Skip to content
Snippets Groups Projects
Commit 94612a69 authored by Christophe Geuzaine's avatar Christophe Geuzaine
Browse files

add link to photoniques article

parent 2e5b0078
No related branches found
No related tags found
No related merge requests found
Pipeline #8532 passed
......@@ -36,7 +36,7 @@
ONELAB Photonics is a set of models combining the open source finite
element solver <a href="https://getdp.info">GetDP</a> with the open source pre-
and post-processor <a href="https://gmsh.info">Gmsh</a> to solve photonics
applications.
applications<a href="#1"><sup>1</sup></a>.
</p>
</p>
These models can be used as-is for parametric studies or as template models since implementing
......@@ -44,16 +44,16 @@
</p>
</p>
For instance, it is possible to compute direct problems such as the diffraction of a
plane wave by a grating<a href="#1"><sup>1-3</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave
by a scatterer (T-matrix<a href="#4"><sup>4</sup></a>, near and far field data...)
plane wave by a grating<a href="#2"><sup>2-4</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave
by a scatterer (T-matrix<a href="#5"><sup>5</sup></a>, near and far field data...)
</p>
</p>
A collection of eigenvalue problems is also available, such as
the Quasi-Normal Modes of open structures<a href="#5"><sup>5</sup></a>,
the Quasi-Normal Modes of open structures<a href="#6"><sup>6</sup></a>,
the the Bloch band diagram of photonics crystals,
the leaky modes of a microstructured fiber<a href="#6"><sup>6</sup></a>, or
the leaky modes of a microstructured fiber<a href="#7"><sup>7</sup></a>, or
the modes resulting from non-linear eigenvalue problems arising when considering
frequency-dispersive permittivities<a href="#7"><sup>7-8</sup></a>.
frequency-dispersive permittivities<a href="#8"><sup>8-9</sup></a>.
</p>
<h2>Quick start</h2>
......@@ -67,18 +67,18 @@
<h2>Template models</h2>
<ul>
<li>2D and 3D grating models<a href="#1"><sup>1-3</sup></a> are available
<li>2D and 3D grating models<a href="#2"><sup>2-4</sup></a> are available
in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Diffraction-gratings"
>models/DiffractionGratings</a></code>.
<li>A general 3D scattering model<a href="#4"><sup>4</sup></a> is available
<li>A general 3D scattering model<a href="#5"><sup>5</sup></a> is available
in <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/ElectromagneticScattering"
>models/ElectromagneticScattering</a></code>.
<li>A model for the computation of the Bloch dispersion relation in conical
mounts<a href="#6"><sup>6</sup></a> is avalable
mounts<a href="#7"><sup>7</sup></a> is avalable
in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Bloch-modes-in-periodic-waveguides"
>models/BlochPeriodicWaveguides</a></code>.
<li>A collection of non-Linear eigenvalue
problems<a href="#7"><sup>7-8</sup></a> (quadratic, polynomial and
problems<a href="#8"><sup>8-9</sup></a> (quadratic, polynomial and
rational) is avaiable in
<code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/NonLinearEVP"
>models/NonLinearEVP</a></code>.
......@@ -88,33 +88,37 @@
<div class="small">
<ol class="small">
<li><a name="1"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré.
<li><a name="1"></a> G. Demésy, A. Nicolet, F. Zolla,
C. Geuzaine. <a href="https://doi.org/10.1051/photon/202010040">Modélisation
par la méthode de éléments finis avec ONELAB</a>. Photoniques 100, 40-45,
2020.
<li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré.
<a href="https://doi.org/10.1364/JOSAA.27.000878">
All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack</a>.
JOSA A 27.4, 878-889, 2010.
<li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet.
<li><a name="3"></a>G. Demésy, F. Zolla, A. Nicolet.
<a href="https://arxiv.org/abs/1710.11451">
A ONELAB model for the parametric study of mono-dimensional diffraction gratings</a>.
arXiv:1710.11451.
<li><a name="3"></a>G. Demésy, S. John.
<li><a name="4"></a>G. Demésy, S. John.
<a href=" https://doi.org/10.1063/1.4752775">
Solar energy trapping with modulated silicon nanowire photonic crystals</a>.
Journal of Applied Physics 112.7, 074326, 2012.
<li><a name="4"></a>G. Demésy,J.-C. Auger, B. Stout.
<li><a name="5"></a>G. Demésy,J.-C. Auger, B. Stout.
<a href="https://arxiv.org/abs/1807.02355">
Scattering matrix of arbitrarily shaped objects: combining finite elements and vector partial waves</a>.
JOSA A 35.8 1401-1409, 2018.
<li><a name="5"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine.
<li><a name="6"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine.
<a href="https://arxiv.org/abs/1807.02355">
Modal analysis of the ultrahigh finesse Haroche QED cavity</a>.
New Journal of Physics 20.4, 043058, 2018.
<li><a name="6"></a>F. Zolla, G. Renversez, A. Nicolet.
<li><a name="7"></a>F. Zolla, G. Renversez, A. Nicolet.
Foundations of photonic crystal fibres. World Scientific, 2005.
<li><a name="7"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman.
<li><a name="8"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman.
<a href="https://arxiv.org/abs/1802.02363">
Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures</a>.
arXiv:1802.02363.
<li><a name="8"></a>F. Zolla, A. Nicolet, G. Demésy,
<li><a name="9"></a>F. Zolla, A. Nicolet, G. Demésy,
<a href="https://arxiv.org/abs/1807.02355">
Photonics in highly dispersive media: the exact modal expansion</a>.
Opt. Lett. 43, 5813, 2018.
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment