Newer
Older
// Gmsh - Copyright (C) 1997-2009 C. Geuzaine, J.-F. Remacle
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
//
// Contributor(s):
// Jonathan Lambrechts
//
#include <fstream>
#include <string>
#include "GmshConfig.h"
#include "Context.h"
#include "Field.h"
#include "GeoInterpolation.h"
#include "GModel.h"

Christophe Geuzaine
committed
#include "GmshMessage.h"
#include "Numeric.h"

Christophe Geuzaine
committed
#include "OctreePost.h"
#include "PViewDataList.h"

Christophe Geuzaine
committed
#endif
class FieldOptionDouble : public FieldOption

Jean-François Remacle
committed
{
FieldOptionType getType(){ return FIELD_OPTION_DOUBLE; }
FieldOptionDouble(double &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val){}
double numericalValue() const { return val; }
void numericalValue(double v){ modified(); val = v; }
void getTextRepresentation(std::string &v_str)
{
std::ostringstream sstream;
sstream.precision(16);
sstream << val;
v_str = sstream.str();
}
class FieldOptionInt : public FieldOption

Jean-François Remacle
committed
{
FieldOptionType getType(){ return FIELD_OPTION_INT; }
FieldOptionInt(int &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val){}
double numericalValue() const { return val; }
void numericalValue(double v){ modified(); val = (int)v; }
void getTextRepresentation(std::string & v_str)
{
std::ostringstream sstream;
sstream << val;
v_str = sstream.str();
}
class FieldOptionList : public FieldOption

Jean-François Remacle
committed
{
FieldOptionType getType(){ return FIELD_OPTION_LIST; }
FieldOptionList(std::list<int> &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val) {}
std::list<int> &list(){ modified(); return val; }
const std::list<int>& list() const { return val; }
void getTextRepresentation(std::string & v_str)
for(std::list<int>::iterator it = val.begin(); it != val.end(); it++) {
if(it != val.begin())
sstream << ", ";
sstream << *it;
}
sstream << "}";
v_str = sstream.str();
}
class FieldOptionString : public FieldOption

Jean-François Remacle
committed
{

Jean-François Remacle
committed
std::string & val;
virtual FieldOptionType getType(){ return FIELD_OPTION_STRING; }
FieldOptionString(std::string &_val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val) {}
std::string &string() { modified(); return val; }
const std::string &string() const { return val; }
void getTextRepresentation(std::string &v_str)
{
std::ostringstream sstream;
sstream << "\"" << val << "\"";
v_str = sstream.str();
}
class FieldOptionPath : public FieldOptionString
virtual FieldOptionType getType(){ return FIELD_OPTION_PATH; }
FieldOptionPath(std::string &_val, std::string _help, bool *_status=0)
: FieldOptionString(_val, _help, _status) {}
class FieldOptionBool : public FieldOption

Jean-François Remacle
committed
{

Jean-François Remacle
committed
bool & val;
FieldOptionType getType(){ return FIELD_OPTION_BOOL; }
FieldOptionBool(bool & _val, std::string _help, bool *_status=0)
: FieldOption(_help, _status), val(_val) {}
double numericalValue() const { return val; }
void numericalValue(double v){ modified(); val = v; }
void getTextRepresentation(std::string & v_str)
{
std::ostringstream sstream;
sstream << val;
v_str = sstream.str();
}
for(std::map<int, Field *>::iterator it = begin(); it != end(); it++) {
Field *FieldManager::newField(int id, std::string type_name)
Msg::Error("Field id %i is already defined.", id);
}
if(map_type_name.find(type_name) == map_type_name.end()) {
Msg::Error("Unknown field type \"%s\".", type_name.c_str());
}
Field *f = (*map_type_name[type_name]) ();
if(!f)
int FieldManager::newId()
{
int i = 0;
iterator it = begin();
while(1) {
i++;
while(it != end() && it->first < i)
it++;
if(it == end() || it->first != i)
break;
}
return std::max(i, 1);
int FieldManager::maxId()
{
if(!empty())
return rbegin()->first;
else
return 0;
void FieldManager::deleteField(int id)
Msg::Error("Cannot delete field id %i, it does not exist.", id);
class StructuredField : public Field

Jean-François Remacle
committed
{
double o[3], d[3];
int n[3];
double *data;

Jean-François Remacle
committed
bool text_format;
public:
StructuredField()

Christophe Geuzaine
committed
options["FileName"] = new FieldOptionPath
(file_name, "Name of the input file", &update_needed);

Jean-François Remacle
committed
text_format = false;

Christophe Geuzaine
committed
options["TextFormat"] = new FieldOptionBool
(text_format, "True for ASCII input files, false for binary files (4 bite\n"
"signed integers for n, double precision floating points for v, D and O)",
&update_needed);
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Linearly interpolate between data provided on a 3D rectangular\n"
"structured grid.\n\n"
"The format of the input file is:\n\n"
" Ox Oy Oz \n"
" Dx Dy Dz \n"
" nx ny nz \n"
" v(0,0,0) v(0,0,1) v(0,0,2) ... \n"
" v(0,1,0) v(0,1,1) v(0,1,2) ... \n"
" v(0,2,0) v(0,2,1) v(0,2,2) ... \n"
" ... ... ... \n"
" v(1,0,0) ... ... \n\n"
"where O are the coordinates of the first node, D are the distances\n"
"between nodes in each direction, n are the numbers of nodes in each\n"
"direction, and v are the values on each node.";

Christophe Geuzaine
committed
virtual ~StructuredField()
{
if(data) delete[]data;

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
if(update_needed) {
error_status = false;
try {
std::ifstream input;
if(text_format)
input.open(file_name.c_str());
else
input.open(file_name.c_str(),std::ios::binary);
if(!input.is_open())
throw(1);
input.
exceptions(std::ifstream::eofbit | std::ifstream::failbit | std::
ifstream::badbit);

Jean-François Remacle
committed
if(!text_format) {
input.read((char *)o, 3 * sizeof(double));
input.read((char *)d, 3 * sizeof(double));
input.read((char *)n, 3 * sizeof(int));
int nt = n[0] * n[1] * n[2];
if(data)
delete[]data;
data = new double[nt];
input.read((char *)data, nt * sizeof(double));
}
else {
input >> o[0] >> o[1] >> o[2] >> d[0] >> d[1] >> d[2] >> n[0] >>
n[1] >> n[2];
int nt = n[0] * n[1] * n[2];
if(data)
delete[]data;
data = new double[nt];
for(int i = 0; i < nt; i++)
input >> data[i];
}
input.close();
}
catch(...) {
error_status = true;

Jean-François Remacle
committed
Msg::Error("Field %i : error reading file %s", this->id, file_name.c_str());
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
}
update_needed = false;
}
if(error_status)
return MAX_LC;
//tri-linear
int id[2][3];
double xi[3];
double xyz[3] = { x, y, z };
for(int i = 0; i < 3; i++) {
id[0][i] = (int)floor((xyz[i] - o[i]) / d[i]);
id[1][i] = id[0][i] + 1;
id[0][i] = std::max(std::min(id[0][i], n[i] - 1), 0);
id[1][i] = std::max(std::min(id[1][i], n[i] - 1), 0);
xi[i] = (xyz[i] - (o[i] + id[0][i] * d[i])) / d[i];
xi[i] = std::max(std::min(xi[i], 1.), 0.);
}
double v = 0;
for(int i = 0; i < 2; i++)
for(int j = 0; j < 2; j++)
for(int k = 0; k < 2; k++) {
v += data[id[i][0] * n[1] * n[2] + id[j][1] * n[2] + id[k][2]]
* (i * xi[0] + (1 - i) * (1 - xi[0]))
* (j * xi[1] + (1 - j) * (1 - xi[1]))
* (k * xi[2] + (1 - k) * (1 - xi[2]));
}
return v;
}
class UTMField : public Field

Jean-François Remacle
committed
{
int field_id, zone;
double a, b, n, n2, n3, n4, n5, e, e2, e1, e12, e13, e14, J1, J2, J3, J4,
Ap, Bp, Cp, Dp, Ep, e4, e6, ep, ep2, ep4, k0, mu_fact;
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Evaluate Field[IField] in Universal Transverse Mercator coordinates.\n"
"The formulas for the coordinates transformation are taken from:\n\n"
" http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM";

Jean-François Remacle
committed
UTMField()
{
field_id = 1;
zone = 0;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(field_id, "Index of the field to evaluate");
options["Zone"] = new FieldOptionInt
(zone, "Zone of the UTM projection");
a = 6378137; // Equatorial Radius
b = 6356752.3142; // Rayon Polar Radius
// see http://www.uwgb.edu/dutchs/UsefulData/UTMFormulas.HTM

Jean-François Remacle
committed
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
n = (a - b) / (a + b);
n2 = n * n;
n3 = n * n * n;
n4 = n * n * n * n;
n5 = n * n * n * n * n;
e = sqrt(1 - b * b / a / a);
e2 = e * e;
e1 = (1 - sqrt(1 - e2)) / (1 + sqrt(1 - e2));
e12 = e1 * e1;
e13 = e1 * e1 * e1;
e14 = e1 * e1 * e1 * e1;
J1 = (3 * e1 / 2 - 27 * e13 / 32);
J2 = (21 * e12 / 16 - 55 * e14 / 32);
J3 = 151 * e13 / 96;
J4 = 1097 * e14 / 512;
Ap = a * (1 - n + (5. / 4.) * (n2 - n3) + (81. / 64.) * (n4 - n5));
Bp = -3 * a * n / 2 * (1 - n + (7. / 8.) * (n2 - n3) +
(55. / 64.) * (n4 - n5));
Cp = 14 * a * n2 / 16 * (1 - n + (3. / 4) * (n2 - n3));
Dp = -35 * a * n3 / 48 * (1 - n + 11. / 16. * (n2 - n3));
Ep = +315 * a * n4 / 51 * (1 - n);
e4 = e2 * e2;
e6 = e2 * e2 * e2;
ep = e * a / b;
ep2 = ep * ep;
ep4 = ep2 * ep2;
k0 = 0.9996;
mu_fact = 1 / (k0 * a * (1 - e2 / 4 - 3 * e4 / 64 - 5 * e6 / 256));
}

Jean-François Remacle
committed
{
return "UTM";
}

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)

Jean-François Remacle
committed
{
double r = sqrt(x * x + y * y + z * z);
double lon = atan2(y, x);
double lat = asin(z / r);
double meridionalarc = Ap * lat + Bp * sin(2 * lat)
+ Cp * sin(4 * lat) + Dp * sin(6 * lat) + Ep;
double slat = sin(lat);
double clat = cos(lat);
double slat2 = slat * slat;
double clat2 = clat * clat;
double clat3 = clat2 * clat;
double clat4 = clat3 * clat;
double tlat2 = slat2 / clat2;
double nu = a / sqrt(1 - e * e * slat2);
double p = lon - ((zone - 0.5) / 30 - 1) * M_PI;
double p2 = p * p;
double p3 = p * p2;
double p4 = p2 * p2;
double utm_x =
k0 * nu * clat * p + (k0 * nu * clat3 / 6) * (1 - tlat2 +
ep2 * clat2) * p3 + 5e5;
double utm_y =
meridionalarc * k0 + k0 * nu * slat * clat / 2 * p2 +
k0 * nu * slat * clat3 / 24 * (5 - tlat2 + 9 * ep2 * clat2 +
4 * ep4 * clat4) * p4;
Field *field = GModel::current()->getFields()->get(field_id);
if(!field) return MAX_LC;
return (*field)(utm_x, utm_y, 0);

Jean-François Remacle
committed
}
};
class LonLatField : public Field

Jean-François Remacle
committed
{
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Evaluate Field[IField] in geographic coordinates (longitude, latitude):\n\n"
" F = Field[IField](atan(y/x), asin(z/sqrt(x^2+y^2+z^2))";

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(field_id, "Index of the field to evaluate.");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
Field *field = GModel::current()->getFields()->get(field_id);
if(!field) return MAX_LC;
return (*field)(atan2(y, x), asin(z / sqrt(x * x + y * y + z * z)), 0);
class BoxField : public Field

Jean-François Remacle
committed
{
double v_in, v_out, x_min, x_max, y_min, y_max, z_min, z_max;
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "The value of this field is VIn inside the box, VOut outside the box.\n"
"The box is given by\n\n"
" Xmin <= x <= XMax &&\n"
" YMin <= y <= YMax &&\n"
" ZMin <= z <= ZMax";
BoxField()
{
v_in = v_out = x_min = x_max = y_min = y_max = z_min = z_max = 0;

Christophe Geuzaine
committed
options["VIn"] = new FieldOptionDouble
(v_in, "Value inside the box");
options["VOut"] = new FieldOptionDouble
(v_out, "Value outside the box");
options["XMin"] = new FieldOptionDouble
(x_min, "Minimum X coordinate of the box");
options["XMax"] = new FieldOptionDouble
(x_max, "Maximum X coordinate of the box");
options["YMin"] = new FieldOptionDouble
(y_min, "Minimum Y coordinate of the box");
options["YMax"] = new FieldOptionDouble
(y_max, "Maximum Y coordinate of the box");
options["ZMin"] = new FieldOptionDouble
(z_min, "Minimum Z coordinate of the box");
options["ZMax"] = new FieldOptionDouble

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
return (x <= x_max && x >= x_min && y <= y_max && y >= y_min && z <= z_max
&& z >= z_min) ? v_in : v_out;
}
class CylinderField : public Field
{
double v_in, v_out;
double xc,yc,zc;
double xa,ya,za;
double R;
public:
std::string getDescription()
{
return "The value of this field is VIn inside a frustrated cylinder, VOut outside.\n"
"The cylinder is given by\n\n"
" ||dX||^2 < R^2 &&\n"
" (X-X0).A < ||A||^2\n"
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
" dX = (X - X0) - ((X - X0).A)/(||A||^2) . A";
}
CylinderField()
{
v_in = v_out = xc = yc = zc = xa = ya = R = 0;
za = 1.;
options["VIn"] = new FieldOptionDouble
(v_in, "Value inside the cylinder");
options["VOut"] = new FieldOptionDouble
(v_out, "Value outside the cylinder");
options["XCenter"] = new FieldOptionDouble
(xc, "X coordinate of the cylinder center");
options["YCenter"] = new FieldOptionDouble
(yc, "Y coordinate of the cylinder center");
options["ZCenter"] = new FieldOptionDouble
(zc, "Z coordinate of the cylinder center");
options["XAxis"] = new FieldOptionDouble
(xa, "X component of the cylinder axis");
options["YAxis"] = new FieldOptionDouble
(ya, "Y component of the cylinder axis");
options["ZAxis"] = new FieldOptionDouble
(za, "Z component of the cylinder axis");
options["Radius"] = new FieldOptionDouble
(R,"Radius");
}
const char *getName()
{
return "Cylinder";
}
double operator() (double x, double y, double z, GEntity *ge=0)
{
double dx = x-xc;
double dy = y-yc;
double dz = z-zc;
double adx = (xa * dx + ya * dy + za * dz)/(xa*xa + ya*ya + za*za);
dx -= adx * xa;
dy -= adx * ya;
dz -= adx * za;
return ((dx*dx + dy*dy + dz*dz < R*R) && fabs(adx) < 1) ? v_in : v_out;
class ThresholdField : public Field

Jean-François Remacle
committed
{

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "F = LCMin if Field[IField] <= DistMin,\n"
"F = LCMax if Field[IField] >= DistMax,\n"
"F = interpolation between LcMin and LcMax if DistMin < Field[IField] < DistMax";
ThresholdField()
{
iField = 0;
dmin = 1;
dmax = 10;
lcmin = 0.1;
lcmax = 1;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Index of the field to evaluate");
options["DistMin"] = new FieldOptionDouble
(dmin, "Distance from entity up to which element size will be LcMin");
options["DistMax"] = new FieldOptionDouble
(dmax, "Distance from entity after which element size will be LcMax");
options["LcMin"] = new FieldOptionDouble
(lcmin, "Element size inside DistMin");
options["LcMax"] = new FieldOptionDouble
(lcmax, "Element size outside DistMax");
options["Sigmoid"] = new FieldOptionBool
(sigmoid, "True to interpolate between LcMin and LcMax using a sigmoid,\n"
"false to interpolate linearly");
options["StopAtDistMax"] = new FieldOptionBool
(stopAtDistMax, "True to not impose element size outside DistMax (i.e.,\n"
"F = a very big value if Field[IField] > DistMax)");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
double r = ((*field) (x, y, z) - dmin) / (dmax - dmin);
r = std::max(std::min(r, 1.), 0.);
if(stopAtDistMax && r >= 1.){
lc = MAX_LC;
}
else if(sigmoid){
double s = exp(12. * r - 6.) / (1. + exp(12. * r - 6.));
lc = lcmin * (1. - s) + lcmax * s;
}
else{ // linear
lc = lcmin * (1 - r) + lcmax * r;
}
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
class BoundaryLayerField : public ThresholdField {
public:
BoundaryLayerField()
{ }
virtual bool isotropic () const {return false;}
virtual const char *getName()
{
return "BoundaryLayer";
}
virtual std::string getDescription()
{
return "F = LCMin if Field[IField] <= DistMin,\n"
"F = LCMax if Field[IField] >= DistMax,\n"
"F = interpolation between LcMin and LcMax if DistMin < Field[IField] < DistMax";
}
virtual void operator() (double x, double y, double z, SMetric3 &metr, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field) {
metr(0,0) = 1/(MAX_LC*MAX_LC);
metr(1,1) = 1/(MAX_LC*MAX_LC);
metr(2,2) = 1/(MAX_LC*MAX_LC);
metr(0,1) = metr(0,2) = metr(1,2) = 0;
return;
}
double dist = (*field) (x, y, z);
double r = (dist - dmin) / (dmax - dmin);
r = std::max(std::min(r, 1.), 0.);
double lc;
if(stopAtDistMax && r >= 1.){
lc = MAX_LC;
}
else if(sigmoid){
double s = exp(12. * r - 6.) / (1. + exp(12. * r - 6.));
lc = lcmin * (1. - s) + lcmax * s;
}
else{ // linear
lc = lcmin * (1 - r) + lcmax * r;
}
double delta = std::min(CTX::instance()->lc / 1e4, dist);
double gx =
((*field) (x + delta / 2, y, z) -
(*field) (x - delta / 2, y, z)) / delta;
double gy =
((*field) (x, y + delta / 2, z) -
(*field) (x, y - delta / 2, z)) / delta;
double gz =
((*field) (x, y, z + delta / 2) -
(*field) (x, y, z - delta / 2)) / delta;
SVector3 g(gx,gy,gz);
g.normalize();
SVector3 t1,t2;
if (fabs(gx) < fabs(gy) && fabs(gx) < fabs(gz))
t1 = SVector3(1,0,0);
else if (fabs(gy) < fabs(gx) && fabs(gy) < fabs(gz))
t1 = SVector3(0,1,0);
else
t1 = SVector3(0,0,1);
t2 = crossprod(g,t1);
t2.normalize();
t1 = crossprod(t2,g);
metr = SMetric3(1./(lc*lc),
1/(lcmax*lcmax),
1/(lcmax*lcmax),
g,t1,t2);

Jean-François Remacle
committed
{
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Compute the finite difference gradient of Field[IField]:\n\n"
" F = (Field[IField](X + Delta/2) -\n"
" Field[IField](X - Delta/2)) / Delta";
GradientField() : iField(0), kind(3), delta(CTX::instance()->lc / 1e4)
iField = 1;
kind = 0;
delta = 0.;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Kind"] = new FieldOptionInt
(kind, "Component of the gradient to evaluate: 0 for X, 1 for Y, 2 for Z,\n"
"3 for the norm");
options["Delta"] = new FieldOptionDouble
(delta, "Finite difference step");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
double gx, gy, gz;
switch (kind) {
case 0: /* x */
return ((*field) (x + delta / 2, y, z) -
(*field) (x - delta / 2, y, z)) / delta;
case 1: /* y */
return ((*field) (x, y + delta / 2, z) -
(*field) (x, y - delta / 2, z)) / delta;
case 2: /* z */
return ((*field) (x, y, z + delta / 2) -
(*field) (x, y, z - delta / 2)) / delta;
case 3: /* norm */
gx =
((*field) (x + delta / 2, y, z) -
(*field) (x - delta / 2, y, z)) / delta;
gy =
((*field) (x, y + delta / 2, z) -
(*field) (x, y - delta / 2, z)) / delta;
gz =
((*field) (x, y, z + delta / 2) -
(*field) (x, y, z - delta / 2)) / delta;
return sqrt(gx * gx + gy * gy + gz * gz);
default:
Msg::Error("Field %i : Unknown kind (%i) of gradient.", this->id,
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Compute the curvature of Field[IField]:\n\n"
" F = div(norm(grad(Field[IField])))";
CurvatureField() : iField(0), delta(CTX::instance()->lc / 1e4)

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Step of the finite differences");

Christophe Geuzaine
committed
void grad_norm(Field &f, double x, double y, double z, double *g)
g[0] = f(x + delta / 2, y, z) - f(x - delta / 2, y, z);
g[1] = f(x, y + delta / 2, z) - f(x, y - delta / 2, z);
g[2] = f(x, y, z + delta / 2) - f(x, y, z - delta / 2);
double n=sqrt(g[0] * g[0] + g[1] * g[1] + g[2] * g[2]);
g[0] /= n;
g[1] /= n;
g[2] /= n;

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
grad_norm(*field, x + delta / 2, y, z, grad[0]);
grad_norm(*field, x - delta / 2, y, z, grad[1]);
grad_norm(*field, x, y + delta / 2, z, grad[2]);
grad_norm(*field, x, y - delta / 2, z, grad[3]);
grad_norm(*field, x, y, z + delta / 2, grad[4]);
grad_norm(*field, x, y, z - delta / 2, grad[5]);
return (grad[0][0] - grad[1][0] + grad[2][1] -
grad[3][1] + grad[4][2] - grad[5][2]) / delta;
class MaxEigenHessianField : public Field
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Compute the maximum eigenvalue of the Hessian matrix of\n"
"Field[IField], with the gradients evaluated by finite differences:\n\n"
" F = max(eig(grad(grad(Field[IField]))))";
MaxEigenHessianField() : iField(0), delta(CTX::instance()->lc / 1e4)

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Step used for the finite differences");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
double mat[3][3], eig[3];
mat[1][0] = mat[0][1] = (*field) (x + delta / 2 , y + delta / 2, z)
+ (*field) (x - delta / 2 , y - delta / 2, z)
- (*field) (x - delta / 2 , y + delta / 2, z)
- (*field) (x + delta / 2 , y - delta / 2, z);
mat[2][0] = mat[0][2] = (*field) (x + delta/2 , y, z + delta / 2)
+ (*field) (x - delta / 2 , y, z - delta / 2)
- (*field) (x - delta / 2 , y, z + delta / 2)
- (*field) (x + delta / 2 , y, z - delta / 2);
mat[2][1] = mat[1][2] = (*field) (x, y + delta/2 , z + delta / 2)
+ (*field) (x, y - delta / 2 , z - delta / 2)
- (*field) (x, y - delta / 2 , z + delta / 2)
- (*field) (x, y + delta / 2 , z - delta / 2);
double f = (*field)(x, y, z);
mat[0][0] = (*field)(x + delta, y, z) + (*field)(x - delta, y, z) - 2 * f;
mat[1][1] = (*field)(x, y + delta, z) + (*field)(x, y - delta, z) - 2 * f;
mat[2][2] = (*field)(x, y, z + delta) + (*field)(x, y, z - delta) - 2 * f;
eigenvalue(mat, eig);
return eig[0] / (delta * delta);
class LaplacianField : public Field
{
int iField;
double delta;
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Compute finite difference the Laplacian of Field[IField]:\n\n"
" F = G(x+d,y,z) + G(x-d,y,z) +\n"
" G(x,y+d,z) + G(x,y-d,z) +\n"
" G(x,y,z+d) + G(x,y,z-d) - 6 * G(x,y,z),\n\n"
"where G=Field[IField] and d=Delta";
LaplacianField() : iField(0), delta(CTX::instance()->lc / 1e4)
delta = 0.1;

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Finite difference step");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
if(!field) return MAX_LC;
return ((*field) (x + delta , y, z)+ (*field) (x - delta , y, z)
+(*field) (x, y + delta , z)+ (*field) (x, y - delta , z)
+(*field) (x, y, z + delta )+ (*field) (x, y, z - delta )
-6* (*field) (x , y, z)) / (delta*delta);
class MeanField : public Field
{
int iField;
double delta;
std::string getDescription()

Christophe Geuzaine
committed
{

Christophe Geuzaine
committed
return "Simple smoother:\n\n"
" F = (G(x+delta,y,z) + G(x-delta,y,z) +\n"
" G(x,y+delta,z) + G(x,y-delta,z) +\n"
" G(x,y,z+delta) + G(x,y,z-delta) +\n"
" G(x,y,z)) / 7,\n\n"

Christophe Geuzaine
committed
"where G=Field[IField]";
MeanField() : iField(0), delta(CTX::instance()->lc / 1e4)

Christophe Geuzaine
committed
options["IField"] = new FieldOptionInt
(iField, "Field index");
options["Delta"] = new FieldOptionDouble
(delta, "Distance used to compute the mean value");

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
Field *field = GModel::current()->getFields()->get(iField);
return ((*field) (x + delta , y, z) + (*field) (x - delta, y, z)
+ (*field) (x, y + delta, z) + (*field) (x, y - delta, z)
+ (*field) (x, y, z + delta) + (*field) (x, y, z - delta)
+ (*field) (x, y, z)) / 7;

Jean-François Remacle
committed
class MathEvalExpression
{
MathEvalExpression() : _f(0) {}
~MathEvalExpression(){ if(_f) delete _f; }
bool set_function(const std::string &f)
{
// get id numbers of fields appearing in the function
_fields.clear();
unsigned int i = 0;
while(i < f.size()){
unsigned int j = 0;
if(f[i] == 'F'){
std::string id("");
while(i + 1 + j < f.size() && f[i + 1 + j] >= '0' && f[i + 1 + j] <= '9'){
id += f[i + 1 + j];
j++;
std::vector<std::string> expressions(1), variables(3 + _fields.size());
expressions[0] = f;
variables[0] = "x";
variables[1] = "y";
variables[2] = "z";
i = 3;
for(std::set<int>::iterator it = _fields.begin(); it != _fields.end(); it++){
std::ostringstream sstream;
sstream << "F" << *it;
variables[i++] = sstream.str();
if(_f) delete _f;
_f = new mathEvaluator(expressions, variables);
if(expressions.empty()) {
delete _f;
_f = 0;
return false;
if(!_f) return MAX_LC;
std::vector<double> values(3 + _fields.size()), res(1);
values[0] = x;
values[1] = y;
values[2] = z;
int i = 3;
for(std::set<int>::iterator it = _fields.begin(); it != _fields.end(); it++){
Field *field = GModel::current()->getFields()->get(*it);
values[i++] = field ? (*field)(x, y, z) : MAX_LC;
}
if(_f->eval(values, res))
return res[0];
else
return MAX_LC;
class MathEvalField : public Field

Jean-François Remacle
committed
{

Christophe Geuzaine
committed
options["F"] = new FieldOptionString
(f, "Mathematical function to evaluate.", &update_needed);

Christophe Geuzaine
committed
f = "F2 + Sin(z)";

Christophe Geuzaine
committed
double operator() (double x, double y, double z, GEntity *ge=0)
{
if(update_needed) {
if(!expr.set_function(f))

Christophe Geuzaine
committed
Msg::Error("Field %i: Invalid matheval expression \"%s\"",
this->id, f.c_str());
update_needed = false;
}
return expr.evaluate(x, y, z);
}