = NULL;
M->Surfaces = NULL;
M->Volumes = NULL;
M->PhysicalGroups = NULL;
M->Partitions = NULL;
M->Metric = NULL;
}
THEM = M;

Christophe Geuzaine
committed
M->MaxPointNum = 0;
M->MaxLineNum = 0;
M->MaxLineLoopNum = 0;
M->MaxSurfaceNum = 0;
M->MaxSurfaceLoopNum = 0;
M->MaxVolumeNum = 0;
M->MaxPhysicalNum = 0;

Christophe Geuzaine
committed
Tree_Action(M->Vertices, Free_Vertex);
Tree_Delete(M->Vertices);
Tree_Action(M->Points, Free_Vertex);
Tree_Delete(M->Points);
// Note: don't free the simplices here (with Tree_Action
// (M->Simplexes, Free_Simplex)): we free them in each curve,
// surface, volume
Tree_Delete(M->Simplexes);
Tree_Action(M->Curves, Free_Curve);
Tree_Delete(M->Curves);
Tree_Delete(M->EdgeLoops);
Tree_Action(M->Surfaces, Free_Surface);
Tree_Delete(M->Surfaces);
Tree_Action(M->Volumes, Free_Volume);
Tree_Delete(M->Volumes);
List_Action(M->Partitions, Free_MeshPartition);
List_Delete(M->Partitions);
M->Vertices = Tree_Create(sizeof(Vertex *), compareVertex);
M->Simplexes = Tree_Create(sizeof(Simplex *), compareSimplex);
M->Points = Tree_Create(sizeof(Vertex *), compareVertex);
M->Curves = Tree_Create(sizeof(Curve *), compareCurve);
M->SurfaceLoops = Tree_Create(sizeof(SurfaceLoop *), compareSurfaceLoop);
M->EdgeLoops = Tree_Create(sizeof(EdgeLoop *), compareEdgeLoop);
M->Surfaces = Tree_Create(sizeof(Surface *), compareSurface);
M->Volumes = Tree_Create(sizeof(Volume *), compareVolume);
M->PhysicalGroups = List_Create(5, 5, sizeof(PhysicalGroup *));
M->Metric = new GMSHMetric;

Christophe Geuzaine
committed
M->status = 0;
for(int i = 0; i < 3; i++){
M->timing[i] = 0.0;
M->quality_gamma[i] = 0.0;
M->quality_eta[i] = 0.0;
M->quality_rho[i] = 0.0;
}
}
double t1, t2;
int oldstatus;
Msg(INFO, "I'm busy! Ask me that later...");
return;
}
oldstatus = M->status;
if((Asked > oldstatus && Asked >= 0 && oldstatus < 0) ||
(Asked < oldstatus)) {
OpenProblem(CTX.filename);
M->status = 0;
}
// Clean up all the 2nd order nodes and transfer all SimplexBase
// into "real" Simplexes
if((Asked > oldstatus && Asked > 0 && oldstatus < 1) ||
(Asked < oldstatus && Asked > 0)) {
t1 = Cpu();
t2 = Cpu();
Msg(STATUS2, "Mesh 1D complete (%g s)", t2 - t1);
M->status = 1;
}
if((Asked > oldstatus && Asked > 1 && oldstatus < 2) ||
(Asked < oldstatus && Asked > 1)) {
t1 = Cpu();
if(M->status == 3) {
OpenProblem(CTX.filename);
Maillage_Dimension_1(M);
}
t2 = Cpu();
Msg(STATUS2, "Mesh 2D complete (%g s)", t2 - t1);
M->status = 2;
}
if((Asked > oldstatus && Asked > 2 && oldstatus < 3) ||
(Asked < oldstatus && Asked > 2)) {
t1 = Cpu();
t2 = Cpu();
Msg(STATUS2, "Mesh 3D complete (%g s)", t2 - t1);
M->status = 3;
}
// Optimize quality
if(M->status == 3 && CTX.mesh.optimize)
Optimize_Netgen(M);
if(M->status > 1 && CTX.mesh.nbPartitions != 1)
PartitionMesh(M, CTX.mesh.nbPartitions);