Newer
Older
// Gmsh - Copyright (C) 1997-2008 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
//
// Contributor(s):
// Jonathan Lambrechts
//
#include <fstream>
#include <string>
#include <sstream>
#ifdef HAVE_MATH_EVAL
#include "matheval.h"
#endif
#ifdef HAVE_ANN
#include "ANN/ANN.h"
#endif
#include "Context.h"
#include "Field.h"
#include "GeoInterpolation.h"
#include "GModel.h"
#include "Message.h"

Christophe Geuzaine
committed
#if !defined(HAVE_NO_POST)
#include "OctreePost.h"
#include "PViewDataList.h"

Christophe Geuzaine
committed
#endif
class FieldOptionDouble : public FieldOption

Jean-François Remacle
committed
{
FieldOptionType get_type(){ return FIELD_OPTION_DOUBLE; }
FieldOptionDouble(double &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val){}
double numerical_value() const { return val; }
void numerical_value(double v){ modified(); val = v; }
void get_text_representation(std::string &v_str)
{
std::ostringstream sstream;
sstream.precision(16);
sstream << val;
v_str = sstream.str();
}
class FieldOptionInt : public FieldOption

Jean-François Remacle
committed
{
FieldOptionType get_type(){ return FIELD_OPTION_INT; }
FieldOptionInt(int &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val){}
double numerical_value() const { return val; }
void numerical_value(double v){ modified(); val = (int)v; }
void get_text_representation(std::string & v_str)
{
std::ostringstream sstream;
sstream << val;
v_str = sstream.str();
}
class FieldOptionList : public FieldOption

Jean-François Remacle
committed
{
FieldOptionType get_type(){ return FIELD_OPTION_LIST; }
FieldOptionList(std::list<int> &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val) {}
std::list<int> &list(){ modified(); return val; }
const std::list<int>& list() const { return val; }
void get_text_representation(std::string & v_str)
{
std::ostringstream sstream;
sstream << "{";
for(std::list<int>::iterator it = val.begin(); it != val.end(); it++) {
if(it != val.begin())
sstream << ", ";
sstream << *it;
}
sstream << "}";
v_str = sstream.str();
}
class FieldOptionString : public FieldOption

Jean-François Remacle
committed
{

Jean-François Remacle
committed
std::string & val;
virtual FieldOptionType get_type(){ return FIELD_OPTION_STRING; }
FieldOptionString(std::string &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val) {}
std::string &string() { modified(); return val; }
const std::string &string() const { return val; }
void get_text_representation(std::string &v_str)
{
std::ostringstream sstream;
sstream << "\"" << val << "\"";
v_str = sstream.str();
}
class FieldOptionPath : public FieldOptionString
{
public:
virtual FieldOptionType get_type(){ return FIELD_OPTION_PATH; }
FieldOptionPath(std::string &_val, std::string _help, bool *_status=0)
: FieldOptionString(_val, _help, _status) {}
class FieldOptionBool : public FieldOption

Jean-François Remacle
committed
{

Jean-François Remacle
committed
bool & val;
FieldOptionType get_type(){ return FIELD_OPTION_BOOL; }
FieldOptionBool(bool & _val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val) {}
double numerical_value() const { return val; }
void numerical_value(double v){ modified(); val = v; }
void get_text_representation(std::string & v_str)
{
std::ostringstream sstream;
sstream << val;
v_str = sstream.str();
}
for(std::map<int, Field *>::iterator it = begin(); it != end(); it++) {
Field *FieldManager::new_field(int id, std::string type_name)
Msg::Error("Field id %i is already defined.", id);
}
if(map_type_name.find(type_name) == map_type_name.end()) {
Msg::Error("Unknown field type \"%s\".", type_name.c_str());
}
Field *f = (*map_type_name[type_name]) ();
if(!f)
int FieldManager::new_id()
{
int i = 0;
iterator it = begin();
while(1) {
i++;
while(it != end() && it->first < i)
it++;
if(it == end() || it->first != i)
break;
}
return std::max(i, 1);
int FieldManager::max_id()
{
if(!empty())
return rbegin()->first;
else
return 0;
void FieldManager::delete_field(int id)
{
iterator it = find(id);
if(it == end()) {
Msg::Error("Cannot delete field id %i, it does not exist.", id);
class StructuredField : public Field

Jean-François Remacle
committed
{
double o[3], d[3];
int n[3];
double *data;

Jean-François Remacle
committed
bool text_format;
public:
StructuredField()
options["FileName"] = new FieldOptionPath(file_name, "Name of the input file",
&update_needed);

Jean-François Remacle
committed
text_format = false;
options["TextFormat"] = new FieldOptionBool(text_format, "True for ASCII input "
"files, false for binary files\n"
"(4 bite signed integers for n, double precision floating points for v, D and O)",
std::string get_description(){

Jean-François Remacle
committed
return "Linearly interpolate between data provided on a 3D rectangular structured grid. "
"The format of the input file is : \n"
"Ox Oy Oz \n"
"Dx Dy Dz \n"
"nx ny nz \n"
"v(0,0,0) v(0,0,1) v(0,0,2) ... \n"
"v(0,1,0) v(0,1,1) v(0,1,2) ... \n"
"v(0,2,0) v(0,2,1) v(0,2,2) ... \n"
"... ... ... \n"
"v(1,0,0) ... ... \n"
"where O are the coordinates of the first node, "
"D are the distances between nodes in each direction, "
"n are the numbers of nodes in each directions, "
"and v are the values on each nodes.";
const char *get_name()
{
return "Structured";
}

Jean-François Remacle
committed
virtual ~ StructuredField() {
if(data)
delete[]data;
}
double operator() (double x, double y, double z)
{
if(update_needed) {
error_status = false;
try {
std::ifstream input;
if(text_format)
input.open(file_name.c_str());
else
input.open(file_name.c_str(),std::ios::binary);
if(!input.is_open())
throw(1);
input.
exceptions(std::ifstream::eofbit | std::ifstream::failbit | std::
ifstream::badbit);

Jean-François Remacle
committed
if(!text_format) {
input.read((char *)o, 3 * sizeof(double));
input.read((char *)d, 3 * sizeof(double));
input.read((char *)n, 3 * sizeof(int));
int nt = n[0] * n[1] * n[2];
if(data)
delete[]data;
data = new double[nt];
input.read((char *)data, nt * sizeof(double));
}
else {
input >> o[0] >> o[1] >> o[2] >> d[0] >> d[1] >> d[2] >> n[0] >>
n[1] >> n[2];
int nt = n[0] * n[1] * n[2];
if(data)
delete[]data;
data = new double[nt];
for(int i = 0; i < nt; i++)
input >> data[i];
}
input.close();
}
catch(...) {
error_status = true;

Jean-François Remacle
committed
Msg::Error("Field %i : error reading file %s", this->id, file_name.c_str());
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
}
update_needed = false;
}
if(error_status)
return MAX_LC;
//tri-linear
int id[2][3];
double xi[3];
double xyz[3] = { x, y, z };
for(int i = 0; i < 3; i++) {
id[0][i] = (int)floor((xyz[i] - o[i]) / d[i]);
id[1][i] = id[0][i] + 1;
id[0][i] = std::max(std::min(id[0][i], n[i] - 1), 0);
id[1][i] = std::max(std::min(id[1][i], n[i] - 1), 0);
xi[i] = (xyz[i] - (o[i] + id[0][i] * d[i])) / d[i];
xi[i] = std::max(std::min(xi[i], 1.), 0.);
}
double v = 0;
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++) {
v += data[id[i][0] * n[1] * n[2] + id[j][1] * n[2] + id[k][2]]
* (i * xi[0] + (1 - i) * (1 - xi[0]))
* (j * xi[1] + (1 - j) * (1 - xi[1]))
* (k * xi[2] + (1 - k) * (1 - xi[2]));
}
return v;
}
class UTMField : public Field

Jean-François Remacle
committed
{
int field_id, zone;
double a, b, n, n2, n3, n4, n5, e, e2, e1, e12, e13, e14, J1, J2, J3, J4,
Ap, Bp, Cp, Dp, Ep, e4, e6, ep, ep2, ep4, k0, mu_fact;
std::string get_description(){

Jean-François Remacle
committed
return "Evaluate Field[IField] in Universal Transverse Mercator coordinates. "
"The formulas for the coordinates transformation are taken from "
"http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM\n";
}

Jean-François Remacle
committed
UTMField()
{
field_id = 1;
zone = 0;
options["IField"] = new FieldOptionInt(field_id, "Index of the field to evaluate");
options["Zone"] = new FieldOptionInt(zone, "Zone of the UTM projection");

Jean-François Remacle
committed
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
a = 6378137; /* Equatorial Radius */
b = 6356752.3142; /* Rayon Polar Radius */
/* see http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM */
n = (a - b) / (a + b);
n2 = n * n;
n3 = n * n * n;
n4 = n * n * n * n;
n5 = n * n * n * n * n;
e = sqrt(1 - b * b / a / a);
e2 = e * e;
e1 = (1 - sqrt(1 - e2)) / (1 + sqrt(1 - e2));
e12 = e1 * e1;
e13 = e1 * e1 * e1;
e14 = e1 * e1 * e1 * e1;
J1 = (3 * e1 / 2 - 27 * e13 / 32);
J2 = (21 * e12 / 16 - 55 * e14 / 32);
J3 = 151 * e13 / 96;
J4 = 1097 * e14 / 512;
Ap = a * (1 - n + (5. / 4.) * (n2 - n3) + (81. / 64.) * (n4 - n5));
Bp = -3 * a * n / 2 * (1 - n + (7. / 8.) * (n2 - n3) +
(55. / 64.) * (n4 - n5));
Cp = 14 * a * n2 / 16 * (1 - n + (3. / 4) * (n2 - n3));
Dp = -35 * a * n3 / 48 * (1 - n + 11. / 16. * (n2 - n3));
Ep = +315 * a * n4 / 51 * (1 - n);
e4 = e2 * e2;
e6 = e2 * e2 * e2;
ep = e * a / b;
ep2 = ep * ep;
ep4 = ep2 * ep2;
k0 = 0.9996;
mu_fact = 1 / (k0 * a * (1 - e2 / 4 - 3 * e4 / 64 - 5 * e6 / 256));
}
const char *get_name()
{
return "UTM";
}
double operator() (double x, double y, double z)
{
double r = sqrt(x * x + y * y + z * z);
double lon = atan2(y, x);
double lat = asin(z / r);
double meridionalarc = Ap * lat + Bp * sin(2 * lat)
+ Cp * sin(4 * lat) + Dp * sin(6 * lat) + Ep;
double slat = sin(lat);
double clat = cos(lat);
double slat2 = slat * slat;
double clat2 = clat * clat;
double clat3 = clat2 * clat;
double clat4 = clat3 * clat;
double tlat2 = slat2 / clat2;
double nu = a / sqrt(1 - e * e * slat2);
double p = lon - ((zone - 0.5) / 30 - 1) * M_PI;
double p2 = p * p;
double p3 = p * p2;
double p4 = p2 * p2;
double utm_x =
k0 * nu * clat * p + (k0 * nu * clat3 / 6) * (1 - tlat2 +
ep2 * clat2) * p3 + 5e5;
double utm_y =
meridionalarc * k0 + k0 * nu * slat * clat / 2 * p2 +
k0 * nu * slat * clat3 / 24 * (5 - tlat2 + 9 * ep2 * clat2 +
4 * ep4 * clat4) * p4;
Field *field = GModel::current()->getFields()->get(field_id);
if(!field) return MAX_LC;
return (*field)(utm_x, utm_y, 0);

Jean-François Remacle
committed
}
};
class LonLatField : public Field

Jean-François Remacle
committed
{
std::string get_description(){

Jean-François Remacle
committed
return "Evaluate Field[IField] in geographic coordinates (longitude,latitude). \n"
"F = Field[IField](arctan(y/x),arcsin(z/sqrt(x^2+y^2+z^2))";
options["IField"] = new FieldOptionInt(field_id, "Index of the field to evaluate.");
}
const char *get_name()
{
return "LonLat";
}
double operator() (double x, double y, double z)
{
Field *field = GModel::current()->getFields()->get(field_id);
if(!field) return MAX_LC;
return (*field)(atan2(y, x), asin(z / sqrt(x * x + y * y + z * z)), 0);
class BoxField : public Field

Jean-François Remacle
committed
{
double v_in, v_out, x_min, x_max, y_min, y_max, z_min, z_max;
std::string get_description(){

Jean-François Remacle
committed
return "The value of this field is VIn inside the box, VOut outside the box. \n"
"The box is given by Xmin<=x<=XMax && YMin<=y<=YMax && ZMin<=z<=ZMax";
BoxField()
{
v_in = v_out = x_min = x_max = y_min = y_max = z_min = z_max = 0;
options["VIn"] = new FieldOptionDouble(v_in, "Value inside the box");
options["VOut"] = new FieldOptionDouble(v_out, "Value outside the box");
options["XMin"] = new FieldOptionDouble(x_min, "Minimum X coordinate of the box");
options["XMax"] = new FieldOptionDouble(x_max, "Maximum X coordinate of the box");
options["YMin"] = new FieldOptionDouble(y_min, "Minimum Y coordinate of the box");
options["YMax"] = new FieldOptionDouble(y_max, "Maximum Y coordinate of the box");
options["ZMin"] = new FieldOptionDouble(z_min, "Minimum Z coordinate of the box");
options["ZMax"] = new FieldOptionDouble(z_max, "Maximum Z coordinate of the box");
}
const char *get_name()
{
return "Box";
}
double operator() (double x, double y, double z)
{
return (x <= x_max && x >= x_min && y <= y_max && y >= y_min && z <= z_max
&& z >= z_min) ? v_in : v_out;
}
class ThresholdField : public Field

Jean-François Remacle
committed
{
const char *get_name()
{
return "Threshold";
}
std::string get_description(){
return "F = LCMin if Field[IField] <= DistMin\n"
"F = LCMax if Field[IField] >= DistMax\n"

Jean-François Remacle
committed
"F = Interpolation between LcMin and LcMax if DistMin<Field[IField]<DistMax";
ThresholdField()
{
iField = 0;
dmin = 1;
dmax = 10;
lcmin = 0.1;
lcmax = 1;
options["IField"] = new FieldOptionInt(iField, "Index of the field to evaluate");
options["DistMin"] = new FieldOptionDouble(dmin, "Distance from entity up to which "
"element size will be LcMin");
options["DistMax"] = new FieldOptionDouble(dmax, "Distance from entity after which"
"element size will be LcMax");
options["LcMin"] = new FieldOptionDouble(lcmin, "Element size inside DistMin");
options["LcMax"] = new FieldOptionDouble(lcmax, "Element size outside DistMax");
options["Sigmoid"] = new FieldOptionBool(sigmoid, "True to interpolate between LcMin "
"and LcMax using a sigmoid, false to "
"interpolate linearly");
options["StopAtDistMax"] = new FieldOptionBool(stopAtDistMax, "True to not impose "
"element size outside DistMax (i.e. F = a very big value if Field[IField]>DistMax)");
}
double operator() (double x, double y, double z)
{
Field *field = GModel::current()->getFields()->get(iField);
double r = ((*field) (x, y, z) - dmin) / (dmax - dmin);
r = std::max(std::min(r, 1.), 0.);
if(stopAtDistMax && r >= 1.){
lc = MAX_LC;
}
else if(sigmoid){
double s = exp(12. * r - 6.) / (1. + exp(12. * r - 6.));
lc = lcmin * (1. - s) + lcmax * s;
}
else{ // linear
lc = lcmin * (1 - r) + lcmax * r;
}

Jean-François Remacle
committed
{
const char *get_name()
{
return "Gradient";
}
std::string get_description(){

Jean-François Remacle
committed
return "Compute the finite difference gradient of Field[IField].\n "
"F = (Field[IField](X + Delta/2) - Field[IField](X - Delta/2))/Delta";
GradientField() : iField(0), kind(3), delta(CTX.lc / 1e4)
iField = 1;
kind = 0;
delta = 0.;
options["IField"] = new FieldOptionInt(iField, "Field index");
options["Kind"] = new FieldOptionInt(kind, "Component of the gradient to evaluate : 0 for X, 1 for Y, 2 for Z, 3 for the norm");
options["Delta"] = new FieldOptionDouble(delta, "Finite difference step");
}
double operator() (double x, double y, double z)
{
Field *field = GModel::current()->getFields()->get(iField);
double gx, gy, gz;
switch (kind) {
case 0: /* x */
return ((*field) (x + delta / 2, y, z) -
(*field) (x - delta / 2, y, z)) / delta;
case 1: /* y */
return ((*field) (x, y + delta / 2, z) -
(*field) (x, y - delta / 2, z)) / delta;
case 2: /* z */
return ((*field) (x, y, z + delta / 2) -
(*field) (x, y, z - delta / 2)) / delta;
case 3: /* norm */
gx =
((*field) (x + delta / 2, y, z) -
(*field) (x - delta / 2, y, z)) / delta;
gy =
((*field) (x, y + delta / 2, z) -
(*field) (x, y - delta / 2, z)) / delta;
gz =
((*field) (x, y, z + delta / 2) -
(*field) (x, y, z - delta / 2)) / delta;
return sqrt(gx * gx + gy * gy + gz * gz);
default:
Msg::Error("Field %i : Unknown kind (%i) of gradient.", this->id,
const char *get_name()
{
return "Curvature";
}
std::string get_description(){

Jean-François Remacle
committed
return "Compute the curvature of Field[IField]. \n"
"F = divergence( || grad( Field[IField] ) || )";
}
CurvatureField() : iField(0), delta(CTX.lc / 1e4)
iField = 1;
delta = 0.;
options["IField"] = new FieldOptionInt(iField, "Field index");
options["Delta"] = new FieldOptionDouble(delta, "Step of the finite differences");
void grad_norm(Field &f,double x,double y,double z, double *g)
{
g[0] = f(x + delta / 2, y, z) - f(x - delta / 2, y, z);
g[1] = f(x, y + delta / 2, z) - f(x, y - delta / 2, z);
g[2] = f(x, y, z + delta / 2) - f(x, y, z - delta / 2);
double n=sqrt(g[0] * g[0] + g[1] * g[1] + g[2] * g[2]);
g[0] /= n;
g[1] /= n;
g[2] /= n;
}
double operator() (double x, double y, double z)
{
Field *field = GModel::current()->getFields()->get(iField);
grad_norm(*field, x + delta / 2, y, z, grad[0]);
grad_norm(*field, x - delta / 2, y, z, grad[1]);
grad_norm(*field, x, y + delta / 2, z, grad[2]);
grad_norm(*field, x, y - delta / 2, z, grad[3]);
grad_norm(*field, x, y, z + delta / 2, grad[4]);
grad_norm(*field, x, y, z - delta / 2, grad[5]);
return (grad[0][0] - grad[1][0] + grad[2][1] -
grad[3][1] + grad[4][2] - grad[5][2]) / delta;
#if defined(HAVE_GSL)
#include <gsl/gsl_math.h>
#include <gsl/gsl_eigen.h>
class MaxEigenHessianField : public Field
{
int iField;
double delta;
gsl_eigen_symm_workspace *gslwork;
gsl_matrix *gslmat;
gsl_vector *eigenvalues;
const char *get_name()
{
return "MaxEigenHessian";
}
std::string get_description(){

Jean-François Remacle
committed
return "Compute the maximum eigen value of the Hessian matrix of Field[IField]. "
"Gradients are evaluated by finite differences, "
"eigenvalues are computed using the GSL library.";
"F = max ( eigenvalues ( grad ( grad ( Field[IField] ) ) ) ) ";
MaxEigenHessianField() : iField(0), delta(CTX.lc / 1e4)
iField = 1;
delta = 0.;
options["IField"] = new FieldOptionInt(iField, "Field index");
options["Delta"] = new FieldOptionDouble(delta, "Step used for the finite differences");
gslwork = gsl_eigen_symm_alloc(3);
eigenvalues = gsl_vector_alloc(3);
gslmat = gsl_matrix_alloc(3, 3);
gsl_eigen_symm_free(gslwork);
gsl_vector_free(eigenvalues);
gsl_matrix_free(gslmat);
}
double operator() (double x, double y, double z)
{
Field *field = GModel::current()->getFields()->get(iField);
gsl_matrix_set(gslmat,1,0,
(*field) (x + delta/2 , y+delta/2, z)
+ (*field) (x - delta/2 , y-delta/2, z)
- (*field) (x - delta/2 , y+delta/2, z)
- (*field) (x + delta/2 , y-delta/2, z));
gsl_matrix_set(gslmat,2,0,
(*field) (x + delta/2 , y, z+delta/2)
+ (*field) (x - delta/2 , y, z-delta/2)
- (*field) (x - delta/2 , y, z+delta/2)
- (*field) (x + delta/2 , y, z-delta/2));
gsl_matrix_set(gslmat,2,1,
(*field) (x, y + delta/2 , z+delta/2)
+ (*field) (x, y - delta/2 , z-delta/2)
- (*field) (x, y - delta/2 , z+delta/2)
- (*field) (x, y + delta/2 , z-delta/2));
double f=(*field)(x,y,z);
gsl_matrix_set(gslmat,0,0,
(*field) (x + delta , y, z)+ (*field) (x - delta , y, z) -2*f);
gsl_matrix_set(gslmat,1,1,
(*field) (x, y + delta, z)+ (*field) (x , y - delta, z) -2* f);
gsl_matrix_set(gslmat,2,2,
(*field) (x, y ,z + delta)+ (*field) (x , y, z - delta)-2*f);
gsl_eigen_symm(gslmat,eigenvalues,gslwork);
return std::max(fabs(gsl_vector_get(eigenvalues, 0)),
std::max(fabs(gsl_vector_get(eigenvalues, 0)),
fabs(gsl_vector_get(eigenvalues, 1)))
) / (delta * delta);
class LaplacianField : public Field
{
int iField;
double delta;
const char *get_name()
{
return "Laplacian";
}
std::string get_description(){
return "Compute finite difference the Laplacian of Field[IField].\n"

Jean-François Remacle
committed
"F = divergence(gradient(Field[IField])) \n"
"F = G(x+d,y,z)+G(x-d,y,z)+G(x,y+d,z)+G(x,y-d,z)+ "
"+G(x,y,z+d)+G(x,y,z-d)-6*G(x,y,z) "
"where G=Field[IField] and d=delta\n";
}
LaplacianField() : iField(0), delta(CTX.lc / 1e4)
delta = 0.1;
options["IField"] = new FieldOptionInt(iField, "Field index");
options["Delta"] = new FieldOptionDouble(delta, "Finite difference step");
}
double operator() (double x, double y, double z)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field) return MAX_LC;
return ((*field) (x + delta , y, z)+ (*field) (x - delta , y, z)
+(*field) (x, y + delta , z)+ (*field) (x, y - delta , z)
+(*field) (x, y, z + delta )+ (*field) (x, y, z - delta )
-6* (*field) (x , y, z)) / (delta*delta);
class MeanField : public Field
{
int iField;
double delta;
const char *get_name()
{
return "Mean";
}
std::string get_description(){
return "Very simple smoother.\n"

Jean-François Remacle
committed
"F = (G(x+delta,y,z)+G(x-delta,y,z) "
"+G(x,y+delta,z)+G(x,y-delta,z) "
"+G(x,y,z+delta)+G(x,y,z-delta) "
"+G(x,y,z))/7 "
"where G=Field[IField]";
MeanField() : iField(0), delta(CTX.lc / 1e4)
options["IField"] = new FieldOptionInt(iField, "Field index");
options["Delta"] = new FieldOptionDouble(delta, "Distance used to compute the mean value");
}
double operator() (double x, double y, double z)
{
Field *field = GModel::current()->getFields()->get(iField);
return ((*field) (x + delta , y, z) + (*field) (x - delta, y, z)
+ (*field) (x, y + delta, z) + (*field) (x, y - delta, z)
+ (*field) (x, y, z + delta) + (*field) (x, y, z - delta)
+ (*field) (x, y, z)) / 7;

Jean-François Remacle
committed
class MathEvalExpression
{
char **names;
double *values;
void *eval;
int *evaluators_id;
std::string function;
char *c_str_function;
double evaluate(double x, double y, double z)
{
if(error_status)
return MAX_LC;
switch (evaluators_id[i]) {
case -1:
values[i] = x;
break;
Field *f = GModel::current()->getFields()->get(evaluators_id[i]);
values[i] = f ? (*f) (x, y, z) : MAX_LC;
}
}
}
return evaluator_evaluate(eval, nvalues, names, values);
}
MathEvalExpression()
{
eval = 0;
values = 0;
c_str_function = 0;
evaluators_id = 0;
}
bool set_function(const std::string & f)
{
free_members();
error_status = false;
c_str_function = strdup(f.c_str());
eval = evaluator_create(c_str_function);
if(!eval) {
error_status = true;
return false;
}
evaluator_get_variables(eval, &names, &nvalues);
values = new double[nvalues];
evaluators_id = new int[nvalues];
for(int i = 0; i < nvalues; i++) {
int id;
if(!strcmp("x", names[i]))
evaluators_id[i] = -1;
else if(!strcmp("y", names[i]))
evaluators_id[i] = -2;
else if(!strcmp("z", names[i]))
evaluators_id[i] = -3;
else if(sscanf(names[i], "F%i", &id) == 1)
evaluators_id[i] = id;
else {
Msg::Error("Unknown matheval argument \"%s\"\n", names[i]);
error_status = true;
return false;
}
}
return true;
}
void free_members()
{
if(c_str_function)
free(c_str_function);
if(eval)
evaluator_destroy(eval);
if(values)
delete[]values;
if(evaluators_id)
delete evaluators_id;
}
class MathEvalField : public Field

Jean-François Remacle
committed
{
options["F"] = new FieldOptionString(f, "Mathematical function to evaluate.", &update_needed);

Jean-François Remacle
committed
f="F2 + Sin(z)";
}
double operator() (double x, double y, double z)
{
if(update_needed) {
if(!expr.set_function(f))
Msg::Error("Field %i : Invalid matheval expression \"%s\"",
this->id, f.c_str());
update_needed = false;
}
return expr.evaluate(x, y, z);
}
const char *get_name()
{
return "MathEval";
}
std::string get_description(){

Jean-François Remacle
committed
return "Evaluate a mathematical expression. "
"The expression can contains x, y, z for spatial coordinates, F0, F1, ... for field values, "
"and mathematical functions. "
"This evaluator is based on a modified version of the GNU libmatheval library. \n"
"Example : F2 + Sin(z)";

Jean-François Remacle
committed
{
MathEvalExpression expr[3];
std::string f[3];
int ifield;
ifield = 1;
options["IField"] = new FieldOptionInt(ifield, "Field index");
options["FX"] = new FieldOptionString(f[0], "X component of parametric function",
&update_needed);
options["FY"] = new FieldOptionString(f[1], "Y component of parametric function",
&update_needed);
options["FZ"] = new FieldOptionString(f[2], "Z component of parametric function",
&update_needed);
std::string get_description(){

Jean-François Remacle
committed
return "Evaluate Field IField in parametric coordinate. "
"See MathEval Field help to get a description of valid FX, FY and FZ expressions.\n"
"F = Field[IField](FX,FY,FZ) ";
double operator() (double x, double y, double z)
{
if(update_needed) {
for(int i = 0; i < 3; i++) {
if(!expr[i].set_function(f[i]))
Msg::Error("Field %i : Invalid matheval expression \"%s\"",
this->id, f[i].c_str());
Field *field = GModel::current()->getFields()->get(ifield);
if(!field) return MAX_LC;
return (*field)(expr[0].evaluate(x, y, z),
expr[1].evaluate(x, y, z),
expr[2].evaluate(x, y, z));
}
const char *get_name()
{
return "Param";
}

Christophe Geuzaine
committed
#if !defined(HAVE_NO_POST)
class PostViewField : public Field

Jean-François Remacle
committed
{
public:
int view_index;
double operator() (double x, double y, double z)
{

Jean-François Remacle
committed
// FIXME: should test unique view num instead, but that would be slower
if(view_index < 0 || view_index >= (int)PView::list.size())
return MAX_LC;
if(update_needed){
if(octree) delete octree;
octree = new OctreePost(PView::list[view_index]);
update_needed = false;
}
double l = 0.;

Jean-François Remacle
committed
if(!octree->searchScalar(x, y, z, &l, 0)) {
// try really hard to find an element around the point

Jean-François Remacle
committed
/*
double fact[4] = {1.e-6, 1.e-5, 1.e-4, 1.e-3};
for(int i = 0; i < 4; i++){
double eps = CTX.lc * fact[i];
printf("approx search witg eps=%g\n", eps);
if(octree->searchScalar(x + eps, y, z, &l, 0)) break;
if(octree->searchScalar(x - eps, y, z, &l, 0)) break;
if(octree->searchScalar(x, y + eps, z, &l, 0)) break;
if(octree->searchScalar(x, y - eps, z, &l, 0)) break;
if(octree->searchScalar(x, y, z + eps, &l, 0)) break;
if(octree->searchScalar(x, y, z - eps, &l, 0)) break;
if(octree->searchScalar(x + eps, y - eps, z - eps, &l, 0)) break;
if(octree->searchScalar(x + eps, y + eps, z - eps, &l, 0)) break;
if(octree->searchScalar(x - eps, y - eps, z - eps, &l, 0)) break;
if(octree->searchScalar(x - eps, y + eps, z - eps, &l, 0)) break;
if(octree->searchScalar(x + eps, y - eps, z + eps, &l, 0)) break;
if(octree->searchScalar(x + eps, y + eps, z + eps, &l, 0)) break;
if(octree->searchScalar(x - eps, y - eps, z + eps, &l, 0)) break;
if(octree->searchScalar(x - eps, y + eps, z + eps, &l, 0)) break;
}
*/

Jean-François Remacle
committed
}
return l;
}
const char *get_name()
{
return "PostView";
}
std::string get_description(){

Jean-François Remacle
committed
return "Evaluate the post processing view IView.";
PostViewField()
{
octree = 0;
view_index = 0;
options["IView"] = new FieldOptionInt(view_index, "Post-processing view index",
&update_needed);

Christophe Geuzaine
committed
#endif
class MinField : public Field

Jean-François Remacle
committed
{
std::list<int> idlist;
public:
options["FieldsList"] = new FieldOptionList(idlist, "Field indices",
&update_needed);