<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN"> <html> <head> <title>ONELAB Photonics</title> <meta http-equiv="Content-Type" content="text/html; charset=UTF-8"> <meta name="keywords" content="free, finite element, fem, interface, gmsh, getdp"> <meta name="viewport" content="width=device-width"> <meta name="apple-itunes-app" content="app-id=845930897"> <link href="/onelab.css" rel="stylesheet" type="text/css"> <style type="text/css"><!-- div.small { font-size:80%; } ul.small { margin-top:1ex; margin-bottom:1ex; } --></style> </head> <body> <h1 class="short">ONELAB Photonics</h1> <div id="banner"> <img src="Diffraction-gratings_screenshot2.png" alt=""> <img src="grating3D_skew.png" alt=""> <img src="grating3D_solar.png" alt=""> <img src="NonLinearEVP.png" alt=""> <img src="rhombus.png" alt=""> <img src="scattering_splitring.png" alt=""> </div> <h1>Open Source Finite Element Software for Photonics Applications</h1> <p> ONELAB Photonics is a set of models combining the open source finite element solver <a href="https://getdp.info">GetDP</a> with the open source pre- and post-processor <a href="https://gmsh.info">Gmsh</a> to solve photonics applications<a href="#1"><sup>1</sup></a>. </p> <p> These models can be used as-is for parametric studies or as template models since implementing new opto-geometric parameters using Gmsh and GetDP is rather simple. </p> <p> For instance, it is possible to compute direct problems such as the diffraction of a plane wave by a grating<a href="#2"><sup>2-4</sup></a> (in 2D and 3D) or the scattering of an arbitrary wave by a scatterer (T-matrix<a href="#5"><sup>5</sup></a>, near and far field data...) </p> <p> A collection of eigenvalue problems is also available, such as the Quasi-Normal Modes of open structures<a href="#6"><sup>6</sup></a>, the the Bloch band diagram of photonics crystals, the leaky modes of a microstructured fiber<a href="#7"><sup>7</sup></a>, or the modes resulting from non-linear eigenvalue problems arising when considering frequency-dispersive permittivities<a href="#8"><sup>8-9</sup></a>. </p> <h2>Quick start</h2> <ol> <li>Download the <a href="/#Download">precompiled ONELAB software bundle</a> for Windows, Linux or MacOS. <li>Launch the app <img src="https://gmsh.info/gallery/icon.png" height=20px> <li>Open e.g. <code>models/BlochPeriodicWaveguides/rhombus.pro</code>. <li>Press <code>Run</code> </ol> <h2>Template models</h2> <ul> <li>2D and 3D grating models<a href="#2"><sup>2-4</sup></a> are available in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Diffraction-gratings" >models/DiffractionGratings</a></code>. <li>A general 3D scattering model<a href="#5"><sup>5</sup></a> is available in <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/ElectromagneticScattering" >models/ElectromagneticScattering</a></code>. <li>A model for the computation of the Bloch dispersion relation in conical mounts<a href="#7"><sup>7</sup></a> is avalable in <code><a href="https://gitlab.onelab.info/doc/models/-/wikis/Bloch-modes-in-periodic-waveguides" >models/BlochPeriodicWaveguides</a></code>. <li>A collection of non-Linear eigenvalue problems<a href="#8"><sup>8-9</sup></a> (quadratic, polynomial and rational) is avaiable in <code><a href="https://gitlab.onelab.info/doc/models/-/tree/master/NonLinearEVP" >models/NonLinearEVP</a></code>. </ul> <h2>References</h2> <div class="small"> <ol class="small"> <li><a name="1"></a>G. Demésy, A. Nicolet, F. Zolla, C. Geuzaine. <a href="https://doi.org/10.1051/photon/202010040">Modélisation par la méthode de éléments finis avec ONELAB</a>. Photoniques 100, 40-45, 2020. <li><a name="2"></a>G. Demésy, F. Zolla, A. Nicolet, M. Commandré. <a href="https://doi.org/10.1364/JOSAA.27.000878"> All-purpose finite element formulation for arbitrarily shaped crossed-gratings embedded in a multilayered stack</a>. JOSA A 27.4, 878-889, 2010. <li><a name="3"></a>G. Demésy, F. Zolla, A. Nicolet. <a href="https://arxiv.org/abs/1710.11451"> A ONELAB model for the parametric study of mono-dimensional diffraction gratings</a>. arXiv:1710.11451. <li><a name="4"></a>G. Demésy, S. John. <a href=" https://doi.org/10.1063/1.4752775"> Solar energy trapping with modulated silicon nanowire photonic crystals</a>. Journal of Applied Physics 112.7, 074326, 2012. <li><a name="5"></a>G. Demésy, J.-C. Auger, B. Stout. <a href="https://arxiv.org/abs/1807.02355"> Scattering matrix of arbitrarily shaped objects: combining finite elements and vector partial waves</a>. JOSA A 35.8 1401-1409, 2018. <li><a name="6"></a>N. Marsic, H. De Gersem, G. Demésy, A. Nicolet, C. Geuzaine. <a href="https://iopscience.iop.org/article/10.1088/1367-2630/aab6fd"> Modal analysis of the ultrahigh finesse Haroche QED cavity</a>. New Journal of Physics 20.4, 043058, 2018. <li><a name="7"></a>F. Zolla, G. Renversez, A. Nicolet. Foundations of photonic crystal fibres. World Scientific, 2005. <li><a name="8"></a>G. Demésy, A. Nicolet, B. Gralak, C. Geuzaine, C. Campos, J. E. Roman. <a href="https://arxiv.org/abs/1802.02363"> Non-linear eigenvalue problems with GetDP and SLEPc: Eigenmode computations of frequency-dispersive photonic open structures</a>. arXiv:1802.02363. <li><a name="9"></a>F. Zolla, A. Nicolet, G. Demésy, <a href="https://arxiv.org/abs/1807.02355"> Photonics in highly dispersive media: the exact modal expansion</a>. Opt. Lett. 43, 5813, 2018. </ol> </div> <h2>Sponsors</h2> <p> ONELAB Photonics was funded in part by the French Agence Nationale pour la recherche (ANR-16-CE24-0013), the Walloon Region (WIST3 No 1017086 ONELAB) and the Belgian French Community (ARC WAVES 15/19-03). </p> <center style="margin-top:4ex;margin-bottom:4ex"> <a href="http://www.fresnel.fr"><img src="/logo_fresnel.jpg" height="60px"></a> <a href="http://www.fresnel.fr"><img src="/logo_amu.jpg" height="50px"></a> <a href="http://www.fresnel.fr"><img src="/logo_anr.png" height="40px"></a> <a href="http://www.uliege.be"><img src="/logo_uliege.jpg" height="60px"></a> <a href="http://www.wallonie.be"><img src="/logo_rw.jpg" height="60px"></a> </center> </body> </html>