From 3e31c136788995331c102052a92d0bac0ff72526 Mon Sep 17 00:00:00 2001 From: Christophe Geuzaine <cgeuzaine@ulg.ac.be> Date: Mon, 30 Mar 2009 08:19:28 +0000 Subject: [PATCH] *** empty log message *** --- doc/VERSIONS.txt | 5 ++++- doc/texinfo/gmsh.texi | 23 +++++++++++------------ 2 files changed, 15 insertions(+), 13 deletions(-) diff --git a/doc/VERSIONS.txt b/doc/VERSIONS.txt index cf6998a5b9..cc6c67d18c 100644 --- a/doc/VERSIONS.txt +++ b/doc/VERSIONS.txt @@ -1,4 +1,7 @@ -$Id: VERSIONS.txt,v 1.42 2009-03-18 20:29:26 geuzaine Exp $ +$Id: VERSIONS.txt,v 1.43 2009-03-30 08:19:28 geuzaine Exp $ + +2.3.2 (?): optionally copy transfinite mesh contraints during geometry +transformations. 2.3.1 (Mar 18, 2009): removed GSL dependency (Gmsh now simply uses Blas and Lapack); new per-window visibility; added support for diff --git a/doc/texinfo/gmsh.texi b/doc/texinfo/gmsh.texi index 4a5f740905..f0c2f0f5c6 100644 --- a/doc/texinfo/gmsh.texi +++ b/doc/texinfo/gmsh.texi @@ -2969,12 +2969,12 @@ interpolation matrices used for high-order adaptive visualization. Let us assume that the approximation of the view's value over an element is written as a linear combination of @var{d} basis functions @var{f}[@var{j}], @var{j}=0, ..., @var{d}-1 (the coefficients being -stored in @var{list-of-values}). If @var{f}[@var{j}] = @var{p}[0] -@var{F}[@var{j}][0] + @var{p}[1] @var{F}[@var{j}][1] + @var{p}[2] -@var{F}[@var{j}][2] + ..., with @var{p}[@var{i}] = +stored in @var{list-of-values}). Defining @var{f}[@var{j}] = +Sum(@var{i}=0, ..., @var{d}-1) @var{p}[@var{i}] +@var{F}[@var{j}][@var{i}], with @var{p}[@var{i}] = @var{u}^@var{P}[@var{i}][0] @var{v}^@var{P}[@var{i}][1] @var{w}^@var{P}[@var{i}][2] (@var{u}, @var{v} and @var{w} being the -coordinates of the element's parameter space), then +coordinates in the element's parameter space), then @var{val-coef-matrix} denotes the @var{d} x @var{d} matrix @var{F} and @var{val-exp-matrix} denotes the @var{d} x @var{3} matrix @var{P}. @@ -2982,14 +2982,13 @@ In the same way, let us also assume that the coordinates @var{x}, @var{y} and @var{z} of the element are obtained through a geometrical mapping from parameter space as a linear combination of @var{m} basis functions @var{g}[@var{j}], @var{j}=0, ..., @var{m}-1 (the coefficients -being stored in @var{list-of-coords}). - -If @var{g}[@var{j}] = @var{q}[0] @var{G}[@var{j}][0] + @var{q}[1] -@var{G}[@var{j}][1] + @var{q}[2] @var{G}[@var{j}][2] + ..., with -@var{q}[@var{i}] = @var{u}^@var{Q}[@var{i}][0] -@var{v}^@var{Q}[@var{i}][1] @var{w}^@var{Q}[@var{i}][2], then -@var{val-coef-matrix} denotes the @var{m} x @var{m} matrix @var{G} and -@var{val-exp-matrix} denotes the @var{m} x @var{3} matrix @var{Q}. +being stored in @var{list-of-coords}). Defining @var{g}[@var{j}] = +Sum(@var{i}=0, ..., @var{m}-1) @var{q}[@var{i}] +@var{G}[@var{j}][@var{i}], with @var{q}[@var{i}] = +@var{u}^@var{Q}[@var{i}][0] @var{v}^@var{Q}[@var{i}][1] +@var{w}^@var{Q}[@var{i}][2], then @var{val-coef-matrix} denotes the +@var{m} x @var{m} matrix @var{G} and @var{val-exp-matrix} denotes the +@var{m} x @var{3} matrix @var{Q}. Here are for example the interpolation matrices for a first order quadrangle: -- GitLab