diff --git a/doc/texinfo/gmsh.texi b/doc/texinfo/gmsh.texi index f0c2f0f5c635832035bc1a61c88bce56d8ea093d..635cc754e65d2fb34b6f3ebcdead4efc2e62ae28 100644 --- a/doc/texinfo/gmsh.texi +++ b/doc/texinfo/gmsh.texi @@ -2968,27 +2968,26 @@ interpolation matrices used for high-order adaptive visualization. Let us assume that the approximation of the view's value over an element is written as a linear combination of @var{d} basis functions -@var{f}[@var{j}], @var{j}=0, ..., @var{d}-1 (the coefficients being -stored in @var{list-of-values}). Defining @var{f}[@var{j}] = -Sum(@var{i}=0, ..., @var{d}-1) @var{p}[@var{i}] -@var{F}[@var{j}][@var{i}], with @var{p}[@var{i}] = -@var{u}^@var{P}[@var{i}][0] @var{v}^@var{P}[@var{i}][1] -@var{w}^@var{P}[@var{i}][2] (@var{u}, @var{v} and @var{w} being the -coordinates in the element's parameter space), then -@var{val-coef-matrix} denotes the @var{d} x @var{d} matrix @var{F} and -@var{val-exp-matrix} denotes the @var{d} x @var{3} matrix @var{P}. +@var{f}[@var{i}], @var{i}=0, ..., @var{d}-1 (the coefficients being +stored in @var{list-of-values}). Defining @var{f}[@var{i}] = +Sum(@var{j}=0, ..., @var{d}-1) @var{F}[@var{i}][@var{j}] +@var{p}[@var{j}], with @var{p}[@var{j}] = @var{u}^@var{P}[@var{j}][0] +@var{v}^@var{P}[@var{j}][1] @var{w}^@var{P}[@var{j}][2] (@var{u}, +@var{v} and @var{w} being the coordinates in the element's parameter +space), then @var{val-coef-matrix} denotes the @var{d} x @var{d} matrix +@var{F} and @var{val-exp-matrix} denotes the @var{d} x @var{3} matrix +@var{P}. In the same way, let us also assume that the coordinates @var{x}, @var{y} and @var{z} of the element are obtained through a geometrical mapping from parameter space as a linear combination of @var{m} basis -functions @var{g}[@var{j}], @var{j}=0, ..., @var{m}-1 (the coefficients -being stored in @var{list-of-coords}). Defining @var{g}[@var{j}] = -Sum(@var{i}=0, ..., @var{m}-1) @var{q}[@var{i}] -@var{G}[@var{j}][@var{i}], with @var{q}[@var{i}] = -@var{u}^@var{Q}[@var{i}][0] @var{v}^@var{Q}[@var{i}][1] -@var{w}^@var{Q}[@var{i}][2], then @var{val-coef-matrix} denotes the -@var{m} x @var{m} matrix @var{G} and @var{val-exp-matrix} denotes the -@var{m} x @var{3} matrix @var{Q}. +functions @var{g}[@var{i}], @var{i}=0, ..., @var{m}-1 (the coefficients +being stored in @var{list-of-coords}). Defining @var{g}[@var{i}] = +Sum(@var{j}=0, ..., @var{m}-1) @var{G}[@var{i}][@var{j}] +@var{q}[@var{j}], with @var{q}[@var{j}] = @var{u}^@var{Q}[@var{j}][0] +@var{v}^@var{Q}[@var{j}][1] @var{w}^@var{Q}[@var{j}][2], then +@var{val-coef-matrix} denotes the @var{m} x @var{m} matrix @var{G} and +@var{val-exp-matrix} denotes the @var{m} x @var{3} matrix @var{Q}. Here are for example the interpolation matrices for a first order quadrangle: