Newer
Older
// Gmsh - Copyright (C) 1997-2010 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include <complex>
//#if defined(_MSC_VER)
//#define F77NAME(x) (x)
//#endif
#if !defined(F77NAME)
#define F77NAME(x) (x##_)
#endif
void F77NAME(daxpy)(int *n, double *alpha, double *x, int *incx, double *y, int *incy);
void F77NAME(dgemm)(const char *transa, const char *transb, int *m, int *n, int *k,
double *alpha, double *a, int *lda,
double *b, int *ldb, double *beta,
double *c, int *ldc);
void F77NAME(zgemm)(const char *transa, const char *transb, int *m, int *n, int *k,
std::complex<double> *alpha, std::complex<double> *a, int *lda,
std::complex<double> *b, int *ldb, std::complex<double> *beta,
std::complex<double> *c, int *ldc);
void F77NAME(dgemv)(const char *trans, int *m, int *n,
double *alpha, double *a, int *lda,
double *x, int *incx, double *beta,
double *y, int *incy);
void F77NAME(zgemv)(const char *trans, int *m, int *n,
std::complex<double> *alpha, std::complex<double> *a, int *lda,
std::complex<double> *x, int *incx, std::complex<double> *beta,
std::complex<double> *y, int *incy);
}
template<>
void fullVector<double>::axpy(fullVector<double> &x,double alpha)
{
int M = _r, INCX = 1, INCY = 1;
F77NAME(daxpy)(&M, &alpha, x._data,&INCX, _data, &INCY);
void fullMatrix<double>::mult(const fullMatrix<double> &b, fullMatrix<double> &c) const
{
int M = c.size1(), N = c.size2(), K = _c;
int LDA = _r, LDB = b.size1(), LDC = c.size1();
double alpha = 1., beta = 0.;
F77NAME(dgemm)("N", "N", &M, &N, &K, &alpha, _data, &LDA, b._data, &LDB,
&beta, c._data, &LDC);
void fullMatrix<std::complex<double> >::mult(const fullMatrix<std::complex<double> > &b,
{
int M = c.size1(), N = c.size2(), K = _c;
int LDA = _r, LDB = b.size1(), LDC = c.size1();
std::complex<double> alpha = 1., beta = 0.;
F77NAME(zgemm)("N", "N", &M, &N, &K, &alpha, _data, &LDA, b._data, &LDB,
&beta, c._data, &LDC);
void fullMatrix<double>::gemm(const fullMatrix<double> &a, const fullMatrix<double> &b,
double alpha, double beta)
{
int M = size1(), N = size2(), K = a.size2();
int LDA = a.size1(), LDB = b.size1(), LDC = size1();
F77NAME(dgemm)("N", "N", &M, &N, &K, &alpha, a._data, &LDA, b._data, &LDB,
&beta, _data, &LDC);
void fullMatrix<std::complex<double> >::gemm(const fullMatrix<std::complex<double> > &a,
const fullMatrix<std::complex<double> > &b,
std::complex<double> alpha,
std::complex<double> beta)
{
int M = size1(), N = size2(), K = a.size2();
int LDA = a.size1(), LDB = b.size1(), LDC = size1();
F77NAME(zgemm)("N", "N", &M, &N, &K, &alpha, a._data, &LDA, b._data, &LDB,
&beta, _data, &LDC);
void fullMatrix<double>::mult(const fullVector<double> &x, fullVector<double> &y)
{
int M = _r, N = _c, LDA = _r, INCX = 1, INCY = 1;
double alpha = 1., beta = 0.;
F77NAME(dgemv)("N", &M, &N, &alpha, _data, &LDA, x._data, &INCX,
&beta, y._data, &INCY);
void fullMatrix<std::complex<double> >::mult(const fullVector<std::complex<double> > &x,
fullVector<std::complex<double> > &y)
{
int M = _r, N = _c, LDA = _r, INCX = 1, INCY = 1;
std::complex<double> alpha = 1., beta = 0.;
F77NAME(zgemv)("N", &M, &N, &alpha, _data, &LDA, x._data, &INCX,
&beta, y._data, &INCY);
}
#endif
#if defined(HAVE_LAPACK)
extern "C" {
void F77NAME(dgesv)(int *N, int *nrhs, double *A, int *lda, int *ipiv,
double *b, int *ldb, int *info);
void F77NAME(dgetrf)(int *M, int *N, double *A, int *lda, int *ipiv, int *info);
void F77NAME(dgetri)(int *M, double *A, int *lda, int *ipiv, double *work,
int *lwork, int *info);
void F77NAME(dgesvd)(const char* jobu, const char *jobvt, int *M, int *N,
double *A, int *lda, double *S, double* U, int *ldu,
double *VT, int *ldvt, double *work, int *lwork, int *info);
void F77NAME(dgeev)(const char *jobvl, const char *jobvr, int *n, double *a,
int *lda, double *wr, double *wi, double *vl, int *ldvl,
double *vr, int *ldvr, double *work, int *lwork, int *info);
static void swap(double *a, int inca, double *b, int incb, int n)
{
double tmp;
for (int i = 0; i < n; i++, a += inca, b += incb) {
tmp = (*a);
(*a) = (*b);
(*b) = tmp;
}
}
static void eigSort(int n, double *wr, double *wi, double *VL, double *VR)
{
// Sort the eigenvalues/vectors in ascending order according to
// their real part. Warning: this will screw up the ordering if we
for (int i = 0; i < n - 1; i++){
int k = i;
double ek = wr[i];
// search for something to swap
for (int j = i + 1; j < n; j++){
const double ej = wr[j];
if(ej < ek){
k = j;
ek = ej;
}
}
if (k != i){
swap(&wr[i], 1, &wr[k], 1, 1);
swap(&wi[i], 1, &wi[k], 1, 1);
swap(&VL[n * i], 1, &VL[n * k], 1, n);
swap(&VR[n * i], 1, &VR[n * k], 1, n);
}
}
}
bool fullMatrix<double>::eig(fullVector<double> &DR, fullVector<double> &DI,
fullMatrix<double> &VL, fullMatrix<double> &VR,
bool sortRealPart)
int lwork = 10 * N;
double *work = new double[lwork];
F77NAME(dgeev)("V", "V", &N, _data, &N, DR._data, DI._data,
VL._data, &N, VR._data, &N, work, &lwork, &info);
delete [] work;
if(info > 0)
Msg::Error("QR Algorithm failed to compute all the eigenvalues", info, info);
Msg::Error("Wrong %d-th argument in eig", -info);
else if(sortRealPart)
eigSort(N, DR._data, DI._data, VL._data, VR._data);
bool fullMatrix<double>::luSolve(const fullVector<double> &rhs, fullVector<double> &result)
{
int N = size1(), nrhs = 1, lda = N, ldb = N, info;
int *ipiv = new int[N];
for(int i = 0; i < N; i++) result(i) = rhs(i);
F77NAME(dgesv)(&N, &nrhs, _data, &lda, ipiv, result._data, &ldb, &info);
if(info > 0)
Msg::Error("U(%d,%d)=0 in LU decomposition", info, info);
else
Msg::Error("Wrong %d-th argument in LU decomposition", -info);
bool fullMatrix<double>::invert(fullMatrix<double> &result)
{
int M = size1(), N = size2(), lda = size1(), info;
int *ipiv = new int[std::min(M, N)];
result = *this;
F77NAME(dgetrf)(&M, &N, result._data, &lda, ipiv, &info);
if(info == 0){
int lwork = M * 4;
double *work = new double[lwork];
F77NAME(dgetri)(&M, result._data, &lda, ipiv, work, &lwork, &info);
if(info == 0) return true;
else if(info > 0)
else
Msg::Error("Wrong %d-th argument in matrix inversion", -info);
return false;
template<>
bool fullMatrix<double>::invertInPlace()
{
int N = size1(), nrhs = N, lda = N, ldb = N, info;
int *ipiv = new int[N];
double * invA = new double[N*N];
for (int i = 0; i < N * N; i++) invA[i] = 0.;
for (int i = 0; i < N; i++) invA[i * N + i] = 1.;
F77NAME(dgesv)(&N, &nrhs, _data, &lda, ipiv, invA, &ldb, &info);
memcpy(_data, invA, N * N * sizeof(double));
delete [] invA;
delete [] ipiv;
if(info == 0) return true;
if(info > 0)
Msg::Error("U(%d,%d)=0 in matrix inversion", info, info);
else
Msg::Error("Wrong %d-th argument in matrix inversion", -info);
return false;
}
double fullMatrix<double>::determinant() const
int M = size1(), N = size2(), lda = size1(), info;
int *ipiv = new int[std::min(M, N)];
F77NAME(dgetrf)(&M, &N, tmp._data, &lda, ipiv, &info);
if(info == 0){
for(int i = 0; i < size1(); i++){
det *= tmp(i, i);
if(ipiv[i] != i + 1) det = -det;
}
Msg::Error("Wrong %d-th argument in matrix factorization", -info);
bool fullMatrix<double>::svd(fullMatrix<double> &V, fullVector<double> &S)
fullMatrix<double> VT(V.size2(), V.size1());
int M = size1(), N = size2(), LDA = size1(), LDVT = VT.size1(), info;
int lwork = std::max(3 * std::min(M, N) + std::max(M, N), 5 * std::min(M, N));
fullVector<double> WORK(lwork);
F77NAME(dgesvd)("O", "A", &M, &N, _data, &LDA, S._data, _data, &LDA,
VT._data, &LDVT, WORK._data, &lwork, &info);
if(info > 0)
Msg::Error("SVD did not converge");
else
Msg::Error("Wrong %d-th argument in SVD decomposition", -info);

Christophe Geuzaine
committed
#endif
classBinding *cb = b->addClass<fullMatrix<double> >("fullMatrix");
cb->setDescription("A full matrix of double-precision floating point numbers. The memory is allocated in one continuous block and stored in column major order (like in fortran).");
methodBinding *cm;
cm = cb->addMethod("size1", &fullMatrix<double>::size1);
cm->setDescription("Returns the number of rows in the matrix");
cm = cb->addMethod("size2", &fullMatrix<double>::size2);
cm->setDescription("Returns the number of columns in the matrix");
cm = cb->addMethod("get", &fullMatrix<double>::get);
cm->setArgNames("i","j",NULL);
cm->setDescription("Returns the (i,j) entry of the matrix");
cm = cb->addMethod("set", &fullMatrix<double>::set);
cm->setArgNames("i","j","v",NULL);
cm->setDescription("Sets the (i,j) entry of the matrix to v");
cm = cb->addMethod("gemm", &fullMatrix<double>::gemm);
cm->setArgNames("A","B","alpha","beta",NULL);
cm->setDescription("this = beta*this + alpha * (A.B)");
cm = cb->addMethod("gemm_naive", &fullMatrix<double>::gemm_naive);
cm->setArgNames("A","B","alpha","beta",NULL);
cm->setDescription("this = beta*this + alpha * (A.B)");
cm = cb->addMethod("print", &fullMatrix<double>::print);
cm->setArgNames("name",NULL);
cm->setDescription("print the matrix");
cm = cb->setConstructor<fullMatrix<double>,int,int>();
cm->setDescription ("A new matrix of size 'nRows' x 'nColumns'");
cm->setArgNames("nRows","nColumns",NULL);