Skip to content
Snippets Groups Projects
Commit 3e31c136 authored by Christophe Geuzaine's avatar Christophe Geuzaine
Browse files

*** empty log message ***

parent 612aefa3
No related branches found
No related tags found
No related merge requests found
$Id: VERSIONS.txt,v 1.42 2009-03-18 20:29:26 geuzaine Exp $ $Id: VERSIONS.txt,v 1.43 2009-03-30 08:19:28 geuzaine Exp $
2.3.2 (?): optionally copy transfinite mesh contraints during geometry
transformations.
2.3.1 (Mar 18, 2009): removed GSL dependency (Gmsh now simply uses 2.3.1 (Mar 18, 2009): removed GSL dependency (Gmsh now simply uses
Blas and Lapack); new per-window visibility; added support for Blas and Lapack); new per-window visibility; added support for
......
...@@ -2969,12 +2969,12 @@ interpolation matrices used for high-order adaptive visualization. ...@@ -2969,12 +2969,12 @@ interpolation matrices used for high-order adaptive visualization.
Let us assume that the approximation of the view's value over an element Let us assume that the approximation of the view's value over an element
is written as a linear combination of @var{d} basis functions is written as a linear combination of @var{d} basis functions
@var{f}[@var{j}], @var{j}=0, ..., @var{d}-1 (the coefficients being @var{f}[@var{j}], @var{j}=0, ..., @var{d}-1 (the coefficients being
stored in @var{list-of-values}). If @var{f}[@var{j}] = @var{p}[0] stored in @var{list-of-values}). Defining @var{f}[@var{j}] =
@var{F}[@var{j}][0] + @var{p}[1] @var{F}[@var{j}][1] + @var{p}[2] Sum(@var{i}=0, ..., @var{d}-1) @var{p}[@var{i}]
@var{F}[@var{j}][2] + ..., with @var{p}[@var{i}] = @var{F}[@var{j}][@var{i}], with @var{p}[@var{i}] =
@var{u}^@var{P}[@var{i}][0] @var{v}^@var{P}[@var{i}][1] @var{u}^@var{P}[@var{i}][0] @var{v}^@var{P}[@var{i}][1]
@var{w}^@var{P}[@var{i}][2] (@var{u}, @var{v} and @var{w} being the @var{w}^@var{P}[@var{i}][2] (@var{u}, @var{v} and @var{w} being the
coordinates of the element's parameter space), then coordinates in the element's parameter space), then
@var{val-coef-matrix} denotes the @var{d} x @var{d} matrix @var{F} and @var{val-coef-matrix} denotes the @var{d} x @var{d} matrix @var{F} and
@var{val-exp-matrix} denotes the @var{d} x @var{3} matrix @var{P}. @var{val-exp-matrix} denotes the @var{d} x @var{3} matrix @var{P}.
...@@ -2982,14 +2982,13 @@ In the same way, let us also assume that the coordinates @var{x}, ...@@ -2982,14 +2982,13 @@ In the same way, let us also assume that the coordinates @var{x},
@var{y} and @var{z} of the element are obtained through a geometrical @var{y} and @var{z} of the element are obtained through a geometrical
mapping from parameter space as a linear combination of @var{m} basis mapping from parameter space as a linear combination of @var{m} basis
functions @var{g}[@var{j}], @var{j}=0, ..., @var{m}-1 (the coefficients functions @var{g}[@var{j}], @var{j}=0, ..., @var{m}-1 (the coefficients
being stored in @var{list-of-coords}). being stored in @var{list-of-coords}). Defining @var{g}[@var{j}] =
Sum(@var{i}=0, ..., @var{m}-1) @var{q}[@var{i}]
If @var{g}[@var{j}] = @var{q}[0] @var{G}[@var{j}][0] + @var{q}[1] @var{G}[@var{j}][@var{i}], with @var{q}[@var{i}] =
@var{G}[@var{j}][1] + @var{q}[2] @var{G}[@var{j}][2] + ..., with @var{u}^@var{Q}[@var{i}][0] @var{v}^@var{Q}[@var{i}][1]
@var{q}[@var{i}] = @var{u}^@var{Q}[@var{i}][0] @var{w}^@var{Q}[@var{i}][2], then @var{val-coef-matrix} denotes the
@var{v}^@var{Q}[@var{i}][1] @var{w}^@var{Q}[@var{i}][2], then @var{m} x @var{m} matrix @var{G} and @var{val-exp-matrix} denotes the
@var{val-coef-matrix} denotes the @var{m} x @var{m} matrix @var{G} and @var{m} x @var{3} matrix @var{Q}.
@var{val-exp-matrix} denotes the @var{m} x @var{3} matrix @var{Q}.
Here are for example the interpolation matrices for a first order Here are for example the interpolation matrices for a first order
quadrangle: quadrangle:
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment