diff --git a/photonics/index.html b/photonics/index.html index 73f3af890e7484843ab6b91f6b438066e36def40..f292da24d97afb077379c8ee56ac33553c537e8a 100644 --- a/photonics/index.html +++ b/photonics/index.html @@ -36,7 +36,7 @@ ONELAB Photonics is a set of models combining the open source finite element solver <a href="https://getdp.info">GetDP</a> with the open source pre- and post-processor <a href="https://gmsh.info">Gmsh</a> to solve photonics - applications. + applications<a href="#1"><sup>1</sup></a>. </p> </p> These models can be used as-is for parametric studies or as template models since implementing @@ -44,16 +44,16 @@ </p> </p> For instance, it is possible to compute direct problems such as the diffraction of a - plane wave by a grating<a href="#1"><sup>1-3</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave - by a scatterer (T-matrix<a href="#4"><sup>4</sup></a>, near and far field data...) + plane wave by a grating<a href="#2"><sup>2-4</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave + by a scatterer (T-matrix<a href="#5"><sup>5</sup></a>, near and far field data...) </p> </p> A collection of eigenvalue problems is also available, such as - the Quasi-Normal Modes of open structures<a href="#5"><sup>5</sup></a>, + the Quasi-Normal Modes of open structures<a href="#6"><sup>6</sup></a>, the the Bloch band diagram of photonics crystals, - the leaky modes of a microstructured fiber<a href="#6"><sup>6</sup></a>, or + the leaky modes of a microstructured fiber<a href="#7"><sup>7</sup></a>, or the modes resulting from non-linear eigenvalue problems arising when considering - frequency-dispersive permittivities<a href="#7"><sup>7-8</sup></a>. + frequency-dispersive permittivities<a href="#8"><sup>8-9</sup></a>. </p> <h2>Quick start</h2> @@ -67,18 +67,18 @@ <h2>Template models</h2> <ul> - <li>2D and 3D grating models<a href="#1"><sup>1-3</sup></a> are available + <li>2D and 3D grating models<a href="#2"><sup>2-4</sup></a> are available in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Diffraction-gratings" >models/DiffractionGratings</a></code>. - <li>A general 3D scattering model<a href="#4"><sup>4</sup></a> is available + <li>A general 3D scattering model<a href="#5"><sup>5</sup></a> is available in <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/ElectromagneticScattering" >models/ElectromagneticScattering</a></code>. <li>A model for the computation of the Bloch dispersion relation in conical - mounts<a href="#6"><sup>6</sup></a> is avalable + mounts<a href="#7"><sup>7</sup></a> is avalable in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Bloch-modes-in-periodic-waveguides" >models/BlochPeriodicWaveguides</a></code>. <li>A collection of non-Linear eigenvalue - problems<a href="#7"><sup>7-8</sup></a> (quadratic, polynomial and + problems<a href="#8"><sup>8-9</sup></a> (quadratic, polynomial and rational) is avaiable in <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/NonLinearEVP" >models/NonLinearEVP</a></code>. @@ -88,33 +88,37 @@ <div class="small"> <ol class="small"> - <li><a name="1"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré. + <li><a name="1"></a> G. Demésy, A. Nicolet, F. Zolla, + C. Geuzaine. <a href="https://doi.org/10.1051/photon/202010040">Modélisation + par la méthode de éléments finis avec ONELAB</a>. Photoniques 100, 40-45, + 2020. + <li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré. <a href="https://doi.org/10.1364/JOSAA.27.000878"> All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack</a>. JOSA A 27.4, 878-889, 2010. - <li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet. + <li><a name="3"></a>G. Demésy, F. Zolla, A. Nicolet. <a href="https://arxiv.org/abs/1710.11451"> A ONELAB model for the parametric study of mono-dimensional diffraction gratings</a>. arXiv:1710.11451. - <li><a name="3"></a>G. Demésy, S. John. + <li><a name="4"></a>G. Demésy, S. John. <a href=" https://doi.org/10.1063/1.4752775"> Solar energy trapping with modulated silicon nanowire photonic crystals</a>. Journal of Applied Physics 112.7, 074326, 2012. - <li><a name="4"></a>G. Demésy,J.-C. Auger, B. Stout. + <li><a name="5"></a>G. Demésy,J.-C. Auger, B. Stout. <a href="https://arxiv.org/abs/1807.02355"> Scattering matrix of arbitrarily shaped objects: combining finite elements and vector partial waves</a>. JOSA A 35.8 1401-1409, 2018. - <li><a name="5"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine. + <li><a name="6"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine. <a href="https://arxiv.org/abs/1807.02355"> Modal analysis of the ultrahigh finesse Haroche QED cavity</a>. New Journal of Physics 20.4, 043058, 2018. - <li><a name="6"></a>F. Zolla, G. Renversez, A. Nicolet. + <li><a name="7"></a>F. Zolla, G. Renversez, A. Nicolet. Foundations of photonic crystal fibres. World Scientific, 2005. - <li><a name="7"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman. + <li><a name="8"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman. <a href="https://arxiv.org/abs/1802.02363"> Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures</a>. arXiv:1802.02363. - <li><a name="8"></a>F. Zolla, A. Nicolet, G. Demésy, + <li><a name="9"></a>F. Zolla, A. Nicolet, G. Demésy, <a href="https://arxiv.org/abs/1807.02355"> Photonics in highly dispersive media: the exact modal expansion</a>. Opt. Lett. 43, 5813, 2018.