Select Git revision
x3.cpp
t16.cpp 5.36 KiB
// -----------------------------------------------------------------------------
//
// Gmsh C++ tutorial 16
//
// Constructive Solid Geometry, OpenCASCADE geometry kernel
//
// -----------------------------------------------------------------------------
// Instead of constructing a model in a bottom-up fashion with Gmsh's built-in
// geometry kernel, starting with version 3 Gmsh allows you to directly use
// alternative geometry kernels. Here we will use the OpenCASCADE kernel.
#include <set>
#include <iostream>
#include <gmsh.h>
int main(int argc, char **argv)
{
gmsh::initialize(argc, argv);
gmsh::model::add("t16");
// Let's build the same model as in `t5.cpp', but using constructive solid
// geometry.
// We can log all messages for further processing with:
gmsh::logger::start();
// We first create two cubes:
try {
gmsh::model::occ::addBox(0, 0, 0, 1, 1, 1, 1);
gmsh::model::occ::addBox(0, 0, 0, 0.5, 0.5, 0.5, 2);
} catch(...) {
gmsh::logger::write("Could not create OpenCASCADE shapes: bye!");
return 0;
}
// We apply a boolean difference to create the "cube minus one eigth" shape:
std::vector<std::pair<int, int> > ov;
std::vector<std::vector<std::pair<int, int> > > ovv;
gmsh::model::occ::cut({{3, 1}}, {{3, 2}}, ov, ovv, 3);
// Boolean operations with OpenCASCADE always create new entities. By default
// the extra arguments `removeObject' and `removeTool' in `cut()' are set to
// `true', which will delete the original entities.
// We then create the five spheres:
double x = 0, y = 0.75, z = 0, r = 0.09;
std::vector<std::pair<int, int> > holes;
for(int t = 1; t <= 5; t++) {
x += 0.166;
z += 0.166;
gmsh::model::occ::addSphere(x, y, z, r, 3 + t);
holes.push_back({3, 3 + t});
}
// If we had wanted five empty holes we would have used `cut()' again. Here we
// want five spherical inclusions, whose mesh should be conformal with the
// mesh of the cube: we thus use `fragment()', which intersects all volumes in
// a conformal manner (without creating duplicate interfaces):
gmsh::model::occ::fragment({{3, 3}}, holes, ov, ovv);
// ov contains all the generated entities of the same dimension as the input
// entities:
gmsh::logger::write("fragment produced volumes:");
for(auto e : ov)
gmsh::logger::write("(" + std::to_string(e.first) + "," +
std::to_string(e.second) + ")");
// ovv contains the parent-child relationships for all the input entities:
gmsh::logger::write("before/after volume relations:");
std::vector<std::pair<int, int> > in(1, std::pair<int, int>(3, 3));
in.insert(in.end(), holes.begin(), holes.end());
for(std::size_t i = 0; i < in.size(); i++) {
std::string s = "parent (" + std::to_string(in[i].first) + "," +
std::to_string(in[i].second) + ") -> child";
for(std::size_t j = 0; j < ovv[i].size(); j++) {
s += " (" + std::to_string(ovv[i][j].first) + "," +
std::to_string(ovv[i][j].second) + ")";
}
gmsh::logger::write(s);
}
gmsh::model::occ::synchronize();
// When the boolean operation leads to simple modifications of entities, and
// if one deletes the original entities, Gmsh tries to assign the same tag to
// the new entities. (This behavior is governed by the
// `Geometry.OCCBooleanPreserveNumbering' option.)
// Here the `Physical Volume' definitions can thus be made for the 5 spheres
// directly, as the five spheres (volumes 4, 5, 6, 7 and 8), which will be
// deleted by the fragment operations, will be recreated identically (albeit
// with new surfaces) with the same tags:
for(int i = 1; i <= 5; i++) gmsh::model::addPhysicalGroup(3, {3 + i}, i);
// The tag of the cube will change though, so we need to access it
// programmatically:
gmsh::model::addPhysicalGroup(3, {ov[ov.size() - 1].second}, 10);
// Creating entities using constructive solid geometry is very powerful, but
// can lead to practical issues for e.g. setting mesh sizes at points, or
// identifying boundaries.
// To identify points or other bounding entities you can take advantage of the
// `getEntities()', `getBoundary()' and `getEntitiesInBoundingBox()'
// functions:
double lcar1 = .1;
double lcar2 = .0005;
double lcar3 = .055;
// Assign a mesh size to all the points:
gmsh::model::getEntities(ov, 0);
gmsh::model::mesh::setSize(ov, lcar1);
// Override this constraint on the points of the five spheres:
gmsh::model::getBoundary(holes, ov, false, false, true);
gmsh::model::mesh::setSize(ov, lcar3);
// Select the corner point by searching for it geometrically:
double eps = 1e-3;
gmsh::model::getEntitiesInBoundingBox(0.5 - eps, 0.5 - eps, 0.5 - eps,
0.5 + eps, 0.5 + eps, 0.5 + eps, ov, 0);
gmsh::model::mesh::setSize(ov, lcar2);
gmsh::model::mesh::generate(3);
gmsh::write("t16.msh");
// Additional examples created with the OpenCASCADE geometry kernel are
// available in `t18.cpp', `t19.cpp' and `t20.cpp', as well as in the
// `examples/api' directory.
// Inspect the log:
std::vector<std::string> log;
gmsh::logger::get(log);
std::cout << "Logger has recorded " << log.size() << " lines" << std::endl;
gmsh::logger::stop();
// Launch the GUI to see the results:
std::set<std::string> args(argv, argv + argc);
if(!args.count("-nopopup")) gmsh::fltk::run();
gmsh::finalize();
return 0;
}