Newer
Older
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software

Christophe Geuzaine
committed
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to "gmsh@geuz.org".
#include "Gmsh.h"
#include "Numeric.h"
#include "Mesh.h"
#include "Create.h"
#include "Context.h"
extern Context_T CTX;
int i;
else {
THEM->Statistics[0] = Tree_Nbr(THEM->Points);
THEM->Statistics[1] = Tree_Nbr(THEM->Curves);
THEM->Statistics[2] = Tree_Nbr(THEM->Surfaces);
THEM->Statistics[3] = Tree_Nbr(THEM->Volumes);

Christophe Geuzaine
committed
Mesh_Quality(THEM);
void ApplyLcFactor_Point(void *a, void *b)
{
Vertex *v = *(Vertex **) a;
if(v->lc <= 0.0) {
Msg(GERROR,
"Wrong characteristic length (%g <= 0) for Point %d, defaulting to 1.0",
void ApplyLcFactor_Attractor(void *a, void *b)
{
Attractor *v = *(Attractor **) a;
v->lc1 *= CTX.mesh.lc_factor;
v->lc2 *= CTX.mesh.lc_factor;
}
Tree_Action(M->Points, ApplyLcFactor_Point);
List_Action(M->Metric->Attractors, ApplyLcFactor_Attractor);
}
void Maillage_Dimension_0(Mesh * M)
{
for(int i = 0; i < 50; i++)
M->Histogram[0][i] = M->Histogram[1][i] = M->Histogram[2][i] = 0;
// This is the default type of BGM (lc associated with
// points of the geometry). It can be changed to
// - ONFILE by loading a view containing a bgmesh
// - CONSTANT
// - FUNCTION
}
double t1, t2;
t1 = Cpu();
t2 = Cpu();
M->Statistics[13] = t2 - t1;
}
int i;
Curve *c, *neew, C;
t1 = Cpu();
List_T *Curves = Tree2List(M->Curves);
for(i = 0; i < List_Nbr(Curves); i++) {
List_Read(Curves, i, &c);
if(c->Num > 0) {
if(c->l < shortest)
shortest = c->l;
neew = &C;
neew->Num = -c->Num;
Tree_Query(M->Curves, &neew);
neew->Vertices =
List_Create(List_Nbr(c->Vertices), 1, sizeof(Vertex *));
List_Invert(c->Vertices, neew->Vertices);
}
}
Msg(DEBUG, "Shortest curve has length %g", shortest);
M->Statistics[14] = t2 - t1;
}
Volume *v;
double t1, t2;
Volume *vol;
t1 = Cpu();
List_T *list = Tree2List(M->Volumes);
for(int i = 0; i < List_Nbr(list); i++) {
List_Read(list, i, &vol);
if((!vol->Extrude || !vol->Extrude->mesh.ExtrudeMesh) &&
(vol->Method != TRANSFINI)) {
for(int j = 0; j < List_Nbr(vol->Surfaces); j++) {
List_Replace(v->Surfaces, List_Pointer(vol->Surfaces, j),
compareSurface);
}
}
}
if(CTX.mesh.oldxtrude) {
Extrude_Mesh_Old(M); // old automatic extrusion algorithm
}
else {
Extrude_Mesh(M->Volumes); // new extrusion
Tree_Action(M->Volumes, Maillage_Volume); // delaunay of remaining parts
}
t2 = Cpu();
M->Statistics[15] = t2 - t1;
}
THEM = M;

Christophe Geuzaine
committed
M->MaxPointNum = 0;
M->MaxLineNum = 0;
M->MaxLineLoopNum = 0;
M->MaxSurfaceNum = 0;
M->MaxSurfaceLoopNum = 0;
M->MaxVolumeNum = 0;
M->MaxPhysicalNum = 0;
M->MaxSimplexNum = 0;
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
Tree_Action(M->Vertices, Free_Vertex);
Tree_Delete(M->Vertices);
Tree_Action(M->VertexEdges, Free_Vertex);
Tree_Delete(M->VertexEdges);
Tree_Action(M->Points, Free_Vertex);
Tree_Delete(M->Points);
// Note: don't free the simplices here (with
// Tree_Action (M->Simplexes, Free_Simplex)): we free them
// in each curve, surface, volume
Tree_Delete(M->Simplexes);
Tree_Action(M->Curves, Free_Curve);
Tree_Delete(M->Curves);
//Tree_Action (M->SurfaceLoops, Free_SurfaceLoop); // todo
Tree_Delete(M->SurfaceLoops);
//Tree_Action (M->EdgeLoops, Free_EdgeLoop); // todo
Tree_Delete(M->EdgeLoops);
Tree_Action(M->Surfaces, Free_Surface);
Tree_Delete(M->Surfaces);
Tree_Action(M->Volumes, Free_Volume);
Tree_Delete(M->Volumes);
//Tree_Action (M->PhysicalGroups, Free_PhysicalGroup); // todo
List_Delete(M->PhysicalGroups);
}
M->Vertices = Tree_Create(sizeof(Vertex *), compareVertex);
M->VertexEdges = Tree_Create(sizeof(Vertex *), compareVertex);
M->Simplexes = Tree_Create(sizeof(Simplex *), compareSimplex);
M->Points = Tree_Create(sizeof(Vertex *), compareVertex);
M->Curves = Tree_Create(sizeof(Curve *), compareCurve);
M->SurfaceLoops = Tree_Create(sizeof(SurfaceLoop *), compareSurfaceLoop);
M->EdgeLoops = Tree_Create(sizeof(EdgeLoop *), compareEdgeLoop);
M->Surfaces = Tree_Create(sizeof(Surface *), compareSurface);
M->Volumes = Tree_Create(sizeof(Volume *), compareVolume);
M->PhysicalGroups = List_Create(5, 5, sizeof(PhysicalGroup *));
M->Metric = new GMSHMetric;
M->BGM.bgm = NULL;

Christophe Geuzaine
committed
M->status = 0;
}
double t1, t2;
int oldstatus;
Msg(INFO, "I'm busy! Ask me that later...");
return;
}
M->MeshParams.DelaunayAlgorithm = CTX.mesh.algo;
M->MeshParams.NbSmoothing = CTX.mesh.nb_smoothing;
M->MeshParams.InteractiveDelaunay = CTX.mesh.interactive;
oldstatus = M->status;
if((Asked > oldstatus && Asked >= 0 && oldstatus < 0) ||
(Asked < oldstatus)) {
OpenProblem(CTX.filename);
M->status = 0;
}
if((Asked > oldstatus && Asked > 0 && oldstatus < 1) ||
(Asked < oldstatus && Asked > 0)) {
t1 = Cpu();
t2 = Cpu();
Msg(STATUS2, "Mesh 1D complete (%g s)", t2 - t1);
M->status = 1;
}
if((Asked > oldstatus && Asked > 1 && oldstatus < 2) ||
(Asked < oldstatus && Asked > 1)) {
t1 = Cpu();
if(M->status == 3) {
OpenProblem(CTX.filename);
Maillage_Dimension_1(M);
}
t2 = Cpu();
Msg(STATUS2, "Mesh 2D complete (%g s)", t2 - t1);
M->status = 2;
}
if((Asked > oldstatus && Asked > 2 && oldstatus < 3) ||
(Asked < oldstatus && Asked > 2)) {
t1 = Cpu();
t2 = Cpu();
Msg(STATUS2, "Mesh 3D complete (%g s)", t2 - t1);
M->status = 3;
}