Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
gmsh
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
Larry Price
gmsh
Commits
8cd5f7de
Commit
8cd5f7de
authored
16 years ago
by
Christophe Geuzaine
Browse files
Options
Downloads
Patches
Plain Diff
*** empty log message ***
parent
3e31c136
No related branches found
No related tags found
No related merge requests found
Changes
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
doc/texinfo/gmsh.texi
+16
-17
16 additions, 17 deletions
doc/texinfo/gmsh.texi
with
16 additions
and
17 deletions
doc/texinfo/gmsh.texi
+
16
−
17
View file @
8cd5f7de
...
...
@@ -2968,27 +2968,26 @@ interpolation matrices used for high-order adaptive visualization.
Let us assume that the approximation of the view's value over an element
is written as a linear combination of @var
{
d
}
basis functions
@var
{
f
}
[@var
{
j
}
], @var
{
j
}
=0, ..., @var
{
d
}
-1 (the coefficients being
stored in @var
{
list-of-values
}
). Defining @var
{
f
}
[@var
{
j
}
] =
Sum(@var
{
i
}
=0, ..., @var
{
d
}
-1) @var
{
p
}
[@var
{
i
}
]
@var
{
F
}
[@var
{
j
}
][@var
{
i
}
]
, with @var
{
p
}
[@var
{
i
}
]
=
@var
{
u
}^
@var
{
P
}
[@var
{
i
}
][
0
] @var
{
v
}^
@var
{
P
}
[@var
{
i
}
][
1]
@var
{
w
}^
@var
{
P
}
[@var
{
i
}
][2] (@var
{
u
}
, @var
{
v
}
and @var
{
w
}
being the
coordinates in the element's parameter space), then
@var
{
val-
coef
-matrix
}
denotes the @var
{
d
}
x @var
{
d
}
matrix
@var
{
F
}
and
@var
{
val-exp-matrix
}
denotes the @var
{
d
}
x @var
{
3
}
matrix
@var
{
P
}
.
@var
{
f
}
[@var
{
i
}
], @var
{
i
}
=0, ..., @var
{
d
}
-1 (the coefficients being
stored in @var
{
list-of-values
}
). Defining @var
{
f
}
[@var
{
i
}
] =
Sum(@var
{
j
}
=0, ..., @var
{
d
}
-1) @var
{
F
}
[@var
{
i
}
]
[@var
{
j
}
]
@var
{
p
}
[@var
{
j
}
]
, with @var
{
p
}
[@var
{
j
}
]
= @var
{
u
}^
@var
{
P
}
[@var
{
j
}
]
[0]
@var
{
v
}^
@var
{
P
}
[@var
{
j
}
][
1
] @var
{
w
}^
@var
{
P
}
[@var
{
j
}
][
2] (@var
{
u
}
,
@var
{
v
}
and @var
{
w
}
being the coordinates in the element's parameter
space), then @var
{
val-coef-matrix
}
denotes the @var
{
d
}
x @var
{
d
}
matrix
@var
{
F
}
and
@var
{
val-
exp
-matrix
}
denotes the @var
{
d
}
x @var
{
3
}
matrix
@var
{
P
}
.
In the same way, let us also assume that the coordinates @var
{
x
}
,
@var
{
y
}
and @var
{
z
}
of the element are obtained through a geometrical
mapping from parameter space as a linear combination of @var
{
m
}
basis
functions @var
{
g
}
[@var
{
j
}
], @var
{
j
}
=0, ..., @var
{
m
}
-1 (the coefficients
being stored in @var
{
list-of-coords
}
). Defining @var
{
g
}
[@var
{
j
}
] =
Sum(@var
{
i
}
=0, ..., @var
{
m
}
-1) @var
{
q
}
[@var
{
i
}
]
@var
{
G
}
[@var
{
j
}
][@var
{
i
}
], with @var
{
q
}
[@var
{
i
}
] =
@var
{
u
}^
@var
{
Q
}
[@var
{
i
}
][0] @var
{
v
}^
@var
{
Q
}
[@var
{
i
}
][1]
@var
{
w
}^
@var
{
Q
}
[@var
{
i
}
][2], then @var
{
val-coef-matrix
}
denotes the
@var
{
m
}
x @var
{
m
}
matrix @var
{
G
}
and @var
{
val-exp-matrix
}
denotes the
@var
{
m
}
x @var
{
3
}
matrix @var
{
Q
}
.
functions @var
{
g
}
[@var
{
i
}
], @var
{
i
}
=0, ..., @var
{
m
}
-1 (the coefficients
being stored in @var
{
list-of-coords
}
). Defining @var
{
g
}
[@var
{
i
}
] =
Sum(@var
{
j
}
=0, ..., @var
{
m
}
-1) @var
{
G
}
[@var
{
i
}
][@var
{
j
}
]
@var
{
q
}
[@var
{
j
}
], with @var
{
q
}
[@var
{
j
}
] = @var
{
u
}^
@var
{
Q
}
[@var
{
j
}
][0]
@var
{
v
}^
@var
{
Q
}
[@var
{
j
}
][1] @var
{
w
}^
@var
{
Q
}
[@var
{
j
}
][2], then
@var
{
val-coef-matrix
}
denotes the @var
{
m
}
x @var
{
m
}
matrix @var
{
G
}
and
@var
{
val-exp-matrix
}
denotes the @var
{
m
}
x @var
{
3
}
matrix @var
{
Q
}
.
Here are for example the interpolation matrices for a first order
quadrangle:
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment