Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
gmsh
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Larry Price
gmsh
Commits
c0cdcddf
Commit
c0cdcddf
authored
13 years ago
by
Ruth Sabariego
Browse files
Options
Downloads
Patches
Plain Diff
Compute Far field from Near field which has been previously interpolated on a regular box...
parent
4f415d37
No related branches found
No related tags found
No related merge requests found
Changes
2
Hide whitespace changes
Inline
Side-by-side
Showing
2 changed files
Plugin/NearToFarField.cpp
+410
-0
410 additions, 0 deletions
Plugin/NearToFarField.cpp
Plugin/NearToFarField.h
+35
-0
35 additions, 0 deletions
Plugin/NearToFarField.h
with
445 additions
and
0 deletions
Plugin/NearToFarField.cpp
0 → 100644
+
410
−
0
View file @
c0cdcddf
// Gmsh - Copyright (C) 1997-2011 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include
"NearToFarField.h"
#include
"Numeric.h"
#include
"PViewOptions.h"
#include
"MElement.h"
#include
"GModel.h"
StringXNumber
NearToFarFieldOptions_Number
[]
=
{
{
GMSH_FULLRC
,
"Wavenumber"
,
NULL
,
1.
},
{
GMSH_FULLRC
,
"FarDistance"
,
NULL
,
1.
},
{
GMSH_FULLRC
,
"NumPointsPhi"
,
NULL
,
120
},
{
GMSH_FULLRC
,
"NumPointsTheta"
,
NULL
,
60
},
{
GMSH_FULLRC
,
"EView"
,
NULL
,
0
},
{
GMSH_FULLRC
,
"HView"
,
NULL
,
1
},
{
GMSH_FULLRC
,
"Normalize"
,
NULL
,
1
},
{
GMSH_FULLRC
,
"dB"
,
NULL
,
1
},
};
extern
"C"
{
GMSH_Plugin
*
GMSH_RegisterNearToFarFieldPlugin
()
{
return
new
GMSH_NearToFarFieldPlugin
();
}
}
std
::
string
GMSH_NearToFarFieldPlugin
::
getHelp
()
const
{
return
"Plugin(NearToFarField) computes the far field pattern "
"from the near electric and magnetic fields on a surface (regular grid) "
"enclosing the radiating device (antenna).
\n\n
"
"Parameters: the wavenumber, the far field distance (radious) and "
"angular discretisation, i.e. the number of divisions for "
"phi in [0, 2*Pi] and theta in [0, Pi].
\n\n
"
"If `View' < 0, the plugin is run on the current view.
\n\n
"
"Plugin(NearToFarField) creates one new view."
;
}
int
GMSH_NearToFarFieldPlugin
::
getNbOptions
()
const
{
return
sizeof
(
NearToFarFieldOptions_Number
)
/
sizeof
(
StringXNumber
);
}
StringXNumber
*
GMSH_NearToFarFieldPlugin
::
getOption
(
int
iopt
)
{
return
&
NearToFarFieldOptions_Number
[
iopt
];
}
void
GMSH_NearToFarFieldPlugin
::
CartesianToSpherical
(
int
numSteps
,
double
theta
,
double
phi
,
double
**
Fc
,
double
**
Fsp
)
{
double
sTheta
=
sin
(
theta
)
;
double
cTheta
=
cos
(
theta
)
;
double
sPhi
=
sin
(
phi
)
;
double
cPhi
=
cos
(
phi
)
;
for
(
int
step
=
0
;
step
<
numSteps
;
step
++
){
Fsp
[
step
][
0
]
=
Fc
[
step
][
0
]
*
sTheta
*
cPhi
+
Fc
[
step
][
1
]
*
sTheta
*
sPhi
+
Fc
[
step
][
2
]
*
cTheta
;
Fsp
[
step
][
1
]
=
Fc
[
step
][
0
]
*
cTheta
*
cPhi
+
Fc
[
step
][
1
]
*
cTheta
*
sPhi
-
Fc
[
step
][
2
]
*
sTheta
;
Fsp
[
step
][
2
]
=-
Fc
[
step
][
0
]
*
sPhi
+
Fc
[
step
][
1
]
*
cPhi
;
}
}
double
GMSH_NearToFarFieldPlugin
::
getFarField
(
PViewData
*
eData
,
PViewData
*
hData
,
double
k0
,
double
r_far
,
double
theta
,
double
phi
)
{
// theta in [0, pi] (elevation/polar angle)
// phi in [0, 2*pi] (azimuthal angle)
double
r
[
3
]
=
{
sin
(
theta
)
*
cos
(
phi
),
sin
(
theta
)
*
sin
(
phi
),
cos
(
theta
)
};
// Unit vector position
double
Z0
=
120
*
M_PI
;
// free-space impedance
int
numSteps
=
eData
->
getNumTimeSteps
()
;
int
numEntities
=
eData
->
getNumEntities
(
0
)
;
double
**
N
=
new
double
*
[
numSteps
]
;
double
**
Ns
=
new
double
*
[
numSteps
]
;
double
**
L
=
new
double
*
[
numSteps
]
;
double
**
Ls
=
new
double
*
[
numSteps
]
;
for
(
int
step
=
0
;
step
<
numSteps
;
step
++
){
N
[
step
]
=
new
double
[
3
]
;
Ns
[
step
]
=
new
double
[
3
]
;
L
[
step
]
=
new
double
[
3
]
;
Ls
[
step
]
=
new
double
[
3
]
;
}
for
(
int
step
=
0
;
step
<
numSteps
;
step
++
)
for
(
int
comp
=
0
;
comp
<
3
;
comp
++
){
N
[
step
][
comp
]
=
Ns
[
step
][
comp
]
=
0.
;
L
[
step
][
comp
]
=
Ls
[
step
][
comp
]
=
0.
;
}
// tag all the nodes with "0" (the default tag)
for
(
int
step
=
0
;
step
<
numSteps
;
step
++
){
for
(
int
ent
=
0
;
ent
<
numEntities
;
ent
++
){
for
(
int
ele
=
0
;
ele
<
eData
->
getNumElements
(
step
,
ent
);
ele
++
){
if
(
eData
->
skipElement
(
step
,
ent
,
ele
))
continue
;
for
(
int
nod
=
0
;
nod
<
eData
->
getNumNodes
(
step
,
ent
,
ele
);
nod
++
)
eData
->
tagNode
(
step
,
ent
,
ele
,
nod
,
0
);
}
}
}
for
(
int
ent
=
0
;
ent
<
eData
->
getNumEntities
(
0
);
ent
++
){
for
(
int
ele
=
0
;
ele
<
eData
->
getNumElements
(
0
,
ent
);
ele
++
){
if
(
eData
->
skipElement
(
0
,
ent
,
ele
))
continue
;
int
numComp
=
eData
->
getNumComponents
(
0
,
ent
,
ele
);
if
(
numComp
!=
3
)
continue
;
int
numNodes
=
eData
->
getNumNodes
(
0
,
ent
,
ele
);
double
x
[
numNodes
],
y
[
numNodes
],
z
[
numNodes
]
;
int
tag
[
numNodes
];
for
(
int
nod
=
0
;
nod
<
numNodes
;
nod
++
)
tag
[
nod
]
=
eData
->
getNode
(
0
,
ent
,
ele
,
nod
,
x
[
nod
],
y
[
nod
],
z
[
nod
]);
double
n
[
3
]
=
{
0.
,
0.
,
0.
};
normal3points
(
x
[
0
],
y
[
0
],
z
[
0
],
x
[
1
],
y
[
1
],
z
[
1
],
x
[
2
],
y
[
2
],
z
[
2
],
n
);
double
Js
[
numSteps
][
numNodes
*
numComp
],
Ms
[
numSteps
][
numNodes
*
numComp
]
;
for
(
int
step
=
0
;
step
<
numSteps
;
step
++
){
for
(
int
nod
=
0
;
nod
<
numNodes
;
nod
++
){
if
(
tag
[
nod
])
continue
;
// already condisered in integration
for
(
int
comp
=
0
;
comp
<
numComp
;
comp
++
){
eData
->
getValue
(
step
,
ent
,
ele
,
nod
,
comp
,
Ms
[
numSteps
][
numComp
*
nod
+
comp
]);
hData
->
getValue
(
step
,
ent
,
ele
,
nod
,
comp
,
Js
[
numSteps
][
numComp
*
nod
+
comp
]);
}
}
}
// Integration
double
P0
[
3
]
=
{
x
[
0
],
y
[
0
],
z
[
0
]}
;
double
P1
[
3
]
=
{
x
[
1
],
y
[
1
],
z
[
1
]}
;
double
P2
[
3
]
=
{
x
[
2
],
y
[
2
],
z
[
2
]}
;
double
quad_area
=
triangle_area
(
P0
,
P1
,
P2
);
for
(
int
nod
=
0
;
nod
<
numNodes
;
nod
++
){
double
rr
,
r_nod
[
3
]
=
{
x
[
nod
],
y
[
nod
],
z
[
nod
]};
prosca
(
r_nod
,
r
,
&
rr
)
;
double
cos_k0rr
=
quad_area
*
cos
(
k0
*
rr
)
;
double
sin_k0rr
=
quad_area
*
sin
(
k0
*
rr
)
;
N
[
0
][
0
]
+=
Js
[
0
][
numComp
*
nod
+
0
]
*
cos_k0rr
-
Js
[
1
][
numComp
*
nod
+
0
]
*
sin_k0rr
;
N
[
0
][
1
]
+=
Js
[
0
][
numComp
*
nod
+
1
]
*
cos_k0rr
-
Js
[
1
][
numComp
*
nod
+
1
]
*
sin_k0rr
;
N
[
0
][
2
]
+=
Js
[
0
][
numComp
*
nod
+
2
]
*
cos_k0rr
-
Js
[
1
][
numComp
*
nod
+
2
]
*
sin_k0rr
;
N
[
1
][
0
]
+=
Js
[
0
][
numComp
*
nod
+
0
]
*
sin_k0rr
+
Js
[
1
][
numComp
*
nod
+
0
]
*
cos_k0rr
;
N
[
1
][
1
]
+=
Js
[
0
][
numComp
*
nod
+
1
]
*
sin_k0rr
+
Js
[
1
][
numComp
*
nod
+
1
]
*
cos_k0rr
;
N
[
1
][
2
]
+=
Js
[
0
][
numComp
*
nod
+
2
]
*
sin_k0rr
+
Js
[
1
][
numComp
*
nod
+
2
]
*
cos_k0rr
;
L
[
0
][
0
]
+=
Ms
[
0
][
numComp
*
nod
+
0
]
*
cos_k0rr
-
Ms
[
1
][
numComp
*
nod
+
0
]
*
sin_k0rr
;
L
[
0
][
1
]
+=
Ms
[
0
][
numComp
*
nod
+
1
]
*
cos_k0rr
-
Ms
[
1
][
numComp
*
nod
+
1
]
*
sin_k0rr
;
L
[
0
][
2
]
+=
Ms
[
0
][
numComp
*
nod
+
2
]
*
cos_k0rr
-
Ms
[
1
][
numComp
*
nod
+
2
]
*
sin_k0rr
;
L
[
1
][
0
]
+=
Ms
[
0
][
numComp
*
nod
+
0
]
*
sin_k0rr
+
Ms
[
1
][
numComp
*
nod
+
0
]
*
cos_k0rr
;
L
[
1
][
1
]
+=
Ms
[
0
][
numComp
*
nod
+
1
]
*
sin_k0rr
+
Ms
[
1
][
numComp
*
nod
+
1
]
*
cos_k0rr
;
L
[
1
][
2
]
+=
Ms
[
0
][
numComp
*
nod
+
2
]
*
sin_k0rr
+
Ms
[
1
][
numComp
*
nod
+
2
]
*
cos_k0rr
;
eData
->
tagNode
(
0
,
ent
,
ele
,
nod
,
1
);
}
}
}
CartesianToSpherical
(
numSteps
,
theta
,
phi
,
N
,
Ns
)
;
CartesianToSpherical
(
numSteps
,
theta
,
phi
,
L
,
Ls
)
;
// E_r radial component is negligible in far field
double
E_theta
[
2
]
;
double
E_phi
[
2
]
;
double
k0_over_4pir
=
k0
/
(
4
*
M_PI
*
r_far
)
;
double
cos_k0r
=
cos
(
k0
*
r_far
)
;
double
sin_k0r
=
sin
(
k0
*
r_far
)
;
// Elevation component
E_theta
[
0
]
=
-
k0_over_4pir
*
(
(
Ls
[
0
][
2
]
+
Z0
*
Ns
[
0
][
1
])
*
sin_k0r
-
(
Ls
[
1
][
2
]
+
Z0
*
Ns
[
1
][
1
])
*
cos_k0r
)
;
E_theta
[
1
]
=
-
k0_over_4pir
*
(
(
Ls
[
0
][
2
]
+
Z0
*
Ns
[
0
][
1
])
*
cos_k0r
+
(
Ls
[
1
][
2
]
+
Z0
*
Ns
[
1
][
1
])
*
sin_k0r
)
;
// Azimuthal component
E_phi
[
0
]
=
k0_over_4pir
*
(
(
Ls
[
0
][
1
]
-
Z0
*
Ns
[
0
][
2
])
*
sin_k0r
-
(
Ls
[
1
][
1
]
-
Z0
*
Ns
[
1
][
2
])
*
cos_k0r
)
;
E_phi
[
1
]
=
k0_over_4pir
*
(
(
Ls
[
0
][
1
]
-
Z0
*
Ns
[
0
][
2
])
*
cos_k0r
+
(
Ls
[
1
][
1
]
-
Z0
*
Ns
[
1
][
2
])
*
sin_k0r
)
;
//printf("Ephi %g %g \n ", E_phi[0], E_phi[1]) ;
//printf("Etheta %g %g\n ", E_theta[0], E_theta[1]) ;
double
farF
=
1.
/
2.
/
Z0
*
(
(
E_theta
[
0
]
*
E_theta
[
0
]
+
E_theta
[
1
]
*
E_theta
[
1
])
+
(
E_phi
[
0
]
*
E_phi
[
0
]
+
E_phi
[
1
]
*
E_phi
[
1
])
)
;
for
(
int
step
=
0
;
step
<
numSteps
;
step
++
){
delete
[]
N
[
step
]
;
delete
[]
Ns
[
step
]
;
delete
[]
L
[
step
]
;
delete
[]
Ls
[
step
]
;
}
delete
[]
N
;
delete
[]
Ns
;
delete
[]
L
;
delete
[]
Ls
;
return
farF
;
}
PView
*
GMSH_NearToFarFieldPlugin
::
execute
(
PView
*
v
)
{
double
_k0
=
(
double
)
NearToFarFieldOptions_Number
[
0
].
def
;
double
_r_far
=
(
double
)
NearToFarFieldOptions_Number
[
1
].
def
;
int
_NbPhi
=
(
int
)
NearToFarFieldOptions_Number
[
2
].
def
;
int
_NbThe
=
(
int
)
NearToFarFieldOptions_Number
[
3
].
def
;
int
_eView
=
(
int
)
NearToFarFieldOptions_Number
[
4
].
def
;
int
_hView
=
(
int
)
NearToFarFieldOptions_Number
[
5
].
def
;
bool
_normalize
=
(
bool
)
NearToFarFieldOptions_Number
[
6
].
def
;
bool
_dB
=
(
bool
)
NearToFarFieldOptions_Number
[
7
].
def
;
PView
*
ve
=
getView
(
_eView
,
v
);
if
(
!
ve
){
Msg
::
Error
(
"NearToFarField plugin could not find EView %i"
,
_eView
);
return
v
;
}
PView
*
vh
=
getView
(
_hView
,
v
);
if
(
!
vh
){
Msg
::
Error
(
"NearToFarField plugin could not find HView %i"
,
_hView
);
return
v
;
}
PViewData
*
eData
=
ve
->
getData
()
;
PViewData
*
hData
=
vh
->
getData
()
;
if
(
eData
->
getNumEntities
()
!=
hData
->
getNumEntities
()
||
eData
->
getNumElements
()
!=
hData
->
getNumElements
()
||
eData
->
getNumTimeSteps
()
!=
hData
->
getNumTimeSteps
()){
Msg
::
Error
(
"Incompatible views for e-field and h-field"
);
return
v
;
}
if
(
eData
->
getNumTimeSteps
()
!=
2
){
Msg
::
Error
(
"NearToFarField Plugin only implemented for frequency domain, fields must be complex"
);
return
v
;
}
// Center of the Far Field sphere
double
x0
=
eData
->
getBoundingBox
().
center
().
x
();
double
y0
=
eData
->
getBoundingBox
().
center
().
y
();
double
z0
=
eData
->
getBoundingBox
().
center
().
z
();
if
(
x0
!=
hData
->
getBoundingBox
().
center
().
x
()
||
y0
!=
hData
->
getBoundingBox
().
center
().
y
()
||
z0
!=
hData
->
getBoundingBox
().
center
().
z
()){
Msg
::
Error
(
"EView %i and HView %i must be given on the same grid"
,
_eView
,
_hView
);
return
v
;
}
// View for far field: represented on a sphere of radious determined by the size of the BoundingBox
PView
*
vf
=
new
PView
();
PViewDataList
*
dataFar
=
getDataList
(
vf
);
double
phi
,
dPhi
=
2
*
M_PI
/
_NbPhi
;
double
theta
,
dTheta
=
M_PI
/
_NbThe
;
double
ffmax
=
0.0
;
double
**
allPhi
=
new
double
*
[
_NbPhi
+
1
]
;
double
**
allThe
=
new
double
*
[
_NbPhi
+
1
]
;
double
**
farF
=
new
double
*
[
_NbPhi
+
1
]
;
for
(
int
i
=
0
;
i
<=
_NbPhi
;
i
++
){
allPhi
[
i
]
=
new
double
[
_NbThe
+
1
]
;
allThe
[
i
]
=
new
double
[
_NbThe
+
1
]
;
farF
[
i
]
=
new
double
[
_NbThe
+
1
]
;
}
ve
->
setChanged
(
true
);
vh
->
setChanged
(
true
);
for
(
int
step
=
0
;
step
<
eData
->
getNumTimeSteps
();
step
++
){
// tag all the nodes with "0" (the default tag)
for
(
int
ent
=
0
;
ent
<
eData
->
getNumEntities
(
step
);
ent
++
){
for
(
int
ele
=
0
;
ele
<
eData
->
getNumElements
(
step
,
ent
);
ele
++
){
if
(
eData
->
skipElement
(
step
,
ent
,
ele
))
continue
;
if
(
hData
->
skipElement
(
step
,
ent
,
ele
))
continue
;
for
(
int
nod
=
0
;
nod
<
eData
->
getNumNodes
(
step
,
ent
,
ele
);
nod
++
){
eData
->
tagNode
(
step
,
ent
,
ele
,
nod
,
0
);
hData
->
tagNode
(
step
,
ent
,
ele
,
nod
,
0
);
}
}
}
for
(
int
ent
=
0
;
ent
<
eData
->
getNumEntities
(
step
);
ent
++
){
for
(
int
ele
=
0
;
ele
<
eData
->
getNumElements
(
step
,
ent
);
ele
++
){
if
(
eData
->
skipElement
(
0
,
ent
,
ele
))
continue
;
if
(
hData
->
skipElement
(
0
,
ent
,
ele
))
continue
;
int
numComp
=
eData
->
getNumComponents
(
0
,
ent
,
ele
);
if
(
numComp
!=
3
)
continue
;
int
numNodes
=
eData
->
getNumNodes
(
0
,
ent
,
ele
);
double
x
[
numNodes
],
y
[
numNodes
],
z
[
numNodes
]
;
int
tag
[
numNodes
];
for
(
int
nod
=
0
;
nod
<
numNodes
;
nod
++
)
tag
[
nod
]
=
eData
->
getNode
(
step
,
ent
,
ele
,
nod
,
x
[
nod
],
y
[
nod
],
z
[
nod
]);
double
n
[
3
]
=
{
0.
,
0.
,
0.
};
normal3points
(
x
[
0
],
y
[
0
],
z
[
0
],
x
[
1
],
y
[
1
],
z
[
1
],
x
[
2
],
y
[
2
],
z
[
2
],
n
);
double
valE
[
numNodes
*
numComp
],
valH
[
numNodes
*
numComp
]
;
for
(
int
nod
=
0
;
nod
<
numNodes
;
nod
++
){
if
(
tag
[
nod
])
continue
;
// already considered
for
(
int
comp
=
0
;
comp
<
numComp
;
comp
++
){
eData
->
getValue
(
step
,
ent
,
ele
,
nod
,
comp
,
valE
[
numComp
*
nod
+
comp
]);
hData
->
getValue
(
step
,
ent
,
ele
,
nod
,
comp
,
valH
[
numComp
*
nod
+
comp
]);
}
double
H
[
3
]
=
{
valH
[
numComp
*
nod
+
0
],
valH
[
numComp
*
nod
+
1
],
valH
[
numComp
*
nod
+
2
]
}
;
double
E
[
3
]
=
{
valE
[
numComp
*
nod
+
0
],
valE
[
numComp
*
nod
+
1
],
valE
[
numComp
*
nod
+
2
]
}
;
double
J
[
3
],
M
[
3
]
;
prodve
(
n
,
H
,
J
)
;
// Js = n x H ; Surface electric current
prodve
(
E
,
n
,
M
)
;
// Ms = - n x E ; Surface magnetic current
for
(
int
comp
=
0
;
comp
<
numComp
;
comp
++
){
eData
->
setValue
(
step
,
ent
,
ele
,
nod
,
comp
,
M
[
comp
]);
hData
->
setValue
(
step
,
ent
,
ele
,
nod
,
comp
,
J
[
comp
]);
eData
->
tagNode
(
step
,
ent
,
ele
,
nod
,
1
);
hData
->
tagNode
(
step
,
ent
,
ele
,
nod
,
1
);
}
}
}
}
}
eData
->
finalize
();
hData
->
finalize
();
//****************************************
for
(
int
i
=
0
;
i
<=
_NbPhi
;
i
++
){
phi
=
i
*
dPhi
;
for
(
int
j
=
0
;
j
<=
_NbThe
;
j
++
){
theta
=
j
*
dTheta
;
allPhi
[
i
][
j
]
=
phi
;
allThe
[
i
][
j
]
=
theta
;
farF
[
i
][
j
]
=
getFarField
(
eData
,
hData
,
_k0
,
_r_far
,
theta
,
phi
)
;
ffmax
=
(
ffmax
<
farF
[
i
][
j
])
?
farF
[
i
][
j
]
:
ffmax
;
}
}
if
(
_normalize
){
for
(
int
i
=
0
;
i
<=
_NbPhi
;
i
++
)
for
(
int
j
=
0
;
j
<=
_NbThe
;
j
++
)
if
(
ffmax
!=
0.0
)
farF
[
i
][
j
]
/=
ffmax
;
else
Msg
::
Warning
(
"Far field pattern not normalized, max value = %g"
,
ffmax
);
}
// Constructing sphere for visualization
// centered at center of bb and with radious relative to the bb size
double
r_bb
[
3
]
=
{
eData
->
getBoundingBox
().
max
().
x
()
-
eData
->
getBoundingBox
().
min
().
x
(),
eData
->
getBoundingBox
().
max
().
y
()
-
eData
->
getBoundingBox
().
min
().
y
(),
eData
->
getBoundingBox
().
max
().
z
()
-
eData
->
getBoundingBox
().
min
().
z
()
};
double
r_sph
=
norm3
(
r_bb
)
;
r_sph
=
(
r_sph
)
?
r_sph
/
2
:
1.
/
2.
;
// radious of sphere for visu
for
(
int
i
=
0
;
i
<
_NbPhi
;
i
++
){
for
(
int
j
=
0
;
j
<
_NbThe
;
j
++
){
double
P1
[
3
]
=
{
x0
+
r_sph
*
farF
[
i
][
j
]
*
sin
(
allThe
[
i
][
j
])
*
cos
(
allPhi
[
i
][
j
]),
y0
+
r_sph
*
farF
[
i
][
j
]
*
sin
(
allThe
[
i
][
j
])
*
sin
(
allPhi
[
i
][
j
]),
z0
+
r_sph
*
farF
[
i
][
j
]
*
cos
(
allThe
[
i
][
j
])
}
;
double
P2
[
3
]
=
{
x0
+
r_sph
*
farF
[
i
+
1
][
j
]
*
sin
(
allThe
[
i
+
1
][
j
])
*
cos
(
allPhi
[
i
+
1
][
j
]),
y0
+
r_sph
*
farF
[
i
+
1
][
j
]
*
sin
(
allThe
[
i
+
1
][
j
])
*
sin
(
allPhi
[
i
+
1
][
j
]),
z0
+
r_sph
*
farF
[
i
+
1
][
j
]
*
cos
(
allThe
[
i
+
1
][
j
])
}
;
double
P3
[
3
]
=
{
x0
+
r_sph
*
farF
[
i
+
1
][
j
+
1
]
*
sin
(
allThe
[
i
+
1
][
j
+
1
])
*
cos
(
allPhi
[
i
+
1
][
j
+
1
]),
y0
+
r_sph
*
farF
[
i
+
1
][
j
+
1
]
*
sin
(
allThe
[
i
+
1
][
j
+
1
])
*
sin
(
allPhi
[
i
+
1
][
j
+
1
]),
z0
+
r_sph
*
farF
[
i
+
1
][
j
+
1
]
*
cos
(
allThe
[
i
+
1
][
j
+
1
])
}
;
double
P4
[
3
]
=
{
x0
+
r_sph
*
farF
[
i
][
j
+
1
]
*
sin
(
allThe
[
i
][
j
+
1
])
*
cos
(
allPhi
[
i
][
j
+
1
]),
y0
+
r_sph
*
farF
[
i
][
j
+
1
]
*
sin
(
allThe
[
i
][
j
+
1
])
*
sin
(
allPhi
[
i
][
j
+
1
]),
z0
+
r_sph
*
farF
[
i
][
j
+
1
]
*
cos
(
allThe
[
i
][
j
+
1
])
}
;
dataFar
->
SQ
.
push_back
(
P1
[
0
]);
dataFar
->
SQ
.
push_back
(
P2
[
0
]);
dataFar
->
SQ
.
push_back
(
P3
[
0
]);
dataFar
->
SQ
.
push_back
(
P4
[
0
]);
dataFar
->
SQ
.
push_back
(
P1
[
1
]);
dataFar
->
SQ
.
push_back
(
P2
[
1
]);
dataFar
->
SQ
.
push_back
(
P3
[
1
]);
dataFar
->
SQ
.
push_back
(
P4
[
1
]);
dataFar
->
SQ
.
push_back
(
P1
[
2
]);
dataFar
->
SQ
.
push_back
(
P2
[
2
]);
dataFar
->
SQ
.
push_back
(
P3
[
2
]);
dataFar
->
SQ
.
push_back
(
P4
[
2
]);
(
dataFar
->
NbSQ
)
++
;
if
(
!
_dB
){
dataFar
->
SQ
.
push_back
(
farF
[
i
][
j
]);
dataFar
->
SQ
.
push_back
(
farF
[
i
+
1
][
j
]);
dataFar
->
SQ
.
push_back
(
farF
[
i
+
1
][
j
+
1
]);
dataFar
->
SQ
.
push_back
(
farF
[
i
][
j
+
1
]);
}
else
{
dataFar
->
SQ
.
push_back
(
log10
(
farF
[
i
][
j
]));
dataFar
->
SQ
.
push_back
(
log10
(
farF
[
i
+
1
][
j
]));
dataFar
->
SQ
.
push_back
(
log10
(
farF
[
i
+
1
][
j
+
1
]));
dataFar
->
SQ
.
push_back
(
log10
(
farF
[
i
][
j
+
1
]));
}
}
}
for
(
int
i
=
0
;
i
<=
_NbPhi
;
i
++
){
delete
[]
allPhi
[
i
]
;
delete
[]
allThe
[
i
]
;
delete
[]
farF
[
i
];
}
delete
[]
allPhi
;
delete
[]
allThe
;
delete
[]
farF
;
dataFar
->
setName
(
"_NearToFarField"
);
dataFar
->
setFileName
(
"_NearToFarField.pos"
);
dataFar
->
finalize
();
return
vf
;
}
This diff is collapsed.
Click to expand it.
Plugin/NearToFarField.h
0 → 100644
+
35
−
0
View file @
c0cdcddf
// Gmsh - Copyright (C) 1997-2011 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#ifndef _NEARTOFARFIELD_H_
#define _NEARTOFARFIELD_H_
#include
"Plugin.h"
extern
"C"
{
GMSH_Plugin
*
GMSH_RegisterNearToFarFieldPlugin
();
}
class
GMSH_NearToFarFieldPlugin
:
public
GMSH_PostPlugin
{
public:
GMSH_NearToFarFieldPlugin
(){}
std
::
string
getName
()
const
{
return
"NearToFarField"
;
}
std
::
string
getShortHelp
()
const
{
return
"Compute Far Field pattern from Near Field on a surface"
;
}
std
::
string
getHelp
()
const
;
int
getNbOptions
()
const
;
StringXNumber
*
getOption
(
int
iopt
);
PView
*
execute
(
PView
*
);
static
double
getFarField
(
PViewData
*
eData
,
PViewData
*
hData
,
double
k0
,
double
r_far
,
double
theta
,
double
phi
)
;
static
void
CartesianToSpherical
(
int
numSteps
,
double
theta
,
double
phi
,
double
**
Fc
,
double
**
Fsp
)
;
};
#endif
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment