From 94612a693864e9095d1c27968e36977e0eae6cf2 Mon Sep 17 00:00:00 2001
From: Christophe Geuzaine <cgeuzaine@uliege.be>
Date: Fri, 25 Jun 2021 08:52:44 +0200
Subject: [PATCH] add link to photoniques article

---
 photonics/index.html | 40 ++++++++++++++++++++++------------------
 1 file changed, 22 insertions(+), 18 deletions(-)

diff --git a/photonics/index.html b/photonics/index.html
index 73f3af8..f292da2 100644
--- a/photonics/index.html
+++ b/photonics/index.html
@@ -36,7 +36,7 @@
   ONELAB Photonics is a set of models combining the open source finite
   element solver <a href="https://getdp.info">GetDP</a> with the open source pre-
   and post-processor <a href="https://gmsh.info">Gmsh</a> to solve photonics
-  applications.
+  applications<a href="#1"><sup>1</sup></a>.
 </p>
 </p>
   These models can be used as-is for parametric studies or as template models since implementing
@@ -44,16 +44,16 @@
 </p>
 </p>
   For instance, it is possible to compute direct problems such as the diffraction of a
-  plane wave by a grating<a href="#1"><sup>1-3</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave
-  by a scatterer (T-matrix<a href="#4"><sup>4</sup></a>, near and far field data...)
+  plane wave by a grating<a href="#2"><sup>2-4</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave
+  by a scatterer (T-matrix<a href="#5"><sup>5</sup></a>, near and far field data...)
 </p>
 </p>
   A collection of eigenvalue problems is also available, such as
-  the Quasi-Normal Modes of open structures<a href="#5"><sup>5</sup></a>,
+  the Quasi-Normal Modes of open structures<a href="#6"><sup>6</sup></a>,
   the the Bloch band diagram of photonics crystals,
-  the leaky modes of a microstructured fiber<a href="#6"><sup>6</sup></a>, or
+  the leaky modes of a microstructured fiber<a href="#7"><sup>7</sup></a>, or
   the modes resulting from non-linear eigenvalue problems arising when considering
-  frequency-dispersive permittivities<a href="#7"><sup>7-8</sup></a>.
+  frequency-dispersive permittivities<a href="#8"><sup>8-9</sup></a>.
 </p>
 
 <h2>Quick start</h2>
@@ -67,18 +67,18 @@
 
 <h2>Template models</h2>
 <ul>
-  <li>2D and 3D grating models<a href="#1"><sup>1-3</sup></a> are available
+  <li>2D and 3D grating models<a href="#2"><sup>2-4</sup></a> are available
     in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Diffraction-gratings"
     >models/DiffractionGratings</a></code>.
-  <li>A general 3D scattering model<a href="#4"><sup>4</sup></a> is available
+  <li>A general 3D scattering model<a href="#5"><sup>5</sup></a> is available
     in <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/ElectromagneticScattering"
     >models/ElectromagneticScattering</a></code>.
   <li>A model for the computation of the Bloch dispersion relation in conical
-    mounts<a href="#6"><sup>6</sup></a> is avalable
+    mounts<a href="#7"><sup>7</sup></a> is avalable
     in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Bloch-modes-in-periodic-waveguides"
     >models/BlochPeriodicWaveguides</a></code>.
   <li>A collection of non-Linear eigenvalue
-    problems<a href="#7"><sup>7-8</sup></a> (quadratic, polynomial and
+    problems<a href="#8"><sup>8-9</sup></a> (quadratic, polynomial and
     rational) is avaiable in
     <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/NonLinearEVP"
     >models/NonLinearEVP</a></code>.
@@ -88,33 +88,37 @@
 
 <div class="small">
   <ol class="small">
-    <li><a name="1"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré.
+    <li><a name="1"></a> G. Demésy, A. Nicolet, F. Zolla,
+      C. Geuzaine. <a href="https://doi.org/10.1051/photon/202010040">Modélisation
+      par la méthode de éléments finis avec ONELAB</a>. Photoniques 100, 40-45,
+      2020.
+    <li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré.
       <a href="https://doi.org/10.1364/JOSAA.27.000878">
       All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack</a>.
       JOSA A 27.4, 878-889, 2010.
-    <li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet.
+    <li><a name="3"></a>G. Demésy, F. Zolla, A. Nicolet.
       <a href="https://arxiv.org/abs/1710.11451">
       A ONELAB model for the parametric study of mono-dimensional diffraction gratings</a>.
       arXiv:1710.11451.
-    <li><a name="3"></a>G. Demésy, S. John.
+    <li><a name="4"></a>G. Demésy, S. John.
       <a href=" https://doi.org/10.1063/1.4752775">
       Solar energy trapping with modulated silicon nanowire photonic crystals</a>.
       Journal of Applied Physics 112.7, 074326, 2012.
-    <li><a name="4"></a>G. Demésy,J.-C. Auger, B. Stout.
+    <li><a name="5"></a>G. Demésy,J.-C. Auger, B. Stout.
       <a href="https://arxiv.org/abs/1807.02355">
       Scattering matrix of arbitrarily shaped objects: combining finite elements and vector partial waves</a>.
       JOSA A 35.8 1401-1409, 2018.
-    <li><a name="5"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine.
+    <li><a name="6"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine.
       <a href="https://arxiv.org/abs/1807.02355">
       Modal analysis of the ultrahigh finesse Haroche QED cavity</a>.
       New Journal of Physics 20.4, 043058, 2018.
-    <li><a name="6"></a>F. Zolla, G. Renversez, A. Nicolet.
+    <li><a name="7"></a>F. Zolla, G. Renversez, A. Nicolet.
       Foundations of photonic crystal fibres. World Scientific, 2005.
-    <li><a name="7"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman.
+    <li><a name="8"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman.
       <a href="https://arxiv.org/abs/1802.02363">
       Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures</a>.
       arXiv:1802.02363.
-    <li><a name="8"></a>F. Zolla, A. Nicolet, G. Demésy,
+    <li><a name="9"></a>F. Zolla, A. Nicolet, G. Demésy,
       <a href="https://arxiv.org/abs/1807.02355">
       Photonics in highly dispersive media: the exact modal expansion</a>.
       Opt. Lett. 43, 5813, 2018.
-- 
GitLab