Newer
Older
// Gmsh - Copyright (C) 1997-2012 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
//
// Contributor(s):
// Jonathan Lambrechts
//
#include <fstream>
#include <string>
#include "GmshConfig.h"
#include "Context.h"
#include "Field.h"
#include "GeoInterpolation.h"
#include "GModel.h"

Christophe Geuzaine
committed
#include "GmshMessage.h"
#include "Numeric.h"
#include "BackgroundMesh.h"

Christophe Geuzaine
committed
#include "OctreePost.h"
#include "PViewDataList.h"

Christophe Geuzaine
committed
#endif
Field::~Field() {
for(std::map<std::string, FieldOption*>::iterator it = options.begin(); it != options.end(); ++it) {
delete it->second;
}
for(std::map<std::string, FieldCallback*>::iterator it = callbacks.begin(); it != callbacks.end(); ++it) {
delete it->second;
}
}
for(std::map<int, Field *>::iterator it = begin(); it != end(); it++) {
Field *FieldManager::newField(int id, std::string type_name)
}
if(map_type_name.find(type_name) == map_type_name.end()) {
}
Field *f = (*map_type_name[type_name]) ();
if(!f)
int FieldManager::newId()
{
int i = 0;
iterator it = begin();
while(1) {
i++;
while(it != end() && it->first < i)
it++;
if(it == end() || it->first != i)
break;
}
return std::max(i, 1);
int FieldManager::maxId()
{
if(!empty())
return rbegin()->first;
else
return 0;
void FieldManager::deleteField(int id)
Msg::Error("Cannot delete field id %i, it does not exist", id);
class StructuredField : public Field

Jean-François Remacle
committed
{
double o[3], d[3];
int n[3];
double *data;

Jean-François Remacle
committed
bool text_format;
public:
StructuredField()

Christophe Geuzaine
committed
options["FileName"] = new FieldOptionPath
(file_name, "Name of the input file", &update_needed);

Jean-François Remacle
committed
text_format = false;

Christophe Geuzaine
committed
options["TextFormat"] = new FieldOptionBool
(text_format, "True for ASCII input files, false for binary files (4 bite "

Christophe Geuzaine
committed
"signed integers for n, double precision floating points for v, D and O)",
&update_needed);
std::string getDescription()

Christophe Geuzaine
committed
{
return "Linearly interpolate between data provided on a 3D rectangular "

Christophe Geuzaine
committed
"structured grid.\n\n"
"The format of the input file is:\n\n"
" Ox Oy Oz \n"
" Dx Dy Dz \n"
" nx ny nz \n"
" v(0,0,0) v(0,0,1) v(0,0,2) ... \n"
" v(0,1,0) v(0,1,1) v(0,1,2) ... \n"
" v(0,2,0) v(0,2,1) v(0,2,2) ... \n"
" ... ... ... \n"
" v(1,0,0) ... ... \n\n"
"where O are the coordinates of the first node, D are the distances "
"between nodes in each direction, n are the numbers of nodes in each "

Christophe Geuzaine
committed
"direction, and v are the values on each node.";

Christophe Geuzaine
committed
virtual ~StructuredField()
{
if(data) delete[]data;

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
if(update_needed) {
error_status = false;
try {
std::ifstream input;
if(text_format)
input.open(file_name.c_str());
else
input.open(file_name.c_str(),std::ios::binary);
if(!input.is_open())
throw(1);
input.
exceptions(std::ifstream::eofbit | std::ifstream::failbit | std::
ifstream::badbit);

Jean-François Remacle
committed
if(!text_format) {
input.read((char *)o, 3 * sizeof(double));
input.read((char *)d, 3 * sizeof(double));
input.read((char *)n, 3 * sizeof(int));
int nt = n[0] * n[1] * n[2];
if(data)
delete[]data;
data = new double[nt];
input.read((char *)data, nt * sizeof(double));
}
else {
input >> o[0] >> o[1] >> o[2] >> d[0] >> d[1] >> d[2] >> n[0] >>
n[1] >> n[2];
int nt = n[0] * n[1] * n[2];
if(data)
delete[]data;
data = new double[nt];
for(int i = 0; i < nt; i++)
input >> data[i];
}
input.close();
}
catch(...) {
error_status = true;

Jean-François Remacle
committed
Msg::Error("Field %i : error reading file %s", this->id, file_name.c_str());
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
}
update_needed = false;
}
if(error_status)
return MAX_LC;
//tri-linear
int id[2][3];
double xi[3];
double xyz[3] = { x, y, z };
for(int i = 0; i < 3; i++) {
id[0][i] = (int)floor((xyz[i] - o[i]) / d[i]);
id[1][i] = id[0][i] + 1;
id[0][i] = std::max(std::min(id[0][i], n[i] - 1), 0);
id[1][i] = std::max(std::min(id[1][i], n[i] - 1), 0);
xi[i] = (xyz[i] - (o[i] + id[0][i] * d[i])) / d[i];
xi[i] = std::max(std::min(xi[i], 1.), 0.);
}
double v = 0;
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++) {
v += data[id[i][0] * n[1] * n[2] + id[j][1] * n[2] + id[k][2]]
* (i * xi[0] + (1 - i) * (1 - xi[0]))
* (j * xi[1] + (1 - j) * (1 - xi[1]))
* (k * xi[2] + (1 - k) * (1 - xi[2]));
}
return v;
}
class UTMField : public Field

Jean-François Remacle
committed
{

Jean-François Remacle
committed
double a, b, n, n2, n3, n4, n5, e, e2, e1, e12, e13, e14, J1, J2, J3, J4,
Ap, Bp, Cp, Dp, Ep, e4, e6, ep, ep2, ep4, k0, mu_fact;
std::string getDescription()

Christophe Geuzaine
committed
{
return "Evaluate Field[IField] in Universal Transverse Mercator coordinates.\n\n"

Christophe Geuzaine
committed
"The formulas for the coordinates transformation are taken from:\n\n"
" http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM";

Jean-François Remacle
committed
UTMField()
{

Jean-François Remacle
committed
zone = 0;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Index of the field to evaluate");

Christophe Geuzaine
committed
options["Zone"] = new FieldOptionInt
(zone, "Zone of the UTM projection");
a = 6378137; // Equatorial Radius
b = 6356752.3142; // Rayon Polar Radius
// see http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM

Jean-François Remacle
committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
n = (a - b) / (a + b);
n2 = n * n;
n3 = n * n * n;
n4 = n * n * n * n;
n5 = n * n * n * n * n;
e = sqrt(1 - b * b / a / a);
e2 = e * e;
e1 = (1 - sqrt(1 - e2)) / (1 + sqrt(1 - e2));
e12 = e1 * e1;
e13 = e1 * e1 * e1;
e14 = e1 * e1 * e1 * e1;
J1 = (3 * e1 / 2 - 27 * e13 / 32);
J2 = (21 * e12 / 16 - 55 * e14 / 32);
J3 = 151 * e13 / 96;
J4 = 1097 * e14 / 512;
Ap = a * (1 - n + (5. / 4.) * (n2 - n3) + (81. / 64.) * (n4 - n5));
Bp = -3 * a * n / 2 * (1 - n + (7. / 8.) * (n2 - n3) +
(55. / 64.) * (n4 - n5));
Cp = 14 * a * n2 / 16 * (1 - n + (3. / 4) * (n2 - n3));
Dp = -35 * a * n3 / 48 * (1 - n + 11. / 16. * (n2 - n3));
Ep = +315 * a * n4 / 51 * (1 - n);
e4 = e2 * e2;
e6 = e2 * e2 * e2;
ep = e * a / b;
ep2 = ep * ep;
ep4 = ep2 * ep2;
k0 = 0.9996;
mu_fact = 1 / (k0 * a * (1 - e2 / 4 - 3 * e4 / 64 - 5 * e6 / 256));
}

Jean-François Remacle
committed
{
return "UTM";
}

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)

Jean-François Remacle
committed
{
double r = sqrt(x * x + y * y + z * z);
double lon = atan2(y, x);
double lat = asin(z / r);
double meridionalarc = Ap * lat + Bp * sin(2 * lat)
+ Cp * sin(4 * lat) + Dp * sin(6 * lat) + Ep;
double slat = sin(lat);
double clat = cos(lat);
double slat2 = slat * slat;
double clat2 = clat * clat;
double clat3 = clat2 * clat;
double clat4 = clat3 * clat;
double tlat2 = slat2 / clat2;
double nu = a / sqrt(1 - e * e * slat2);
double p = lon - ((zone - 0.5) / 30 - 1) * M_PI;
double p2 = p * p;
double p3 = p * p2;
double p4 = p2 * p2;
double utm_x =
k0 * nu * clat * p + (k0 * nu * clat3 / 6) * (1 - tlat2 +
ep2 * clat2) * p3 + 5e5;
double utm_y =
meridionalarc * k0 + k0 * nu * slat * clat / 2 * p2 +
k0 * nu * slat * clat3 / 24 * (5 - tlat2 + 9 * ep2 * clat2 +
4 * ep4 * clat4) * p4;
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
return (*field)(utm_x, utm_y, 0);

Jean-François Remacle
committed
}
};
class LonLatField : public Field

Jean-François Remacle
committed
{
int iField, fromStereo;
double stereoRadius;
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Evaluate Field[IField] in geographic coordinates (longitude, latitude):\n\n"
" F = Field[IField](atan(y/x), asin(z/sqrt(x^2+y^2+z^2))";

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Index of the field to evaluate.");
fromStereo = 0;
stereoRadius = 6371e3;
options["FromStereo"] = new FieldOptionInt
(fromStereo, "if = 1, the mesh is in stereographic coordinates. "
"xi = 2Rx/(R+z), eta = 2Ry/(R+z)");
options["RadiusStereo"] = new FieldOptionDouble
(stereoRadius, "radius of the sphere of the stereograpic coordinates");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
if (fromStereo == 1) {
double xi = x;
double eta = y;
double r2 = stereoRadius * stereoRadius;
x = 4 * r2 * xi / ( 4 * r2 + xi * xi + eta * eta);
y = 4 * r2 * eta / ( 4 * r2 + xi * xi + eta * eta);
z = stereoRadius * (4 * r2 - eta * eta - xi * xi) / ( 4 * r2 + xi * xi + eta * eta);
}
return (*field)(atan2(y, x), asin(z / stereoRadius), 0);
class BoxField : public Field

Jean-François Remacle
committed
{
double v_in, v_out, x_min, x_max, y_min, y_max, z_min, z_max;
std::string getDescription()

Christophe Geuzaine
committed
{
return "The value of this field is VIn inside the box, VOut outside the box. "

Christophe Geuzaine
committed
"The box is given by\n\n"
" Xmin <= x <= XMax &&\n"
" YMin <= y <= YMax &&\n"
" ZMin <= z <= ZMax";
BoxField()
{
v_in = v_out = x_min = x_max = y_min = y_max = z_min = z_max = 0;

Christophe Geuzaine
committed
options["VIn"] = new FieldOptionDouble
(v_in, "Value inside the box");
options["VOut"] = new FieldOptionDouble
(v_out, "Value outside the box");
options["XMin"] = new FieldOptionDouble
(x_min, "Minimum X coordinate of the box");
options["XMax"] = new FieldOptionDouble
(x_max, "Maximum X coordinate of the box");
options["YMin"] = new FieldOptionDouble
(y_min, "Minimum Y coordinate of the box");
options["YMax"] = new FieldOptionDouble
(y_max, "Maximum Y coordinate of the box");
options["ZMin"] = new FieldOptionDouble
(z_min, "Minimum Z coordinate of the box");
options["ZMax"] = new FieldOptionDouble

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
return (x <= x_max && x >= x_min && y <= y_max && y >= y_min && z <= z_max
&& z >= z_min) ? v_in : v_out;
}
class CylinderField : public Field
{
double v_in, v_out;
double xc,yc,zc;
double xa,ya,za;
double R;
public:
std::string getDescription()
{
return "The value of this field is VIn inside a frustrated cylinder, VOut outside. "
"The cylinder is given by\n\n"
" ||dX||^2 < R^2 &&\n"
" (X-X0).A < ||A||^2\n"
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
" dX = (X - X0) - ((X - X0).A)/(||A||^2) . A";
}
CylinderField()
{
v_in = v_out = xc = yc = zc = xa = ya = R = 0;
za = 1.;
options["VIn"] = new FieldOptionDouble
(v_in, "Value inside the cylinder");
options["VOut"] = new FieldOptionDouble
(v_out, "Value outside the cylinder");
options["XCenter"] = new FieldOptionDouble
(xc, "X coordinate of the cylinder center");
options["YCenter"] = new FieldOptionDouble
(yc, "Y coordinate of the cylinder center");
options["ZCenter"] = new FieldOptionDouble
(zc, "Z coordinate of the cylinder center");
options["XAxis"] = new FieldOptionDouble
(xa, "X component of the cylinder axis");
options["YAxis"] = new FieldOptionDouble
(ya, "Y component of the cylinder axis");
options["ZAxis"] = new FieldOptionDouble
(za, "Z component of the cylinder axis");
options["Radius"] = new FieldOptionDouble
(R,"Radius");
}
const char *getName()
{
return "Cylinder";
}
double operator() (double x, double y, double z, GEntity *ge=0)
{
double dx = x-xc;
double dy = y-yc;
double dz = z-zc;
double adx = (xa * dx + ya * dy + za * dz)/(xa*xa + ya*ya + za*za);
dx -= adx * xa;
dy -= adx * ya;
dz -= adx * za;
return ((dx*dx + dy*dy + dz*dz < R*R) && fabs(adx) < 1) ? v_in : v_out;
class ThresholdField : public Field

Jean-François Remacle
committed
{

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "F = LCMin if Field[IField] <= DistMin,\n"
"F = LCMax if Field[IField] >= DistMax,\n"
"F = interpolation between LcMin and LcMax if DistMin < Field[IField] < DistMax";
ThresholdField()
{
iField = 0;
dmin = 1;
dmax = 10;
lcmin = 0.1;
lcmax = 1;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Index of the field to evaluate");
options["DistMin"] = new FieldOptionDouble
(dmin, "Distance from entity up to which element size will be LcMin");
options["DistMax"] = new FieldOptionDouble
(dmax, "Distance from entity after which element size will be LcMax");
options["LcMin"] = new FieldOptionDouble
(lcmin, "Element size inside DistMin");
options["LcMax"] = new FieldOptionDouble
(lcmax, "Element size outside DistMax");
options["Sigmoid"] = new FieldOptionBool
(sigmoid, "True to interpolate between LcMin and LcMax using a sigmoid, "

Christophe Geuzaine
committed
"false to interpolate linearly");
options["StopAtDistMax"] = new FieldOptionBool
(stopAtDistMax, "True to not impose element size outside DistMax (i.e., "

Christophe Geuzaine
committed
"F = a very big value if Field[IField] > DistMax)");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
double r = ((*field) (x, y, z) - dmin) / (dmax - dmin);
r = std::max(std::min(r, 1.), 0.);
if(stopAtDistMax && r >= 1.){
lc = MAX_LC;
}
else if(sigmoid){
double s = exp(12. * r - 6.) / (1. + exp(12. * r - 6.));
lc = lcmin * (1. - s) + lcmax * s;
}
else{ // linear
lc = lcmin * (1 - r) + lcmax * r;
}

Jean-François Remacle
committed
{
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Compute the finite difference gradient of Field[IField]:\n\n"
" F = (Field[IField](X + Delta/2) - "

Christophe Geuzaine
committed
" Field[IField](X - Delta/2)) / Delta";
GradientField() : iField(0), kind(3), delta(CTX::instance()->lc / 1e4)
iField = 1;
kind = 0;
delta = 0.;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Kind"] = new FieldOptionInt
(kind, "Component of the gradient to evaluate: 0 for X, 1 for Y, 2 for Z, "

Christophe Geuzaine
committed
"3 for the norm");
options["Delta"] = new FieldOptionDouble
(delta, "Finite difference step");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
double gx, gy, gz;
switch (kind) {
case 0: /* x */
return ((*field) (x + delta / 2, y, z) -
(*field) (x - delta / 2, y, z)) / delta;
case 1: /* y */
return ((*field) (x, y + delta / 2, z) -
(*field) (x, y - delta / 2, z)) / delta;
case 2: /* z */
return ((*field) (x, y, z + delta / 2) -
(*field) (x, y, z - delta / 2)) / delta;
case 3: /* norm */
gx =
((*field) (x + delta / 2, y, z) -
(*field) (x - delta / 2, y, z)) / delta;
gy =
((*field) (x, y + delta / 2, z) -
(*field) (x, y - delta / 2, z)) / delta;
gz =
((*field) (x, y, z + delta / 2) -
(*field) (x, y, z - delta / 2)) / delta;
return sqrt(gx * gx + gy * gy + gz * gz);
default:
Msg::Error("Field %i : Unknown kind (%i) of gradient", this->id,
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Compute the curvature of Field[IField]:\n\n"
" F = div(norm(grad(Field[IField])))";
CurvatureField() : iField(0), delta(CTX::instance()->lc / 1e4)

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Step of the finite differences");

Christophe Geuzaine
committed
void grad_norm(Field &f, double x, double y, double z, double *g)
g[0] = f(x + delta / 2, y, z) - f(x - delta / 2, y, z);
g[1] = f(x, y + delta / 2, z) - f(x, y - delta / 2, z);
g[2] = f(x, y, z + delta / 2) - f(x, y, z - delta / 2);
double n=sqrt(g[0] * g[0] + g[1] * g[1] + g[2] * g[2]);
g[0] /= n;
g[1] /= n;
g[2] /= n;

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
grad_norm(*field, x + delta / 2, y, z, grad[0]);
grad_norm(*field, x - delta / 2, y, z, grad[1]);
grad_norm(*field, x, y + delta / 2, z, grad[2]);
grad_norm(*field, x, y - delta / 2, z, grad[3]);
grad_norm(*field, x, y, z + delta / 2, grad[4]);
grad_norm(*field, x, y, z - delta / 2, grad[5]);
return (grad[0][0] - grad[1][0] + grad[2][1] -
grad[3][1] + grad[4][2] - grad[5][2]) / delta;
class MaxEigenHessianField : public Field
std::string getDescription()

Christophe Geuzaine
committed
{
return "Compute the maximum eigenvalue of the Hessian matrix of "

Christophe Geuzaine
committed
"Field[IField], with the gradients evaluated by finite differences:\n\n"
" F = max(eig(grad(grad(Field[IField]))))";
MaxEigenHessianField() : iField(0), delta(CTX::instance()->lc / 1e4)

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Step used for the finite differences");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
double mat[3][3], eig[3];
mat[1][0] = mat[0][1] = (*field) (x + delta / 2 , y + delta / 2, z)
+ (*field) (x - delta / 2 , y - delta / 2, z)
- (*field) (x - delta / 2 , y + delta / 2, z)
- (*field) (x + delta / 2 , y - delta / 2, z);
mat[2][0] = mat[0][2] = (*field) (x + delta/2 , y, z + delta / 2)
+ (*field) (x - delta / 2 , y, z - delta / 2)
- (*field) (x - delta / 2 , y, z + delta / 2)
- (*field) (x + delta / 2 , y, z - delta / 2);
mat[2][1] = mat[1][2] = (*field) (x, y + delta/2 , z + delta / 2)
+ (*field) (x, y - delta / 2 , z - delta / 2)
- (*field) (x, y - delta / 2 , z + delta / 2)
- (*field) (x, y + delta / 2 , z - delta / 2);
double f = (*field)(x, y, z);
mat[0][0] = (*field)(x + delta, y, z) + (*field)(x - delta, y, z) - 2 * f;
mat[1][1] = (*field)(x, y + delta, z) + (*field)(x, y - delta, z) - 2 * f;
mat[2][2] = (*field)(x, y, z + delta) + (*field)(x, y, z - delta) - 2 * f;
eigenvalue(mat, eig);
return eig[0] / (delta * delta);
class LaplacianField : public Field
{
int iField;
double delta;
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Compute finite difference the Laplacian of Field[IField]:\n\n"
" F = G(x+d,y,z) + G(x-d,y,z) +\n"
" G(x,y+d,z) + G(x,y-d,z) +\n"
" G(x,y,z+d) + G(x,y,z-d) - 6 * G(x,y,z),\n\n"
"where G=Field[IField] and d=Delta";
LaplacianField() : iField(0), delta(CTX::instance()->lc / 1e4)
delta = 0.1;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Finite difference step");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
return ((*field) (x + delta , y, z)+ (*field) (x - delta , y, z)
+(*field) (x, y + delta , z)+ (*field) (x, y - delta , z)
+(*field) (x, y, z + delta )+ (*field) (x, y, z - delta )
-6* (*field) (x , y, z)) / (delta*delta);
class MeanField : public Field
{
int iField;
double delta;
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Simple smoother:\n\n"
" F = (G(x+delta,y,z) + G(x-delta,y,z) +\n"
" G(x,y+delta,z) + G(x,y-delta,z) +\n"
" G(x,y,z+delta) + G(x,y,z-delta) +\n"
" G(x,y,z)) / 7,\n\n"

Christophe Geuzaine
committed
"where G=Field[IField]";
MeanField() : iField(0), delta(CTX::instance()->lc / 1e4)

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Distance used to compute the mean value");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field || iField == id) return MAX_LC;
return ((*field) (x + delta , y, z) + (*field) (x - delta, y, z)
+ (*field) (x, y + delta, z) + (*field) (x, y - delta, z)
+ (*field) (x, y, z + delta) + (*field) (x, y, z - delta)
+ (*field) (x, y, z)) / 7;

Jean-François Remacle
committed
class MathEvalExpression
{
MathEvalExpression() : _f(0) {}
~MathEvalExpression(){ if(_f) delete _f; }
bool set_function(const std::string &f)
{
// get id numbers of fields appearing in the function
_fields.clear();
unsigned int i = 0;
while(i < f.size()){
unsigned int j = 0;
if(f[i] == 'F'){
std::string id("");
while(i + 1 + j < f.size() && f[i + 1 + j] >= '0' && f[i + 1 + j] <= '9'){
id += f[i + 1 + j];
j++;
std::vector<std::string> expressions(1), variables(3 + _fields.size());
expressions[0] = f;
variables[0] = "x";
variables[1] = "y";
variables[2] = "z";
i = 3;
for(std::set<int>::iterator it = _fields.begin(); it != _fields.end(); it++){
std::ostringstream sstream;
sstream << "F" << *it;
variables[i++] = sstream.str();
if(_f) delete _f;
_f = new mathEvaluator(expressions, variables);
if(expressions.empty()) {
delete _f;
_f = 0;
return false;
if(!_f) return MAX_LC;
std::vector<double> values(3 + _fields.size()), res(1);
values[0] = x;
values[1] = y;
values[2] = z;
int i = 3;
for(std::set<int>::iterator it = _fields.begin(); it != _fields.end(); it++){
Field *field = GModel::current()->getFields()->get(*it);
values[i++] = field ? (*field)(x, y, z) : MAX_LC;
}
if(_f->eval(values, res))
return res[0];
else
return MAX_LC;
class MathEvalExpressionAniso
{
private:
mathEvaluator *_f[6];
std::set<int> _fields[6];
public:
MathEvalExpressionAniso()
{
for(int i = 0; i < 6; i++) _f[i] = 0;
~MathEvalExpressionAniso()
{
for(int i = 0; i < 6; i++) if(_f[i]) delete _f[i];
}
bool set_function(int iFunction, const std::string &f)
{
// get id numbers of fields appearing in the function
_fields[iFunction].clear();
unsigned int i = 0;
while(i < f.size()){
unsigned int j = 0;
if(f[i] == 'F'){
std::string id("");
while(i + 1 + j < f.size() && f[i + 1 + j] >= '0' && f[i + 1 + j] <= '9'){
id += f[i + 1 + j];
j++;
}
_fields[iFunction].insert(atoi(id.c_str()));
}
i += j + 1;
}
std::vector<std::string> expressions(1), variables(3 + _fields[iFunction].size());
expressions[0] = f;
variables[0] = "x";
variables[1] = "y";
variables[2] = "z";
i = 3;
for(std::set<int>::iterator it = _fields[iFunction].begin();
it != _fields[iFunction].end(); it++){
std::ostringstream sstream;
sstream << "F" << *it;
variables[i++] = sstream.str();
}
if(_f[iFunction]) delete _f[iFunction];
_f[iFunction] = new mathEvaluator(expressions, variables);
if(expressions.empty()) {
delete _f[iFunction];
_f[iFunction] = 0;
return false;
}
return true;
}
void evaluate (double x, double y, double z, SMetric3 &metr)
{
const int index[6][2] = {{0,0},{1,1},{2,2},{0,1},{0,2},{1,2}};
for (int iFunction = 0; iFunction < 6; iFunction++){
if(!_f[iFunction])
metr(index[iFunction][0], index[iFunction][1]) = MAX_LC;
else{
std::vector<double> values(3 + _fields[iFunction].size()), res(1);
values[0] = x;
values[1] = y;
values[2] = z;
int i = 3;
for(std::set<int>::iterator it = _fields[iFunction].begin();
it != _fields[iFunction].end(); it++){
Field *field = GModel::current()->getFields()->get(*it);
values[i++] = field ? (*field)(x, y, z) : MAX_LC;
}
if(_f[iFunction]->eval(values, res))
metr(index[iFunction][0],index[iFunction][1]) = res[0];
else
metr(index[iFunction][0],index[iFunction][1]) = MAX_LC;
}
}
}
};
class MathEvalField : public Field

Jean-François Remacle
committed
{
class testAction : public FieldCallback{
private:
MathEvalField *myField;
public:
testAction(MathEvalField *field, std::string help):FieldCallback(help) {
myField = field;
}
void run(){
myField->myAction();
printf("calling action matheval \n");
}
};

Christophe Geuzaine
committed
options["F"] = new FieldOptionString
(f, "Mathematical function to evaluate.", &update_needed);

Christophe Geuzaine
committed
f = "F2 + Sin(z)";
callbacks["test"] = new testAction(this, "description blabla \n");
//callbacks["test"] = new FieldCallbackGeneric<MathEvalField>(this, MathEvalField::myFunc, "description")

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
if(update_needed) {
if(!expr.set_function(f))

Christophe Geuzaine
committed
Msg::Error("Field %i: Invalid matheval expression \"%s\"",
this->id, f.c_str());
update_needed = false;
}
return expr.evaluate(x, y, z);
}
void myAction(){
printf("doing sthg \n");
}
std::string getDescription()

Christophe Geuzaine
committed
{
return "Evaluate a mathematical expression. The expression can contain "
"x, y, z for spatial coordinates, F0, F1, ... for field values, and "

Christophe Geuzaine
committed
"and mathematical functions.";
class MathEvalFieldAniso : public Field
{
MathEvalExpressionAniso expr;
std::string f[6];
public:
virtual bool isotropic () const { return false; }
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
MathEvalFieldAniso()
{
options["m11"] = new FieldOptionString
(f[0], "element 11 of the metric tensor.", &update_needed);
f[0] = "F2 + Sin(z)";
options["m22"] = new FieldOptionString
(f[1], "element 22 of the metric tensor.", &update_needed);
f[1] = "F2 + Sin(z)";
options["m33"] = new FieldOptionString
(f[2], "element 33 of the metric tensor.", &update_needed);
f[2] = "F2 + Sin(z)";
options["m12"] = new FieldOptionString
(f[3], "element 12 of the metric tensor.", &update_needed);
f[3] = "F2 + Sin(z)";
options["m13"] = new FieldOptionString
(f[4], "element 13 of the metric tensor.", &update_needed);
f[4] = "F2 + Sin(z)";
options["m23"] = new FieldOptionString
(f[5], "element 23 of the metric tensor.", &update_needed);
f[5] = "F2 + Sin(z)";
}
void operator() (double x, double y, double z, SMetric3 &metr, GEntity *ge=0)
{
if(update_needed) {
for (int i=0;i<6;i++){
if(!expr.set_function(i,f[i]))
Msg::Error("Field %i: Invalid matheval expression \"%s\"",
this->id, f[i].c_str());
}
update_needed = false;
}
expr.evaluate(x, y, z, metr);
}
double operator() (double x, double y, double z, GEntity *ge=0)
{
if(update_needed) {