Newer
Older
// Gmsh - Copyright (C) 1997-2009 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include <complex>
//#if defined(_MSC_VER)
//#define F77NAME(x) (x)
//#endif
#if !defined(F77NAME)
#define F77NAME(x) (x##_)
#endif
void F77NAME(dgemm)(const char *transa, const char *transb, int *m, int *n, int *k,
double *alpha, double *a, int *lda,
double *b, int *ldb, double *beta,
double *c, int *ldc);
void F77NAME(zgemm)(const char *transa, const char *transb, int *m, int *n, int *k,
std::complex<double> *alpha, std::complex<double> *a, int *lda,
std::complex<double> *b, int *ldb, std::complex<double> *beta,
std::complex<double> *c, int *ldc);
void F77NAME(dgemv)(const char *trans, int *m, int *n,
double *alpha, double *a, int *lda,
double *x, int *incx, double *beta,
double *y, int *incy);
void F77NAME(zgemv)(const char *trans, int *m, int *n,
std::complex<double> *alpha, std::complex<double> *a, int *lda,
std::complex<double> *x, int *incx, std::complex<double> *beta,
std::complex<double> *y, int *incy);
void fullMatrix<double>::mult(const fullMatrix<double> &b, fullMatrix<double> &c)
{
int M = c.size1(), N = c.size2(), K = _c;
int LDA = _r, LDB = b.size1(), LDC = c.size1();
double alpha = 1., beta = 0.;
F77NAME(dgemm)("N", "N", &M, &N, &K, &alpha, _data, &LDA, b._data, &LDB,
&beta, c._data, &LDC);
void fullMatrix<std::complex<double> >::mult(const fullMatrix<std::complex<double> > &b,
fullMatrix<std::complex<double> > &c)
{
int M = c.size1(), N = c.size2(), K = _c;
int LDA = _r, LDB = b.size1(), LDC = c.size1();
std::complex<double> alpha = 1., beta = 0.;
F77NAME(zgemm)("N", "N", &M, &N, &K, &alpha, _data, &LDA, b._data, &LDB,
&beta, c._data, &LDC);
void fullMatrix<double>::gemm(fullMatrix<double> &a, fullMatrix<double> &b,
double alpha, double beta)
{
int M = size1(), N = size2(), K = a.size2();
int LDA = a.size1(), LDB = b.size1(), LDC = size1();
F77NAME(dgemm)("N", "N", &M, &N, &K, &alpha, a._data, &LDA, b._data, &LDB,
&beta, _data, &LDC);
void fullMatrix<std::complex<double> >::gemm(fullMatrix<std::complex<double> > &a,
fullMatrix<std::complex<double> > &b,
std::complex<double> alpha,
std::complex<double> beta)
{
int M = size1(), N = size2(), K = a.size2();
int LDA = a.size1(), LDB = b.size1(), LDC = size1();
F77NAME(zgemm)("N", "N", &M, &N, &K, &alpha, a._data, &LDA, b._data, &LDB,
&beta, _data, &LDC);
void fullMatrix<double>::mult(const fullVector<double> &x, fullVector<double> &y)
{
int M = _r, N = _c, LDA = _r, INCX = 1, INCY = 1;
double alpha = 1., beta = 0.;
F77NAME(dgemv)("N", &M, &N, &alpha, _data, &LDA, x._data, &INCX,
&beta, y._data, &INCY);
void fullMatrix<std::complex<double> >::mult(const fullVector<std::complex<double> > &x,
fullVector<std::complex<double> > &y)
{
int M = _r, N = _c, LDA = _r, INCX = 1, INCY = 1;
std::complex<double> alpha = 1., beta = 0.;
F77NAME(zgemv)("N", &M, &N, &alpha, _data, &LDA, x._data, &INCX,
&beta, y._data, &INCY);
}
#endif
#if defined(HAVE_LAPACK)
extern "C" {
void F77NAME(dgesv)(int *N, int *nrhs, double *A, int *lda, int *ipiv,
double *b, int *ldb, int *info);
void F77NAME(dgetrf)(int *M, int *N, double *A, int *lda, int *ipiv, int *info);
void F77NAME(dgetri)(int *M, double *A, int *lda, int *ipiv, double *work,
int *lwork, int *info);
void F77NAME(dgesvd)(const char* jobu, const char *jobvt, int *M, int *N,
double *A, int *lda, double *S, double* U, int *ldu,
double *VT, int *ldvt, double *work, int *lwork, int *info);
void F77NAME(dgeev)(const char *jobvl, const char *jobvr, int *n, double *a,
int *lda, double *wr, double *wi, double *vl, int *ldvl,
double *vr, int *ldvr, double *work, int *lwork, int *info);
bool fullMatrix<double>::invertInPlace()
{
int N = size1(), nrhs = N, lda = N, ldb = N, info;
int *ipiv = new int[N];
double * invA = new double[N*N];
for (int i = 0; i < N * N; i++) invA[i] = 0.;
for (int i = 0; i < N; i++) invA[i * N + i] = 1.;
F77NAME(dgesv)(&N, &nrhs, _data, &lda, ipiv, invA, &ldb, &info);
delete [] invA;
delete [] ipiv;
if(info == 0) return true;
if(info > 0)
Msg::Error("U(%d,%d)=0 in matrix inversion", info, info);
else
Msg::Error("Wrong %d-th argument in matrix inversion", -info);
return false;
}
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
static void swap(double *a, int inca, double *b, int incb, int n)
{
double tmp;
for (int i = 0; i < n; i++, a += inca, b += incb) {
tmp = (*a);
(*a) = (*b);
(*b) = tmp;
}
}
static void eigSort(int n, double *wr, double *wi, double *VL, double *VR)
{
// Sort the eigenvalues/vectors in ascending order according to
// their real part. Warning: this will screw up the ordering if we
// have coplex eigenvalues.
for (int i = 0; i < n - 1; i++){
int k = i;
double ek = wr[i];
// search for something to swap
for (int j = i + 1; j < n; j++){
const double ej = wr[j];
if(ej < ek){
k = j;
ek = ej;
}
}
if (k != i){
swap(&wr[i], 1, &wr[k], 1, 1);
swap(&wi[i], 1, &wi[k], 1, 1);
swap(&VL[n * i], 1, &VL[n * k], 1, n);
swap(&VR[n * i], 1, &VR[n * k], 1, n);
}
}
}
bool fullMatrix<double>::eig(fullVector<double> &DR, fullVector<double> &DI,
fullMatrix<double> &VL, fullMatrix<double> &VR,
bool sortRealPart)
int lwork = 10 * N;
double *work = new double[lwork];
F77NAME(dgeev)("V", "V", &N, _data, &N, DR._data, DI._data,
VL._data, &N, VR._data, &N, work, &lwork, &info);
delete [] work;
if(info > 0)
Msg::Error("QR Algorithm failed to compute all the eigenvalues", info, info);
Msg::Error("Wrong %d-th argument in eig", -info);
else if(sortRealPart)
eigSort(N, DR._data, DI._data, VL._data, VR._data);
bool fullMatrix<double>::luSolve(const fullVector<double> &rhs, fullVector<double> &result)
{
int N = size1(), nrhs = 1, lda = N, ldb = N, info;
int *ipiv = new int[N];
for(int i = 0; i < N; i++) result(i) = rhs(i);
F77NAME(dgesv)(&N, &nrhs, _data, &lda, ipiv, result._data, &ldb, &info);
if(info > 0)
Msg::Error("U(%d,%d)=0 in LU decomposition", info, info);
else
Msg::Error("Wrong %d-th argument in LU decomposition", -info);
bool fullMatrix<double>::invert(fullMatrix<double> &result)
{
int M = size1(), N = size2(), lda = size1(), info;
int *ipiv = new int[std::min(M, N)];
result = *this;
F77NAME(dgetrf)(&M, &N, result._data, &lda, ipiv, &info);
if(info == 0){
int lwork = M * 4;
double *work = new double[lwork];
F77NAME(dgetri)(&M, result._data, &lda, ipiv, work, &lwork, &info);
if(info == 0) return true;
else if(info > 0)
else
Msg::Error("Wrong %d-th argument in matrix inversion", -info);
return false;
double fullMatrix<double>::determinant() const
int M = size1(), N = size2(), lda = size1(), info;
int *ipiv = new int[std::min(M, N)];
F77NAME(dgetrf)(&M, &N, tmp._data, &lda, ipiv, &info);
if(info == 0){
for(int i = 0; i < size1(); i++){
det *= tmp(i, i);
if(ipiv[i] != i + 1) det = -det;
}
Msg::Error("Wrong %d-th argument in matrix factorization", -info);
bool fullMatrix<double>::svd(fullMatrix<double> &V, fullVector<double> &S)
fullMatrix<double> VT(V.size2(), V.size1());
int M = size1(), N = size2(), LDA = size1(), LDVT = VT.size1(), info;
int lwork = std::max(3 * std::min(M, N) + std::max(M, N), 5 * std::min(M, N));
fullVector<double> WORK(lwork);
F77NAME(dgesvd)("O", "A", &M, &N, _data, &LDA, S._data, _data, &LDA,
VT._data, &LDVT, WORK._data, &lwork, &info);
if(info > 0)
Msg::Error("SVD did not converge");
else
Msg::Error("Wrong %d-th argument in SVD decomposition", -info);