Newer
Older
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<html>
<head>
<title>ONELAB Photonics</title>
<meta http-equiv="Content-Type" content="text/html; charset=UTF-8">
<meta name="keywords" content="free, finite element, fem, interface, gmsh, getdp">
<meta name="viewport" content="width=device-width">
<meta name="apple-itunes-app" content="app-id=845930897">
<link href="/onelab.css" rel="stylesheet" type="text/css">
<style type="text/css"><!--
div.small { font-size:80%; }
ul.small { margin-top:1ex; margin-bottom:1ex; }
--></style>
</head>
<body>
<h1 class="short">ONELAB Photonics</h1>
<div id="banner">
<img src="Diffraction-gratings_screenshot2.png" alt="">
<img src="grating3D_skew.png" alt="">
<img src="grating3D_solar.png" alt="">
<img src="NonLinearEVP.png" alt="">
<img src="rhombus.png" alt="">
<img src="scattering_splitring.png" alt="">
</div>
<h1>Open Source Finite Element Software for Photonics Applications</h1>
<p>
ONELAB Photonics is a set of models combining the open source finite
element solver <a href="https://getdp.info">GetDP</a> with the open source pre-
and post-processor <a href="https://gmsh.info">Gmsh</a> to solve photonics
applications<a href="#1"><sup>1</sup></a>.
<p>
These models can be used as-is for parametric studies or as template models
since implementing new opto-geometric parameters using Gmsh and GetDP is
rather simple.
<p>
For instance, it is possible to compute direct problems such as the
diffraction of a plane wave by a grating<a href="#2"><sup>2-4</sup></a> (in 2D
and 3D) or the scattering of an arbitrary wave by a scatterer
(T-matrix<a href="#5"><sup>5</sup></a>, near and far field data...)
<p>
A collection of eigenvalue problems is also available, such as the
Quasi-Normal Modes of open structures<a href="#6"><sup>6</sup></a>, the the
Bloch band diagram of photonics crystals, the leaky modes of a microstructured
fiber<a href="#7"><sup>7</sup></a>, or the modes resulting from non-linear
eigenvalue problems arising when considering frequency-dispersive
permittivities<a href="#8"><sup>8-9</sup></a>.
</p>
<h2>Quick start</h2>
<ol>
<li>Download the <a href="/#Download">precompiled ONELAB
software bundle</a> for Windows, Linux or MacOS.
<li>Launch the app <img src="https://gmsh.info/gallery/icon.png" height=20px>
<li>Open e.g. <code>models/BlochPeriodicWaveguides/rhombus.pro</code>.
<li>2D and 3D grating models<a href="#2"><sup>2-4</sup></a> are available
in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Diffraction-gratings"
>models/DiffractionGratings</a></code>.
<li>A general 3D scattering model<a href="#5"><sup>5</sup></a> is available
in <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/ElectromagneticScattering"
>models/ElectromagneticScattering</a></code>.
<li>A model for the computation of the Bloch dispersion relation in conical
mounts<a href="#7"><sup>7</sup></a> is avalable
in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Bloch-modes-in-periodic-waveguides"
>models/BlochPeriodicWaveguides</a></code>.
problems<a href="#8"><sup>8-9</sup></a> (quadratic, polynomial and rational)
is avaiable in
<code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/NonLinearEVP"
>models/NonLinearEVP</a></code>.
<h2>References</h2>
<div class="small">
<ol class="small">
C. Geuzaine. <a href="https://doi.org/10.1051/photon/202010040">Modélisation
par la méthode de éléments finis avec ONELAB</a>. Photoniques 100, 40-45,
2020.
<li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré.
All-purpose finite element formulation for arbitrarily shaped
crossed-gratings embedded in a multilayered stack</a>. JOSA A 27.4,
878-889, 2010.
<li><a name="3"></a>G. Demésy, F. Zolla, A. Nicolet.
A ONELAB model for the parametric study of mono-dimensional diffraction
gratings</a>. arXiv:1710.11451.
<li><a name="4"></a>G. Demésy, S. John.
Solar energy trapping with modulated silicon nanowire photonic crystals</a>.
Scattering matrix of arbitrarily shaped objects: combining finite
elements and vector partial waves</a>. JOSA A 35.8 1401-1409, 2018.
<li><a name="6"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine.
<a href="https://iopscience.iop.org/article/10.1088/1367-2630/aab6fd">
Modal analysis of the ultrahigh finesse Haroche QED cavity</a>.
<li><a name="7"></a>F. Zolla, G. Renversez, A. Nicolet. Foundations of
photonic crystal fibres. World Scientific, 2005.
<li><a name="8"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine,
Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode
computations of frequency-dispersive photonic open structures</a>.
<li><a name="9"></a>F. Zolla, A. Nicolet, G. Demésy,
Photonics in highly dispersive media: the exact modal expansion</a>.
</ol>
</div>
<h2>Sponsors</h2>
<p>
ONELAB Photonics was funded in part by the French Agence Nationale pour la
recherche (ANR-16-CE24-0013), the Walloon Region (WIST3 No 1017086 ONELAB) and
the Belgian French Community (ARC WAVES 15/19-03).
</p>
<center style="margin-top:4ex;margin-bottom:4ex">
<a href="http://www.fresnel.fr"><img src="/logo_fresnel.jpg" height="60px"></a>
<a href="http://www.fresnel.fr"><img src="/logo_amu.jpg" height="50px"></a>
<a href="http://www.fresnel.fr"><img src="/logo_anr.png" height="40px"></a>
<a href="http://www.uliege.be"><img src="/logo_uliege.jpg" height="60px"></a>
<a href="http://www.wallonie.be"><img src="/logo_rw.jpg" height="60px"></a>