Newer
Older
// $Id: DiscreteSurface.cpp,v 1.7 2005-04-11 08:53:15 remacle Exp $
//
// Copyright (C) 1997-2005 C. Geuzaine, J.-F. Remacle
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2 of the License, or
// (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software
// Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307
// USA.
//
// Please report all bugs and problems to "gmsh@geuz.org".
//
// Contributor(s):
// Nicolas Tardieu
//
#include "Gmsh.h"
#include "Numeric.h"
#include "Mesh.h"
#include "DiscreteSurface.h"
#include "CAD.h"
#include "Geo.h"
#include "Create.h"
#include "Interpolation.h"
#include "Context.h"
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
static Tree_T * VertexBound = NULL;
static void InsertInVertexBound(void *a, void *b)
{
Tree_Insert(VertexBound, a);
}
// Polygonal representation of discrete surfaces
POLY_rep::POLY_rep()
: num_points(0), num_polys(0)
{
points_and_normals = List_Create(100, 100, sizeof(double));
polygons = List_Create(100, 100, sizeof(double));
bounding_box[0] = bounding_box[2] = bounding_box[4] = VAL_INF;
bounding_box[1] = bounding_box[3] = bounding_box[5] = -VAL_INF;
}
POLY_rep::POLY_rep(int _num_points, int _num_polys, List_T *_p, List_T *_pol)
: num_points(_num_points), num_polys(_num_polys),
points_and_normals(_p), polygons(_pol)
{
bounding_box[0] = bounding_box[2] = bounding_box[4] = VAL_INF;
bounding_box[1] = bounding_box[3] = bounding_box[5] = -VAL_INF;
// check num points
if(List_Nbr(points_and_normals) != num_points * 6){
Msg(GERROR, "Wrong number of points in discrete surface");
if(polygons){
List_Delete(polygons);
polygons = 0;
}
if(points_and_normals){
List_Delete(points_and_normals);
points_and_normals = 0;
}
return;
}
// compute the bbox
compute_bounding_box();
// check polygons
int k = 0;
while (k < List_Nbr(polygons)){
double *points = (double*)List_Pointer(polygons,k);
k += ((int)points[0] + 1);
for(int i = 0; i < (int)points[0]; i++){
if(6 * (int)points[1+i] >= List_Nbr(points_and_normals)){
Msg(GERROR, "Wrong point index in discrete surface");
if(polygons){
List_Delete(polygons);
polygons = 0;
}
if(points_and_normals){
List_Delete(points_and_normals);
points_and_normals = 0;
}
return;
}
}
}
}
void POLY_rep::compute_bounding_box()
{
for(int i = 0; i < List_Nbr(points_and_normals); i+=6){
double *points = (double*)List_Pointer(points_and_normals, i);
if(points[0] < bounding_box[0]) bounding_box[0] = points[0];
if(points[0] > bounding_box[1]) bounding_box[1] = points[0];
if(points[1] < bounding_box[2]) bounding_box[2] = points[1];
if(points[1] > bounding_box[3]) bounding_box[3] = points[1];
if(points[2] < bounding_box[4]) bounding_box[4] = points[2];
if(points[2] > bounding_box[5]) bounding_box[5] = points[2];
}
}
POLY_rep::~POLY_rep()
{
if(polygons) List_Delete(polygons);
if(points_and_normals) List_Delete(points_and_normals);
}
double SetLC(Vertex *v1, Vertex *v2, Vertex *v3, double factor)
{
double lc1 = sqrt((v1->Pos.X - v2->Pos.X) * (v1->Pos.X - v2->Pos.X) +
(v1->Pos.Y - v2->Pos.Y) * (v1->Pos.Y - v2->Pos.Y) +
(v1->Pos.Z - v2->Pos.Z) * (v1->Pos.Z - v2->Pos.Z));
double lc2 = sqrt((v1->Pos.X - v3->Pos.X) * (v1->Pos.X - v3->Pos.X) +
(v1->Pos.Y - v3->Pos.Y) * (v1->Pos.Y - v3->Pos.Y) +
(v1->Pos.Z - v3->Pos.Z) * (v1->Pos.Z - v3->Pos.Z));
double lc3 = sqrt((v2->Pos.X - v3->Pos.X) * (v2->Pos.X - v3->Pos.X) +
(v2->Pos.Y - v3->Pos.Y) * (v2->Pos.Y - v3->Pos.Y) +
(v2->Pos.Z - v3->Pos.Z) * (v2->Pos.Z - v3->Pos.Z));
double lc = DMAX(lc1, DMAX(lc2, lc3)) * factor;
v1->lc = v2->lc = v3->lc = lc;
return lc;
}
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
void Mesh_To_BDS(Surface *s, BDS_Mesh *m)
{
List_T *vertices = Tree2List ( s->Vertices ) ;
for (int i=0;i<List_Nbr ( vertices ) ;++i)
{
Vertex *v;
List_Read ( vertices, i, &v);
m->add_point (v->Num,v->Pos.X,v->Pos.Y,v->Pos.Z);
}
List_Delete (vertices);
List_T *triangles = Tree2List ( s->Simplexes) ;
for (int i=0;i<List_Nbr ( triangles ) ;++i)
{
Simplex *simp;
List_Read ( triangles, i, &simp);
Vertex *v1 = simp->V[0];
Vertex *v2 = simp->V[1];
Vertex *v3 = simp->V[2];
double n[3];
normal3points ( v1->Pos.X , v1->Pos.Y , v1->Pos.Z,
v2->Pos.X , v2->Pos.Y , v2->Pos.Z,
v3->Pos.X , v3->Pos.Y , v3->Pos.Z,
n);
m->add_triangle (v1->Num,v2->Num,v3->Num,n[0],n[1],n[2]);
}
List_Delete (triangles);
}
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
void POLY_rep_To_Mesh(POLY_rep *prep, Surface *s)
{
VertexBound = Tree_Create(sizeof(Vertex *), comparePosition);
Tree_Action(THEM->Vertices, InsertInVertexBound);
Vertex **verts = new Vertex*[List_Nbr(prep->points_and_normals)/6];
for(int i = 0; i < List_Nbr(prep->points_and_normals); i+=6){
double *point = (double*)List_Pointer(prep->points_and_normals, i);
Vertex *v = Create_Vertex(++THEM->MaxPointNum, point[0], point[1], point[2], 1.0, 0.0);
Vertex **pv;
if(!(pv = (Vertex**)Tree_PQuery(VertexBound, &v))){
Tree_Add(VertexBound, &v);
Tree_Add(s->Vertices, &v);
verts[i/6] = v;
}
else{
Free_Vertex(&v, NULL);
Tree_Insert(s->Vertices, pv);
verts[i/6] = *pv;
}
}
int k = 0;
while (k < List_Nbr(prep->polygons)){
double *points = (double*)List_Pointer(prep->polygons,k);
k+= ((int)points[0] + 1);
if (points[0] == 3){
Vertex *v1 = verts[(int)points[1]];
Vertex *v2 = verts[(int)points[2]];
Vertex *v3 = verts[(int)points[3]];
SetLC(v1, v2, v3, CTX.mesh.lc_factor);
Simplex *simp = Create_Simplex(v1, v2, v3, NULL);
simp->iEnt = s->Num;
Tree_Add(s->Simplexes, &simp);
}
else if (points[0] == 4){
Vertex *v1 = verts[(int)points[1]];
Vertex *v2 = verts[(int)points[2]];
Vertex *v3 = verts[(int)points[3]];
Vertex *v4 = verts[(int)points[4]];
SetLC(v1, v2, v3, CTX.mesh.lc_factor);
v4->lc = v1->lc;
Quadrangle *quad = Create_Quadrangle(v1, v2, v3, v4);
quad->iEnt = s->Num;
Tree_Add(s->Quadrangles, &quad);
}
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
}
Tree_Delete(VertexBound);
delete [] verts;
}
// Routines to process STL surfaces
static Surface *STL_Surf;
static void ComputeNormal(Surface * Surface, double Normal[3])
{
Curve *Curve1;
List_Read(Surface->Generatrices, 0, &Curve1);
Curve *Curve2;
List_Read(Surface->Generatrices, 1, &Curve2);
Vertex *Point11 = Curve1->beg;
Vertex *Point12 = Curve1->end;
Vertex *Point21 = Curve2->beg;
Vertex *Point22 = Curve2->end;
double vec1[3];
vec1[0] = (Point12->Pos.X) - (Point11->Pos.X);
vec1[1] = (Point12->Pos.Y) - (Point11->Pos.Y);
vec1[2] = (Point12->Pos.Z) - (Point11->Pos.Z);
double vec2[3];
vec2[0] = (Point22->Pos.X) - (Point21->Pos.X);
vec2[1] = (Point22->Pos.Y) - (Point21->Pos.Y);
vec2[2] = (Point22->Pos.Z) - (Point21->Pos.Z);
prodve(vec1, vec2, Normal);
norme(Normal);
}
static bool BelongToPhysicalEntity(int SurfaceNumber,
PhysicalGroup * CurrentPhysicalGroup)
{
PhysicalGroup *PhysicalGroup;
int NbPhysicalGroup = List_Nbr(THEM->PhysicalGroups);
bool Belong = false;
// Search if the current Surface belongs to the current PhysicalGroup
if(CurrentPhysicalGroup != NULL) {
if(List_Search(CurrentPhysicalGroup->Entities, &SurfaceNumber, fcmp_int)) {
Belong = true;
}
}
// Search if the current Surface belongs to another PhysicalGroup
if(!Belong) {
for(int i = 0; i < NbPhysicalGroup; i++) {
List_Read(THEM->PhysicalGroups, i, &PhysicalGroup);
if((PhysicalGroup->Typ == MSH_PHYSICAL_SURFACE) && (!Belong)) {
if(List_Search(PhysicalGroup->Entities, &SurfaceNumber, fcmp_int)) {
Belong = true;
break;
}
}
}
}
return Belong;
}
static void AddCorrectNeighborToPhysical(Surface * Surf1, PhysicalGroup * CurrentPhysicalGroup)
{
double Normal1[3], Normal2[3];
int elem2;
List_T *pSurfaceList = Tree2List(THEM->Surfaces);
Surface *Surf2;
int NbSimplex = Tree_Nbr(THEM->Surfaces);
Curve *Curve1;
Curve *Curve2;
ComputeNormal(Surf1, Normal1);
// Scan all the elements to find a Surface not belonging to an existing PhysicalGroup
for(elem2 = 1; elem2 < NbSimplex; elem2++) {
List_Read(pSurfaceList, elem2, &Surf2);
if(BelongToPhysicalEntity(Surf2->Num, CurrentPhysicalGroup)) {
continue;
}
ComputeNormal(Surf2, Normal2);
double Scal =
Normal1[0] * Normal2[0] + Normal1[1] * Normal2[1] +
Normal1[2] * Normal2[2];
// If the normals are OK, determine if the surfaces are neighbors
if((fabs(Scal) > 0.90) && ((Surf1->Num) != (Surf2->Num))) {
bool Exit = false;
for(int i = 0; i < 3; i++) {
if(!Exit) {
for(int j = 0; j < 3; j++) {
List_Read(Surf1->Generatrices, i, &Curve1);
List_Read(Surf2->Generatrices, j, &Curve2);
// The Surface have a common Edge
if(fabs(Curve1->Num) == fabs(Curve2->Num)) {
List_Add(CurrentPhysicalGroup->Entities, &(Surf2->Num));
AddCorrectNeighborToPhysical(Surf2, CurrentPhysicalGroup);
Exit = true;
break;
}
}
}
}
}
}
}
static void CreatePhysicalSurface()
{
Surface *Surf1;
PhysicalGroup *CurrentPhysicalGroup;
int NbSimplex = Tree_Nbr(THEM->Surfaces);
List_T *pSurfaceList = Tree2List(THEM->Surfaces);
// Scan all Simplexes to find correct Neighbors and add them to a PhysicalGroup
for(int elem1 = 0; elem1 < NbSimplex; elem1++) {
List_Read(pSurfaceList, elem1, &Surf1);
if(BelongToPhysicalEntity((Surf1->Num), NULL))
continue;
CurrentPhysicalGroup = (PhysicalGroup *) Malloc(sizeof(PhysicalGroup));
CurrentPhysicalGroup->Num = List_Nbr(THEM->PhysicalGroups)+1;
CurrentPhysicalGroup->Entities = List_Create(1, 1, sizeof(int));
CurrentPhysicalGroup->Typ = MSH_PHYSICAL_SURFACE;
CurrentPhysicalGroup->Visible = VIS_GEOM | VIS_MESH;
List_Add(CurrentPhysicalGroup->Entities, &(Surf1->Num));
AddCorrectNeighborToPhysical(Surf1, CurrentPhysicalGroup);
if(List_Nbr(CurrentPhysicalGroup->Entities) > 0)
List_Add(THEM->PhysicalGroups, &CurrentPhysicalGroup);
else
Free(CurrentPhysicalGroup);
}
}
void STLStartSolid()
{
VertexBound = Tree_Create(sizeof(Vertex *), comparePosition);
if(CTX.geom.stl_create_elementary){
Tree_Action(THEM->Points, InsertInVertexBound);
}
else{
STL_Surf = Create_Surface(NEWSURFACE(), MSH_SURF_DISCRETE);
STL_Surf->thePolyRep = new POLY_rep();
}
}
void STLEndSolid()
{
if(CTX.geom.stl_create_elementary){
ReplaceAllDuplicates(THEM);
if(CTX.geom.stl_create_physical)
CreatePhysicalSurface();
}
else{
STL_Surf->thePolyRep->compute_bounding_box();
STL_Surf->Support = STL_Surf;
End_Surface(STL_Surf);
Tree_Add(THEM->Surfaces, &STL_Surf);
Tree_Action(VertexBound, Free_Vertex);
}
Tree_Delete(VertexBound);
}
void STLAddFacet(double x1, double y1, double z1,
double x2, double y2, double z2,
double x3, double y3, double z3,
double n1, double n2, double n3)
{
Vertex **ppv;
// Create the nodes
Vertex *v1 = Create_Vertex(++THEM->MaxPointNum, x1, y1, z1, 1., 0);
if((ppv = (Vertex **) Tree_PQuery(VertexBound, &v1))) {
Free_Vertex(&v1, NULL);
v1 = *ppv;
}
else {
Tree_Add(VertexBound, &v1);
if(CTX.geom.stl_create_elementary) Tree_Add(THEM->Points, &v1);
}
Vertex *v2 = Create_Vertex(++THEM->MaxPointNum, x2, y2, z2, 1., 0);
if((ppv = (Vertex **) Tree_PQuery(VertexBound, &v2))) {
Free_Vertex(&v2, NULL);
v2 = *ppv;
}
else {
Tree_Add(VertexBound, &v2);
if(CTX.geom.stl_create_elementary) Tree_Add(THEM->Points, &v2);
}
Vertex *v3 = Create_Vertex(++THEM->MaxPointNum, x3, y3, z3, 1., 0);
if((ppv = (Vertex **) Tree_PQuery(VertexBound, &v3))) {
Free_Vertex(&v3, NULL);
v3 = *ppv;
}
else {
Tree_Add(VertexBound, &v3);
if(CTX.geom.stl_create_elementary) Tree_Add(THEM->Points, &v3);
}
if(CTX.geom.stl_create_elementary){
// Compute a reasonnable Characteristic Length
SetLC(v1, v2, v3, 1.);
// Create each curve
Curve *c1 = Create_Curve(NEWLINE(), MSH_SEGM_LINE, 1, NULL, NULL, -1, -1, 0., 1.);
c1->Control_Points = List_Create(2, 1, sizeof(Vertex *));
List_Add(c1->Control_Points, &v1);
List_Add(c1->Control_Points, &v2);
c1->beg = v1;
c1->end = v2;
End_Curve(c1);
Tree_Add(THEM->Curves, &c1);
CreateReversedCurve(THEM, c1);
Curve *c2 = Create_Curve(NEWLINE(), MSH_SEGM_LINE, 1, NULL, NULL, -1, -1, 0., 1.);
c2->Control_Points = List_Create(2, 1, sizeof(Vertex *));
List_Add(c2->Control_Points, &v2);
List_Add(c2->Control_Points, &v3);
c2->beg = v2;
c2->end = v3;
End_Curve(c2);
Tree_Add(THEM->Curves, &c2);
CreateReversedCurve(THEM, c2);
Curve *c3 = Create_Curve(NEWLINE(), MSH_SEGM_LINE, 1, NULL, NULL, -1, -1, 0., 1.);
c3->Control_Points = List_Create(2, 1, sizeof(Vertex *));
List_Add(c3->Control_Points, &v3);
List_Add(c3->Control_Points, &v1);
c3->beg = v3;
c3->end = v1;
End_Curve(c3);
Tree_Add(THEM->Curves, &c3);
CreateReversedCurve(THEM, c3);
// Creation Of Each Surface
Surface *s = Create_Surface(NEWSURFACE(), MSH_SURF_PLAN);
s->Method = LIBRE;
s->Generatrices = List_Create(4, 1, sizeof(Curve *));
List_Add(s->Generatrices, &c1);
List_Add(s->Generatrices, &c2);
List_Add(s->Generatrices, &c3);
s->Support = s;
End_Surface(s);
Tree_Insert(THEM->Surfaces, &s);
}
else{
STL_Surf->thePolyRep->num_points += 3;
STL_Surf->thePolyRep->num_polys += 1;
List_T *pts = STL_Surf->thePolyRep->points_and_normals;
double num = List_Nbr(pts) / 6;
List_Add(pts, &v1->Pos.X); List_Add(pts, &v1->Pos.Y); List_Add(pts, &v1->Pos.Z);
List_Add(pts, &n1); List_Add(pts, &n2); List_Add(pts, &n3);
List_Add(pts, &v2->Pos.X); List_Add(pts, &v2->Pos.Y); List_Add(pts, &v2->Pos.Z);
List_Add(pts, &n1); List_Add(pts, &n2); List_Add(pts, &n3);
List_Add(pts, &v3->Pos.X); List_Add(pts, &v3->Pos.Y); List_Add(pts, &v3->Pos.Z);
List_Add(pts, &n1); List_Add(pts, &n2); List_Add(pts, &n3);
List_T *pol = STL_Surf->thePolyRep->polygons;
double n = 3;
List_Add(pol, &n);
List_Add(pol, &num); num += 1.;
List_Add(pol, &num); num += 1.;
List_Add(pol, &num);
}
}
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
SEGM_rep::SEGM_rep()
: num_points(0)
{
points = List_Create(100, 100, sizeof(double));
bounding_box[0] = bounding_box[2] = bounding_box[4] = VAL_INF;
bounding_box[1] = bounding_box[3] = bounding_box[5] = -VAL_INF;
}
SEGM_rep::SEGM_rep(int _num_points, List_T *_p)
: num_points(_num_points), points(_p)
{
bounding_box[0] = bounding_box[2] = bounding_box[4] = VAL_INF;
bounding_box[1] = bounding_box[3] = bounding_box[5] = -VAL_INF;
// check num points
if(List_Nbr(points) != num_points * 3){
Msg(GERROR, "Wrong number of points in discrete curve");
if(points){
List_Delete(points);
points = 0;
}
return;
}
// compute the bbox
compute_bounding_box();
}
void SEGM_rep::compute_bounding_box()
{
for(int i = 0; i < List_Nbr(points); i+=3){
double *p = (double*)List_Pointer(points, i);
if(p[0] < bounding_box[0]) bounding_box[0] = p[0];
if(p[0] > bounding_box[1]) bounding_box[1] = p[0];
if(p[1] < bounding_box[2]) bounding_box[2] = p[1];
if(p[1] > bounding_box[3]) bounding_box[3] = p[1];
if(p[2] < bounding_box[4]) bounding_box[4] = p[2];
if(p[2] > bounding_box[5]) bounding_box[5] = p[2];
}
}
SEGM_rep::~SEGM_rep()
{
if(points) List_Delete(points);
}
double SetLC(Vertex *v1, Vertex *v2, double factor)
{
double lc = sqrt((v1->Pos.X - v2->Pos.X) * (v1->Pos.X - v2->Pos.X) +
(v1->Pos.Y - v2->Pos.Y) * (v1->Pos.Y - v2->Pos.Y) +
(v1->Pos.Z - v2->Pos.Z) * (v1->Pos.Z - v2->Pos.Z));
v1->lc = v2->lc = lc;
return lc;
}
void SEGM_rep_To_Mesh(SEGM_rep *srep, Curve *c)
{
VertexBound = Tree_Create(sizeof(Vertex *), comparePosition);
Tree_Action(THEM->Vertices, InsertInVertexBound);
int N = List_Nbr(srep->points)/3;
Vertex **verts = new Vertex*[N];
for(int i = 0; i < List_Nbr(srep->points); i+=3){
double *point = (double*)List_Pointer(srep->points, i);
// if the curve's end points exist, use their identification
// numbers (that's how we do things in 1D_Mesh, and it makes
// things easier for point extrusions in the old extrusion
// algorithm)
int num;
if(i == 0 && c->beg)
num = c->beg->Num;
else if(i/3 == N-1 && c->end)
num = c->end->Num;
else
num = ++THEM->MaxPointNum;
Vertex *v = Create_Vertex(num, point[0], point[1], point[2], 1.0, 0.0);
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
Vertex **pv;
if(!(pv = (Vertex**)Tree_PQuery(VertexBound, &v))){
Tree_Add(VertexBound, &v);
List_Add(c->Vertices, &v);
v->ListCurves = List_Create(1, 1, sizeof(Curve *));
List_Add(v->ListCurves, &c);
Tree_Add(THEM->Vertices, &v);
verts[i/3] = v;
}
else{
Free_Vertex(&v, NULL);
List_Add(c->Vertices, pv);
if((*pv)->ListCurves)
List_Add((*pv)->ListCurves, &c);
verts[i/3] = *pv;
}
}
for(int i = 0; i < N-1; i++){
Vertex *v1 = verts[i];
Vertex *v2 = verts[i+1];
SetLC(v1, v2, CTX.mesh.lc_factor);
Simplex *simp = Create_Simplex(v1, v2, NULL, NULL);
simp->iEnt = c->Num;
Tree_Add(c->Simplexes, &simp);
}
Tree_Delete(VertexBound);
delete [] verts;
}
// Public interface for discrete surface/curve mesh algo
int MeshDiscreteSurface(Surface *s)
{
if(s->thePolyRep){
// Use the polygonal representation as the surface mesh. Most of
// the time we should of course remesh/enhance/refine this (as
// there is no guarantee that a polygonal CAD mesh is conform,
// that it respects the boundaries, etc.), but we don't have any
// routines to do that at the moment--so let's just use it and
// hope for the best.
POLY_rep_To_Mesh(s->thePolyRep, s);
BDS_Mesh bds;
Mesh_To_BDS(s,&bds);
bds.classify ( M_PI / 9 );
return 1;
}
else if(s->Typ == MSH_SURF_DISCRETE){
// nothing else to do: we assume that the elements have alreay
// been created
return 1;
}
else
return 0;
}
int MeshDiscreteCurve(Curve *c)
{
if(c->theSegmRep){
// Use the discrete representation as the curve mesh. Most of the
// time we should of course remesh/enhance/refine this (as there
// is no guarantee that this mesh fits at interfaces, etc.), but
// we don't have any routines to do that at the moment--so let's
// just use it and hope for the best.
SEGM_rep_To_Mesh(c->theSegmRep, c);
return 1;
}