Skip to content
Snippets Groups Projects
Select Git revision
  • ef83848c5821f68f049929795df615f2c57e8e22
  • master default protected
  • hierarchical-basis
  • alphashapes
  • bl
  • relaying
  • new_export_boris
  • oras_vs_osm
  • reassign_partitions
  • distributed_fwi
  • rename-classes
  • fix/fortran-api-example-t4
  • robust_partitions
  • reducing_files
  • fix_overlaps
  • 3115-issue-fix
  • 3023-Fillet2D-Update
  • convert_fdivs
  • tmp_jcjc24
  • fixedMeshIF
  • save_edges
  • gmsh_4_14_0
  • gmsh_4_13_1
  • gmsh_4_13_0
  • gmsh_4_12_2
  • gmsh_4_12_1
  • gmsh_4_12_0
  • gmsh_4_11_1
  • gmsh_4_11_0
  • gmsh_4_10_5
  • gmsh_4_10_4
  • gmsh_4_10_3
  • gmsh_4_10_2
  • gmsh_4_10_1
  • gmsh_4_10_0
  • gmsh_4_9_5
  • gmsh_4_9_4
  • gmsh_4_9_3
  • gmsh_4_9_2
  • gmsh_4_9_1
  • gmsh_4_9_0
41 results

elasticitySolver.cpp

Blame
  • GModel.cpp 41.38 KiB
    // Gmsh - Copyright (C) 1997-2009 C. Geuzaine, J.-F. Remacle
    //
    // See the LICENSE.txt file for license information. Please report all
    // bugs and problems to <gmsh@geuz.org>.
    
    #include <stdlib.h>
    #include <sstream>
    #include "GmshConfig.h"
    #include "GmshMessage.h"
    #include "GModel.h"
    #include "MPoint.h"
    #include "MLine.h"
    #include "MTriangle.h"
    #include "MQuadrangle.h"
    #include "MTetrahedron.h"
    #include "MHexahedron.h"
    #include "MPrism.h"
    #include "MPyramid.h"
    #include "MElementCut.h"
    #include "discreteRegion.h"
    #include "discreteFace.h"
    #include "discreteEdge.h"
    #include "discreteVertex.h"
    #include "gmshSurface.h"
    #include "Octree.h"
    #include "SmoothData.h"
    #include "Context.h"
    #include "OS.h"
    
    #include "OpenFile.h"
    #include "CreateFile.h"
    
    #if defined(HAVE_MESH)
    #include "Field.h"
    #include "Generator.h"
    #endif
    
    std::vector<GModel*> GModel::list;
    int GModel::_current = -1;
    
    GModel::GModel(std::string name)
      : _name(name), _visible(1), _octree(0),
        _geo_internals(0), _occ_internals(0), _fm_internals(0),
        _fields(0), _currentMeshEntity(0), normals(0)
    {
      partitionSize[0] = 0; partitionSize[1] = 0;
      list.push_back(this);
      // at the moment we always create (at least an empty) GEO model
      _createGEOInternals();
    #if defined(HAVE_MESH)
      _fields = new FieldManager();
    #endif
    }
    
    GModel::~GModel()
    {
      std::vector<GModel*>::iterator it = std::find(list.begin(), list.end(), this);
      if(it != list.end()) list.erase(it);
      destroy();
      _deleteGEOInternals();
      _deleteOCCInternals();
    #if defined(HAVE_MESH)
      delete _fields;
    #endif
    }
    
    GModel *GModel::current(int index)
    {
      if(list.empty()){
        Msg::Warning("No current model available: creating one");
        new GModel();
      }
      if(index >= 0) _current = index;
      if(_current < 0 || _current >= (int)list.size()) return list.back();
      return list[_current];
    }
    
    int GModel::setCurrent(GModel *m)
    {
      for (unsigned int i = 0; i < list.size(); i++){
        if (list[i] == m){
          _current = i;
          break;
        }
      }
    	return _current;
    }
    
    GModel *GModel::findByName(std::string name)
    {
      // return last mesh with given name
      for(int i = list.size() - 1; i >= 0; i--)
        if(list[i]->getName() == name) return list[i];
      return 0;
    }
    
    void GModel::destroy()
    {
      _name.clear();
    
      for(riter it = firstRegion(); it != lastRegion(); ++it)
        delete *it;
      regions.clear();
    
      std::vector<GFace*> to_keep;
      for(fiter it = firstFace(); it != lastFace(); ++it){
        // projection faces are persistent
        if((*it)->getNativeType() == GEntity::UnknownModel &&
           (*it)->geomType() == GEntity::ProjectionFace)
          to_keep.push_back(*it);
        else
          delete *it;
      }
      faces.clear();
      faces.insert(to_keep.begin(), to_keep.end());
    
      for(eiter it = firstEdge(); it != lastEdge(); ++it)
        delete *it;
      edges.clear();
    
      for(viter it = firstVertex(); it != lastVertex(); ++it)
        delete *it;
      vertices.clear();
    
      destroyMeshCaches();
    
      MVertex::resetGlobalNumber();
      MElement::resetGlobalNumber();
    
      if(normals) delete normals;
      normals = 0;
    
    #if defined(HAVE_MESH)
      _fields->reset();
    #endif
      gmshSurface::reset();
    }
    
    void GModel::destroyMeshCaches()
    {
      _vertexVectorCache.clear();
      _vertexMapCache.clear();
      _elementVectorCache.clear();
      _elementMapCache.clear();
      if(_octree) Octree_Delete(_octree);
      _octree = 0;
    }
    
    bool GModel::empty() const
    {
      return vertices.empty() && edges.empty() && faces.empty() && regions.empty();
    }
    
    int GModel::maxVertexNum()
    {
      viter it = firstVertex();
      viter itv = lastVertex();
      int MAXX = 0;
      while(it != itv){
        MAXX = std::max(MAXX, (*it)->tag());
        ++it;
      }
      return MAXX;
    
    }
    int GModel::maxEdgeNum()
    {
      eiter it = firstEdge();
      eiter ite = lastEdge();
      int MAXX = 0;
      while(it != ite){
        MAXX = std::max(MAXX, (*it)->tag());
        ++it;
      }
      return MAXX;
    
    }
    
    int GModel::maxFaceNum()
    {
    
      fiter it =  firstFace();
      fiter ite = lastFace();
      int MAXX = 0;
      while(it != ite){
        MAXX = std::max(MAXX, (*it)->tag());
        ++it;
      }
      return MAXX;
    }
    
    GRegion *GModel::getRegionByTag(int n) const
    {
      GEntity tmp((GModel*)this, n);
      std::set<GRegion*, GEntityLessThan>::const_iterator it = regions.find((GRegion*)&tmp);
      if(it != regions.end())
        return *it;
      else
        return 0;
    }
    
    GFace *GModel::getFaceByTag(int n) const
    {
      GEntity tmp((GModel*)this, n);
      std::set<GFace*, GEntityLessThan>::const_iterator it = faces.find((GFace*)&tmp);
      if(it != faces.end())
        return *it;
      else
        return 0;
    }
    
    GEdge *GModel::getEdgeByTag(int n) const
    {
      GEntity tmp((GModel*)this, n);
      std::set<GEdge*, GEntityLessThan>::const_iterator it = edges.find((GEdge*)&tmp);
      if(it != edges.end())
        return *it;
      else
        return 0;
    }
    
    GVertex *GModel::getVertexByTag(int n) const
    {
      GEntity tmp((GModel*)this, n);
      std::set<GVertex*, GEntityLessThan>::const_iterator it = vertices.find((GVertex*)&tmp);
      if(it != vertices.end())
        return *it;
      else
        return 0;
    }
    
    void GModel::remove(GRegion *r)
    {
      riter it = std::find(firstRegion(), lastRegion(), r);
      if(it != (riter)regions.end()) regions.erase(it);
    }
    
    void GModel::remove(GFace *f)
    {
      fiter it = std::find(firstFace(), lastFace(), f);
      if(it != faces.end()) faces.erase(it);
    }
    
    void GModel::remove(GEdge *e)
    {
      eiter it = std::find(firstEdge(), lastEdge(), e);
      if(it != edges.end()) edges.erase(it);
    }
    
    void GModel::remove(GVertex *v)
    {
      viter it = std::find(firstVertex(), lastVertex(), v);
      if(it != vertices.end()) vertices.erase(it);
    }
    
    void GModel::snapVertices()
    {
      viter vit = firstVertex();
    
      double tol = CTX::instance()->geom.tolerance;
    
      while (vit != lastVertex()){
        std::list<GEdge*> edges = (*vit)->edges();
        for (std::list<GEdge*>::iterator it = edges.begin(); it != edges.end(); ++it){
          Range<double> parb = (*it)->parBounds(0);
          double t;
          if ((*it)->getBeginVertex() == *vit){
            t = parb.low();
          }
          else if ((*it)->getEndVertex() == *vit){
            t = parb.high();
          }
          else{
            Msg::Error("Weird vertex: impossible to snap");
            break;
          }
          GPoint gp = (*it)->point(t);
          double d = sqrt((gp.x() - (*vit)->x()) * (gp.x() - (*vit)->x()) +
                          (gp.y() - (*vit)->y()) * (gp.y() - (*vit)->y()) +
                          (gp.z() - (*vit)->z()) * (gp.z() - (*vit)->z()));
          if (d > tol){
            (*vit)->setPosition(gp);
            Msg::Warning("Geom Vertex %d Corrupted (%12.5E)... Snap performed",
                         (*vit)->tag(), d);
          }
        }
        vit++;
      }
    }
    
    void GModel::getEntities(std::vector<GEntity*> &entities)
    {
      entities.clear();
      entities.insert(entities.end(), vertices.begin(), vertices.end());
      entities.insert(entities.end(), edges.begin(), edges.end());
      entities.insert(entities.end(), faces.begin(), faces.end());
      entities.insert(entities.end(), regions.begin(), regions.end());
    }
    
    int GModel::getMaxElementaryNumber(int dim)
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      int num = 0;
      for(unsigned int i = 0; i < entities.size(); i++)
        if(entities[i]->dim() == dim)
          num = std::max(num, std::abs(entities[i]->tag()));
      return num;
    }
    
    bool GModel::noPhysicalGroups()
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      for(unsigned int i = 0; i < entities.size(); i++)
        if(entities[i]->physicals.size()) return false;
      return true;
    }
    
    void GModel::getPhysicalGroups(std::map<int, std::vector<GEntity*> > groups[4])
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      for(unsigned int i = 0; i < entities.size(); i++){
        std::map<int, std::vector<GEntity*> > &group(groups[entities[i]->dim()]);
        for(unsigned int j = 0; j < entities[i]->physicals.size(); j++){
          // physicals can be stored with negative signs when the entity
          // should be "reversed"
          int p = std::abs(entities[i]->physicals[j]);
          if(std::find(group[p].begin(), group[p].end(), entities[i]) == group[p].end())
            group[p].push_back(entities[i]);
        }
      }
    }
    
    void GModel::deletePhysicalGroups()
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      for(unsigned int i = 0; i < entities.size(); i++)
        entities[i]->physicals.clear();
    }
    
    void GModel::deletePhysicalGroup(int dim, int num)
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      for(unsigned int i = 0; i < entities.size(); i++){
        if(dim == entities[i]->dim()){
          std::vector<int> p;
          for(unsigned int j = 0; j < entities[i]->physicals.size(); j++)
            if(entities[i]->physicals[j] != num)
              p.push_back(entities[i]->physicals[j]);
          entities[i]->physicals = p;
        }
      }
    }
    
    int GModel::getMaxPhysicalNumber(int dim)
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      int num = 0;
      for(unsigned int i = 0; i < entities.size(); i++)
        if(entities[i]->dim() == dim)
          for(unsigned int j = 0; j < entities[i]->physicals.size(); j++)
            num = std::max(num, std::abs(entities[i]->physicals[j]));
      return num;
    }
    
    int GModel::setPhysicalName(std::string name, int dim, int number)
    {
      // check if the name is already used
      piter it = physicalNames.begin();
      while(it != physicalNames.end()){
        if(name == it->second && dim == it->first.first) return it->first.second;
        ++it;
      }
      // if no number is given, find the next available one
      if(!number) number = getMaxPhysicalNumber(dim) + 1;
      physicalNames[std::pair<int, int>(dim, number)] = name;
      return number;
    }
    
    std::string GModel::getPhysicalName(int dim, int number)
    {
      std::map<std::pair<int, int>, std::string>::iterator it =
        physicalNames.find(std::pair<int, int>(dim, number));
      if(it != physicalNames.end()) return it->second;
      return "";
    }
    
    int GModel::getPhysicalNumber(const int &dim, const std::string &name)
    {
      for(piter physIt = firstPhysicalName(); physIt != lastPhysicalName(); ++physIt)
        if(dim == physIt->first.first && name == physIt->second)
          return physIt->first.second;
      Msg::Warning("No physical group found with the name '%s'", name.c_str());
      return -1;
    }
    
    int GModel::getDim()
    {
      int ret;
      if(getNumRegions()>0)	ret=3;
      else if(getNumFaces()>0) ret=2;
      else if(getNumEdges()>0) ret=1;
      else if(getNumVertices()>0) ret=0;
      else{
        Msg::Warning("The model is empty, dim = -1");
        ret=-1;
      }
      return ret;
    }
    
    std::string GModel::getElementaryName(int dim, int number)
    {
      std::map<std::pair<int, int>, std::string>::iterator it =
        elementaryNames.find(std::pair<int, int>(dim, number));
      if(it != elementaryNames.end()) return it->second;
      return "";
    }
    
    void GModel::setSelection(int val)
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
    
      for(unsigned int i = 0; i < entities.size(); i++){
        entities[i]->setSelection(val);
        // reset selection in elements (stored in the visibility flag to
        // save space)
        if(val == 0){
          for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
            if(entities[i]->getMeshElement(j)->getVisibility() == 2)
              entities[i]->getMeshElement(j)->setVisibility(1);
        }
      }
    }
    
    SBoundingBox3d GModel::bounds()
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      // using the mesh vertices for now; should use entities[i]->bounds() instead
      SBoundingBox3d bb;
      for(unsigned int i = 0; i < entities.size(); i++)
        for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
          bb += entities[i]->mesh_vertices[j]->point();
      return bb;
    }
    
    int GModel::mesh(int dimension)
    {
    #if defined(HAVE_MESH)
      GenerateMesh(this, dimension);
      return true;
    #else
      Msg::Error("Mesh module not compiled");
      return false;
    #endif
    }
    
    int GModel::getMeshStatus(bool countDiscrete)
    {
      for(riter it = firstRegion(); it != lastRegion(); ++it)
        if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteVolume &&
                              (*it)->meshAttributes.Method != MESH_NONE)) &&
           ((*it)->tetrahedra.size() ||(*it)->hexahedra.size() ||
            (*it)->prisms.size() || (*it)->pyramids.size() ||
            (*it)->polyhedra.size())) return 3;
      for(fiter it = firstFace(); it != lastFace(); ++it)
        if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteSurface &&
                              (*it)->meshAttributes.Method != MESH_NONE)) &&
           ((*it)->triangles.size() || (*it)->quadrangles.size() ||
            (*it)->polygons.size())) return 2;
      for(eiter it = firstEdge(); it != lastEdge(); ++it)
        if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteCurve &&
                              (*it)->meshAttributes.Method != MESH_NONE)) &&
           (*it)->lines.size()) return 1;
      for(viter it = firstVertex(); it != lastVertex(); ++it)
        if((*it)->mesh_vertices.size()) return 0;
      return -1;
    }
    
    int GModel::getNumMeshVertices()
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      unsigned int n = 0;
      for(unsigned int i = 0; i < entities.size(); i++)
        n += entities[i]->mesh_vertices.size();
      return n;
    }
    
    int GModel::getNumMeshElements()
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      unsigned int n = 0;
      for(unsigned int i = 0; i < entities.size(); i++)
        n += entities[i]->getNumMeshElements();
      return n;
    }
    
    int GModel::getNumMeshElements(unsigned c[5])
    {
      c[0] = 0; c[1] = 0; c[2] = 0; c[3] = 0; c[4] = 0;
      for(riter it = firstRegion(); it != lastRegion(); ++it)
        (*it)->getNumMeshElements(c);
      if(c[0] + c[1] + c[2] + c[3] + c[4]) return 3;
      for(fiter it = firstFace(); it != lastFace(); ++it)
        (*it)->getNumMeshElements(c);
      if(c[0] + c[1] + c[2]) return 2;
      for(eiter it = firstEdge(); it != lastEdge(); ++it)
        (*it)->getNumMeshElements(c);
      if(c[0]) return 1;
      return 0;
    }
    
    static void MElementBB(void *a, double *min, double *max)
    {
      MElement *e = (MElement*)a;
      MVertex *v = e->getVertex(0);
      min[0] = max[0] = v->x();
      min[1] = max[1] = v->y();
      min[2] = max[2] = v->z();
      for(int i = 1; i < e->getNumVertices(); i++){
        v = e->getVertex(i);
        min[0] = std::min(min[0], v->x()); max[0] = std::max(max[0], v->x());
        min[1] = std::min(min[1], v->y()); max[1] = std::max(max[1], v->y());
        min[2] = std::min(min[2], v->z()); max[2] = std::max(max[2], v->z());
      }
    }
    
    static void MElementCentroid(void *a, double *x)
    {
      MElement *e = (MElement*)a;
      MVertex *v = e->getVertex(0);
      int n = e->getNumVertices();
      x[0] = v->x(); x[1] = v->y(); x[2] = v->z();
      for(int i = 1; i < n; i++) {
        v = e->getVertex(i);
        x[0] += v->x(); x[1] += v->y(); x[2] += v->z();
      }
      double oc = 1. / (double)n;
      x[0] *= oc;
      x[1] *= oc;
      x[2] *= oc;
    }
    
    static int MElementInEle(void *a, double *x)
    {
      MElement *e = (MElement*)a;
      double uvw[3];
      e->xyz2uvw(x, uvw);
      return e->isInside(uvw[0], uvw[1], uvw[2]) ? 1 : 0;
    }
    
    MElement *GModel::getMeshElementByCoord(SPoint3 &p)
    {
      if(!_octree){
        Msg::Debug("Rebuilding mesh element octree");
        SBoundingBox3d bb = bounds();
        double min[3] = {bb.min().x(), bb.min().y(), bb.min().z()};
        double size[3] = {bb.max().x() - bb.min().x(),
                          bb.max().y() - bb.min().y(),
                          bb.max().z() - bb.min().z()};
        const int maxElePerBucket = 100; // memory vs. speed trade-off
        _octree = Octree_Create(maxElePerBucket, min, size,
                                MElementBB, MElementCentroid, MElementInEle);
        std::vector<GEntity*> entities;
        getEntities(entities);
        for(unsigned int i = 0; i < entities.size(); i++)
          for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
            Octree_Insert(entities[i]->getMeshElement(j), _octree);
        Octree_Arrange(_octree);
      }
      double P[3] = {p.x(), p.y(), p.z()};
      return (MElement*)Octree_Search(P, _octree);
    }
    
    MVertex *GModel::getMeshVertexByTag(int n)
    {
      if(_vertexVectorCache.empty() && _vertexMapCache.empty()){
        Msg::Debug("Rebuilding mesh vertex cache");
        _vertexVectorCache.clear();
        _vertexMapCache.clear();
        bool dense = (getNumMeshVertices() == MVertex::getGlobalNumber());
        std::vector<GEntity*> entities;
        getEntities(entities);
        if(dense){
          Msg::Debug("Good: we have a dense vertex numbering in the cache");
          // numbering starts at 1
          _vertexVectorCache.resize(MVertex::getGlobalNumber() + 1);
          for(unsigned int i = 0; i < entities.size(); i++)
            for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
              _vertexVectorCache[entities[i]->mesh_vertices[j]->getNum()] =
                entities[i]->mesh_vertices[j];
        }
        else{
          for(unsigned int i = 0; i < entities.size(); i++)
            for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
              _vertexMapCache[entities[i]->mesh_vertices[j]->getNum()] =
                entities[i]->mesh_vertices[j];
        }
      }
    
      if(n < (int)_vertexVectorCache.size())
        return _vertexVectorCache[n];
      else
        return _vertexMapCache[n];
    }
    
    void GModel::getMeshVerticesForPhysicalGroup(int dim, int num, std::vector<MVertex*> &v)
    {
      v.clear();
      std::map<int, std::vector<GEntity*> > groups[4];
      getPhysicalGroups(groups);
      std::map<int, std::vector<GEntity*> >::const_iterator it = groups[dim].find(num);
      if(it == groups[dim].end()) return;
      const std::vector<GEntity *> &entities = it->second;
      std::set<MVertex*> sv;
      for(unsigned int i = 0; i < entities.size(); i++){
        if(dim == 0){
          GVertex *g = (GVertex*)entities[i];
          sv.insert(g->mesh_vertices[0]);
        }
        else{
          for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
            MElement *e = entities[i]->getMeshElement(j);
            for(int k = 0; k < e->getNumVertices(); k++)
              sv.insert(e->getVertex(k));
          }
        }
      }
      v.insert(v.begin(), sv.begin(), sv.end());
    }
    
    MElement *GModel::getMeshElementByTag(int n)
    {
      if(_elementVectorCache.empty() && _elementMapCache.empty()){
        Msg::Debug("Rebuilding mesh element cache");
        _elementVectorCache.clear();
        _elementMapCache.clear();
        bool dense = (getNumMeshElements() == MElement::getGlobalNumber());
        std::vector<GEntity*> entities;
        getEntities(entities);
        if(dense){
          Msg::Debug("Good: we have a dense element numbering in the cache");
          // numbering starts at 1
          _elementVectorCache.resize(MElement::getGlobalNumber() + 1);
          for(unsigned int i = 0; i < entities.size(); i++)
            for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
              MElement *e = entities[i]->getMeshElement(j);
              _elementVectorCache[e->getNum()] = e;
            }
        }
        else{
          for(unsigned int i = 0; i < entities.size(); i++)
            for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
              MElement *e = entities[i]->getMeshElement(j);
              _elementMapCache[e->getNum()] = e;
            }
        }
      }
    
      if(n < (int)_elementVectorCache.size())
        return _elementVectorCache[n];
      else
        return _elementMapCache[n];
    }
    
    template <class T>
    static void removeInvisible(std::vector<T*> &elements, bool all)
    {
      std::vector<T*> tmp;
      for(unsigned int i = 0; i < elements.size(); i++){
        if(all || !elements[i]->getVisibility())
          delete elements[i];
        else
          tmp.push_back(elements[i]);
      }
      elements.clear();
      elements = tmp;
    }
    
    void GModel::removeInvisibleElements()
    {
      for(riter it = firstRegion(); it != lastRegion(); ++it){
        bool all = !(*it)->getVisibility();
        removeInvisible((*it)->tetrahedra, all);
        removeInvisible((*it)->hexahedra, all);
        removeInvisible((*it)->prisms, all);
        removeInvisible((*it)->pyramids, all);
        removeInvisible((*it)->polyhedra, all);
        (*it)->deleteVertexArrays();
      }
      for(fiter it = firstFace(); it != lastFace(); ++it){
        bool all = !(*it)->getVisibility();
        removeInvisible((*it)->triangles, all);
        removeInvisible((*it)->quadrangles, all);
        removeInvisible((*it)->polygons, all);
        (*it)->deleteVertexArrays();
      }
      for(eiter it = firstEdge(); it != lastEdge(); ++it){
        bool all = !(*it)->getVisibility();
        removeInvisible((*it)->lines, all);
        (*it)->deleteVertexArrays();
      }
    }
    
    int GModel::indexMeshVertices(bool all)
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
    
      // tag all mesh vertices with -1 (negative vertices will not be
      // saved)
      for(unsigned int i = 0; i < entities.size(); i++)
        for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
          entities[i]->mesh_vertices[j]->setIndex(-1);
    
      // tag all mesh vertices belonging to elements that need to be saved
      //with 0
      for(unsigned int i = 0; i < entities.size(); i++)
        if(all || entities[i]->physicals.size())
          for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
            for(int k = 0; k < entities[i]->getMeshElement(j)->getNumVertices(); k++)
              entities[i]->getMeshElement(j)->getVertex(k)->setIndex(0);
    
      // renumber all the mesh vertices tagged with 0
      int numVertices = 0;
      for(unsigned int i = 0; i < entities.size(); i++)
        for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
          if(!entities[i]->mesh_vertices[j]->getIndex())
            entities[i]->mesh_vertices[j]->setIndex(++numVertices);
    
      return numVertices;
    }
    
    void GModel::scaleMesh(double factor)
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      for(unsigned int i = 0; i < entities.size(); i++)
        for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
          MVertex *v = entities[i]->mesh_vertices[j];
          v->x() *= factor;
          v->y() *= factor;
          v->z() *= factor;
        }
    }
    
    void GModel::recomputeMeshPartitions()
    {
      meshPartitions.clear();
      std::vector<GEntity*> entities;
      getEntities(entities);
      for(unsigned int i = 0; i < entities.size(); i++){
        for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
          int part = entities[i]->getMeshElement(j)->getPartition();
          if(part)	meshPartitions.insert(part);
        }
      }
    }
    
    void GModel::deleteMeshPartitions()
    {
      std::vector<GEntity*> entities;
      getEntities(entities);
      for(unsigned int i = 0; i < entities.size(); i++)
        for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
          entities[i]->getMeshElement(j)->setPartition(0);
      meshPartitions.clear();
    }
    
    template<class T>
    static void _addElements(std::vector<T*> &dst, const std::vector<MElement*> &src)
    {
      for(unsigned int i = 0; i < src.size(); i++) dst.push_back((T*)src[i]);
    }
    
    void GModel::_storeElementsInEntities(std::map<int, std::vector<MElement*> > &map)
    {
      std::map<int, std::vector<MElement*> >::const_iterator it = map.begin();
      for(; it != map.end(); ++it){
        if(!it->second.size()) continue;
        int type = it->second[0]->getType();
        switch(type){
        case TYPE_PNT:
          {
            GVertex *v = getVertexByTag(it->first);
            if(!v){
              v = new discreteVertex(this, it->first);
              add(v);
            }
            if(!v->points.empty()) v->points.clear();  // CAD points already have one by default
    	  _addElements(v->points, it->second);
          }
          break;
        case TYPE_LIN:
          {
            GEdge *e = getEdgeByTag(it->first);
            if(!e){
              e = new discreteEdge(this, it->first, 0, 0);
              add(e);
           }
            _addElements(e->lines, it->second);
          }
          break;
        case TYPE_TRI: case TYPE_QUA: case TYPE_POLYG:
          {
            GFace *f = getFaceByTag(it->first);
            if(!f){
              f = new discreteFace(this, it->first);
              add(f);
            }
            if(type == TYPE_TRI) _addElements(f->triangles, it->second);
            else if(type == TYPE_QUA) _addElements(f->quadrangles, it->second);
            else _addElements(f->polygons, it->second);
          }
          break;
        case TYPE_TET: case TYPE_HEX: case TYPE_PYR: case TYPE_PRI: case TYPE_POLYH:
          {
            GRegion *r = getRegionByTag(it->first);
            if(!r){
              r = new discreteRegion(this, it->first);
              add(r);
            }
            if(type == TYPE_TET) _addElements(r->tetrahedra, it->second);
            else if(type == TYPE_HEX) _addElements(r->hexahedra, it->second);
            else if(type == TYPE_PRI) _addElements(r->prisms, it->second);
            else if(type == TYPE_PYR) _addElements(r->pyramids, it->second);
            else _addElements(r->polyhedra, it->second);
          }
          break;
        }
      }
    }
    
    template<class T>
    static void _associateEntityWithElementVertices(GEntity *ge, std::vector<T*> &elements)
    {
      for(unsigned int i = 0; i < elements.size(); i++){
        for(int j = 0; j < elements[i]->getNumVertices(); j++){
          if (!elements[i]->getVertex(j)->onWhat() ||
              elements[i]->getVertex(j)->onWhat()->dim() > ge->dim()){
            elements[i]->getVertex(j)->setEntity(ge);
          }
        }
      }
    }
    
    void GModel::_associateEntityWithMeshVertices()
    {
      // loop on regions, then on faces, edges and vertices and store the
      // entity pointer in the the elements' vertices (this way we
      // associate the entity of lowest geometrical degree with each
      // vertex)
      for(riter it = firstRegion(); it != lastRegion(); ++it){
        _associateEntityWithElementVertices(*it, (*it)->tetrahedra);
        _associateEntityWithElementVertices(*it, (*it)->hexahedra);
        _associateEntityWithElementVertices(*it, (*it)->prisms);
        _associateEntityWithElementVertices(*it, (*it)->pyramids);
        _associateEntityWithElementVertices(*it, (*it)->polyhedra);
      }
      for(fiter it = firstFace(); it != lastFace(); ++it){
        _associateEntityWithElementVertices(*it, (*it)->triangles);
        _associateEntityWithElementVertices(*it, (*it)->quadrangles);
        _associateEntityWithElementVertices(*it, (*it)->polygons);
      }
      for(eiter it = firstEdge(); it != lastEdge(); ++it){
        _associateEntityWithElementVertices(*it, (*it)->lines);
      }
      for(viter it = firstVertex(); it != lastVertex(); ++it){
        _associateEntityWithElementVertices(*it, (*it)->points);
      }
    }
    
    void GModel::_storeVerticesInEntities(std::map<int, MVertex*> &vertices)
    {
      std::map<int, MVertex*>::const_iterator it = vertices.begin();
      for(; it != vertices.end(); ++it){
        MVertex *v = it->second;
        GEntity *ge = v->onWhat();
        if(ge){
          if(ge->dim() || ge->mesh_vertices.empty()){ // special case for points
            ge->mesh_vertices.push_back(v);
          }
        }
        else
          delete v; // we delete all unused vertices
      }
    }
    
    void GModel::_storeVerticesInEntities(std::vector<MVertex*> &vertices)
    {
      for(unsigned int i = 0; i < vertices.size(); i++){
        MVertex *v = vertices[i];
        if(v){ // the vector is allowed to have null entries
          GEntity *ge = v->onWhat();
          if(ge) {
            if(ge->dim() || ge->mesh_vertices.empty()){ // special case for points
              ge->mesh_vertices.push_back(v);
            }
          }
          else
            delete v; // we delete all unused vertices
        }
      }
    }
    
    void GModel::checkMeshCoherence(double tolerance)
    {
      int numEle = getNumMeshElements();
      if(!numEle) return;
    
      Msg::Info("Checking mesh coherence (%d elements)", numEle);
    
      SBoundingBox3d bbox = bounds();
      double lc = bbox.empty() ? 1. : norm(SVector3(bbox.max(), bbox.min()));
    
      std::vector<GEntity*> entities;
      getEntities(entities);
    
      // check for duplicate mesh vertices
      {
        double old_tol = MVertexLessThanLexicographic::tolerance;
        MVertexLessThanLexicographic::tolerance = tolerance * lc;
        std::set<MVertex*, MVertexLessThanLexicographic> pos;
        int num = 0;
        for(unsigned int i = 0; i < entities.size(); i++){
          for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
            MVertex *v = entities[i]->mesh_vertices[j];
            std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.find(v);
            if(it == pos.end()){
              pos.insert(v);
            }
            else{
              Msg::Info("Vertices %d and %d have identical position (%g, %g, %g)",
                        (*it)->getNum(), v->getNum(), v->x(), v->y(), v->z());
              num++;
            }
          }
        }
        if(num) Msg::Warning("%d duplicate vertices", num);
        MVertexLessThanLexicographic::tolerance = old_tol;
      }
    
      // check for duplicate elements
      {
        double old_tol = MElementLessThanLexicographic::tolerance;
        MElementLessThanLexicographic::tolerance = tolerance * lc;
        std::set<MElement*, MElementLessThanLexicographic> pos;
        int num = 0;
        for(unsigned int i = 0; i < entities.size(); i++){
          for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
            MElement *e = entities[i]->getMeshElement(j);
            std::set<MElement*, MElementLessThanLexicographic>::iterator it = pos.find(e);
            if(it == pos.end()){
              pos.insert(e);
            }
            else{
              std::ostringstream sstream;
              sstream << "Element " << e->getNum() << " [ ";
              for (int k = 0; k < e->getNumVertices(); k++)
                sstream << e->getVertex(k)->getNum() << " ";
              sstream << "] on entity " << entities[i]->tag()
                      << " has same barycenter as element " << (*it)->getNum()
                      << " [ ";
              for (int k = 0; k < (*it)->getNumVertices(); k++)
                sstream << (*it)->getVertex(k)->getNum() << " ";
              sstream << "]";
              Msg::Info("%s", sstream.str().c_str());
              num++;
            }
          }
        }
        if(num) Msg::Warning("%d duplicate elements", num);
        MElementLessThanLexicographic::tolerance = old_tol;
      }
    }
    
    int GModel::removeDuplicateMeshVertices(double tolerance)
    {
      SBoundingBox3d bbox = bounds();
      double lc = bbox.empty() ? 1. : norm(SVector3(bbox.max(), bbox.min()));
    
      std::vector<GEntity*> entities;
      getEntities(entities);
    
      double old_tol = MVertexLessThanLexicographic::tolerance;
      MVertexLessThanLexicographic::tolerance = tolerance * lc;
      std::set<MVertex*, MVertexLessThanLexicographic> pos;
    
      for(unsigned int i = 0; i < entities.size(); i++){
        for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
          MVertex *v = entities[i]->mesh_vertices[j];
          MVertex w(v->x(), v->y(), v->z());
          std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.find(&w);
          if(it == pos.end())
            pos.insert(new MVertex(v->x(), v->y(), v->z()));
        }
      }
    
      int diff = getNumMeshVertices() - pos.size();
      if(!diff){
        for(std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.begin();
            it != pos.end(); it++)
          delete *it;
        Msg::Info("No duplicate vertices found");
        return 0;
      }
    
      std::map<int, std::vector<MElement*> > elements[10];
      for(unsigned int i = 0; i < entities.size(); i++){
        for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
          MElement *e = entities[i]->getMeshElement(j);
          std::vector<MVertex*> verts;
          for(int k = 0; k < e->getNumVertices(); k++){
            MVertex *v = e->getVertex(k);
            std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.find(v);
            if(it != pos.end())
              verts.push_back(*it);
            else
              Msg::Error("Could not find unique vertex (%g,%g,%g)", v->x(), v->y(), v->z());
          }
          MElementFactory factory;
          MElement *e2 = factory.create(e->getTypeForMSH(), verts, e->getNum(),
                                        e->getPartition());
          switch(e2->getType()){
          case TYPE_PNT: elements[0][entities[i]->tag()].push_back(e2); break;
          case TYPE_LIN: elements[1][entities[i]->tag()].push_back(e2); break;
          case TYPE_TRI: elements[2][entities[i]->tag()].push_back(e2); break;
          case TYPE_QUA: elements[3][entities[i]->tag()].push_back(e2); break;
          case TYPE_TET: elements[4][entities[i]->tag()].push_back(e2); break;
          case TYPE_HEX: elements[5][entities[i]->tag()].push_back(e2); break;
          case TYPE_PRI: elements[6][entities[i]->tag()].push_back(e2); break;
          case TYPE_PYR: elements[7][entities[i]->tag()].push_back(e2); break;
          case TYPE_POLYG: elements[8][entities[i]->tag()].push_back(e2); break;
          case TYPE_POLYH: elements[9][entities[i]->tag()].push_back(e2); break;
    
          }
        }
      }
    
      for(unsigned int i = 0; i < entities.size(); i++)
        entities[i]->deleteMesh();
    
      std::vector<MVertex*> vertices;
      for(std::set<MVertex*, MVertexLessThanLexicographic>::iterator it = pos.begin();
          it != pos.end(); it++)
        vertices.push_back(*it);
    
      for(int i = 0; i < (int)(sizeof(elements) / sizeof(elements[0])); i++)
        _storeElementsInEntities(elements[i]);
      _associateEntityWithMeshVertices();
      _storeVerticesInEntities(vertices);
    
      MVertexLessThanLexicographic::tolerance = old_tol;
    
      Msg::Info("Removed %d duplicate mesh vertices", diff);
    
      return diff;
    }
    
    
    void GModel::createTopologyFromMesh()
    {
    
      // for each discreteRegion, create topology
      std::vector<discreteRegion*> discRegions;
      for(riter it = firstRegion(); it != lastRegion(); it++)
        if((*it)->geomType() == GEntity::DiscreteVolume)
          discRegions.push_back((discreteRegion*) *it);
    
      //EMI-FIX in case of createTopology for Volumes
      //all faces are set to the volume
      for (std::vector<discreteRegion*>::iterator it = discRegions.begin();
           it != discRegions.end(); it++)
        (*it)->setBoundFaces();
    
     //for each discreteFace, createTopology
     std::vector<discreteFace*> discFaces;
      for(fiter it = firstFace(); it != lastFace(); it++)
        if((*it)->geomType() == GEntity::DiscreteSurface)
          discFaces.push_back((discreteFace*) *it);
    
    //EMI TODO
    //check for closed faces
    //  for (std::vector<discreteFace*>::iterator itf = discFaces.begin(); itf != discFaces.end(); itf++){
    
    //    std::list<MTriangles*> tris;
    //    for (unsigned int i = 0; i < (*itf)->trinagles.size(); i++){
    //      tris.push_back((*itf)->triangles[i]);
    //    }
    
    //    while (!tris.empty()) {
    //      for (int i=0; i<3; i++) {
    //        for (std::list<MTriangle*>::iterator it = tris.begin() ; it != segments.end(); ++it){
    // 	 MEdge *e0 = (*it)->getEdge(0);
    // 	 MEdge *e1 = (*it)->getEdge(1);
    // 	 MEdge *e2 = (*it)->getEdge(2);
    // 	 //printf("mline %d %d \n", v1->getNum(), v2->getNum());
    // 	 std::list<MTriangle*>::iterator itp;
    // 	 if ( v1 == vE  ){
    // 	   //printf("->push back this mline \n");
    // 	   myLines.push_back(*it);
    // 	   itp = it;
    // 	   it++;
    // 	   segments.erase(itp);
    // 	   vE = v2;
    // 	   i = -1;
    // 	 }
    // 	 else if ( v2 == vE){
    // 	   //printf("->push back this mline \n");
    // 	   myLines.push_back(*it);
    // 	   itp = it;
    // 	   it++;
    // 	   segments.erase(itp);
    // 	   vE = v1;
    // 	   i=-1;
    // 	 }
    // 	 if (it == segments.end()) break;
    //        }
    //        if (vB == vE) break;
    //        if (segments.empty()) break;
    //        //printf("not found VB=%d vE=%d\n", vB->getNum(), vE->getNum());
    //        MVertex *temp = vB;
    //        vB = vE;
    //        vE = temp;
    //      }
    //      GFace *newGe = new discreteFace(GModel::current(), GModel::current()->maxFaceNum() + 1, 0, 0);
    //      newGe->lines.insert(newGe->lines.end(), myLines.begin(), myLines.end());
    //      GModel::current()->add(newGe);
    //    }
    //  }
    
    //  }
    
     //create Topo From Faces
     createTopologyFromFaces(discFaces);
    
     //create
     exportDiscreteGEOInternals();
    
    }
    
    void GModel::createTopologyFromFaces(std::vector<discreteFace*> &discFaces)
    {
     
    
      std::vector<discreteEdge*> discEdges;
      for(eiter it = firstEdge(); it != lastEdge(); it++){
        if((*it)->geomType() == GEntity::DiscreteCurve)
          discEdges.push_back((discreteEdge*) *it);
      }
    
      // find boundary edges of each face and put them in a map_edges that
      // associates the MEdges with the tags of the adjacent faces
      std::map<MEdge, std::vector<int>, Less_Edge > map_edges;
      for (std::vector<discreteFace*>::iterator it = discFaces.begin(); it != discFaces.end(); it++)
        (*it)->findEdges(map_edges);
    
      //return if no boundary edges (torus, sphere, ...)
      if (map_edges.empty()) return;
    
      // create reverse map, for each face find set of MEdges that are
      // candidate for new discrete Edges
      std::map<int, std::vector<int> > face2Edges;
    
      while (!map_edges.empty()){
    
        std::vector<MEdge> myEdges;
        std::vector<int> tagFaces = map_edges.begin()->second;
        myEdges.push_back(map_edges.begin()->first);
        map_edges.erase(map_edges.begin());
    
        std::map<MEdge, std::vector<int>, Less_Edge >::iterator itmap = map_edges.begin();
        while (itmap != map_edges.end()){
          std::vector<int> tagFaces2 = itmap->second;
          if (tagFaces2 == tagFaces){
            myEdges.push_back(itmap->first);
            map_edges.erase(itmap++);
          }
          else
            itmap++;
        }
    
        //printf("*** %d Edges that bound \n", myEdges.size());
        //for(std::vector<int>::iterator itFace = tagFaces.begin(); itFace != tagFaces.end(); itFace++)
        //  printf("face %d \n", *itFace);
    
        // if the loaded mesh already contains discrete Edges, check if
        // the candidate discrete Edge does contain any of those; if not,
        // create discreteEdges and create a map face2Edges that associate
        // for each face the boundary discrete Edges
    
        for (std::vector<discreteEdge*>::iterator itE = discEdges.begin(); itE != discEdges.end(); itE++){
    
          bool candidate = true;
          for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
    	MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
    	if (std::find(myEdges.begin(), myEdges.end(), me) ==  myEdges.end()){
    	  candidate = false;
    	  break;
    	}
          }
    
          if (candidate){
    
    	std::vector<int> tagEdges;
    	tagEdges.push_back((*itE)->tag());
    	//printf("Push back edge %d\n", (*itE)->tag());
    	for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
    	  MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
    	  std::vector<MEdge>::iterator itME = std::find(myEdges.begin(), myEdges.end(), me);
    	  myEdges.erase(itME);
    	}
    
    	for (std::vector<int>::iterator itFace = tagFaces.begin(); itFace != tagFaces.end(); itFace++) {
    	  std::map<int, std::vector<int> >::iterator it = face2Edges.find(*itFace);
    	  if (it == face2Edges.end()) face2Edges.insert(std::make_pair(*itFace, tagEdges));
    	  else{
    	    std::vector<int> allEdges = it->second;
    	    allEdges.insert(allEdges.begin(), tagEdges.begin(), tagEdges.end());
    	    it->second = allEdges;
    	  }
    	}
    
          }
    
        }
    
        while (!myEdges.empty()) {
          std::vector<MEdge> myLines;
          myLines.clear();
          std::vector<MEdge>::iterator it = myEdges.begin();
    
          MVertex *vB = (*it).getVertex(0);
          MVertex *vE = (*it).getVertex(1);
          myLines.push_back(*it);
          myEdges.erase(it);
          it++;
          for (int i = 0; i < 2; i++) {
    	std::vector<MEdge>::iterator it= myEdges.begin();
    	while (it != myEdges.end()){
    	  MVertex *v1 = (*it).getVertex(0);
    	  MVertex *v2 = (*it).getVertex(1);
    	  std::vector<MEdge>::iterator itp;
    	  if (v1 == vE){
    	    myLines.push_back(*it);
    	    myEdges.erase(it);
    	    vE = v2;
    	    i = -1;
    	  }
    	  else if (v2 == vE){
    	    myLines.push_back(*it);
    	    myEdges.erase(it);
    	    vE = v1;
    	    i = -1;
    	  }
    	  else it++;
    	}
    
    	if (vB == vE) break;
    	if (myEdges.empty()) break;
    	MVertex *temp = vB;
    	vB = vE;
    	vE = temp;
          }
    
          int numE = maxEdgeNum()+1;
          discreteEdge *e = new discreteEdge(this, numE, 0, 0);
          //printf("*** Created discreteEdge %d \n", numE);
          add(e);
          discEdges.push_back(e);
    
          //fill new edge with mesh vertices
          std::vector<MVertex*> allV;
          for(unsigned int i = 0; i < myLines.size(); i++) {
    	MVertex *v0 = myLines[i].getVertex(0);
    	MVertex *v1 = myLines[i].getVertex(1);
    	e->lines.push_back(new MLine( v0, v1));
    	if (std::find(allV.begin(), allV.end(), v0) ==  allV.end()) allV.push_back(v0);
    	if (std::find(allV.begin(), allV.end(), v1) ==  allV.end()) allV.push_back(v1);
    	v0->setEntity(e);
    	v1->setEntity(e);
          }
          e->mesh_vertices.insert(e->mesh_vertices.begin(), allV.begin(),allV.end());
    
          for (std::vector<int>::iterator itFace = tagFaces.begin(); itFace != tagFaces.end(); itFace++) {
    
    	//delete new mesh vertices of edge from adjacent faces
    	GFace *dFace = getFaceByTag(*itFace);
    	for (std::vector<MVertex*>::iterator itv = allV.begin(); itv != allV.end(); itv++) {
    	  std::vector<MVertex*>::iterator itve = std::find(dFace->mesh_vertices.begin(), dFace->mesh_vertices.end(), *itv);
    	  if (itve != dFace->mesh_vertices.end()) dFace->mesh_vertices.erase(itve);
    	}
    
    	//fill face2Edges with the new edge
    	std::map<int, std::vector<int> >::iterator f2e = face2Edges.find(*itFace);
    	if (f2e == face2Edges.end()){
    	  std::vector<int> tagEdges;
    	  tagEdges.push_back(numE);
    	  face2Edges.insert(std::make_pair(*itFace,tagEdges));
    	}
    	else{
    	  std::vector<int> tagEdges = f2e->second;
    	  tagEdges.push_back(numE);
    	  f2e->second = tagEdges;
    	}
    
          }
    
        }
      }
    
      // set boundary edges for each face
      for (std::vector<discreteFace*>::iterator it = discFaces.begin(); it != discFaces.end(); it++){
        //printf("set boundary edge for face =%d \n", (*it)->tag());
        std::map<int, std::vector<int> >::iterator ite = face2Edges.find((*it)->tag());
        if (ite != face2Edges.end()){
          std::vector<int> myEdges = ite->second;
          (*it)->setBoundEdges(myEdges);
        }
      }
    
      // for each discreteEdge, create Topology
      for (std::vector<discreteEdge*>::iterator it = discEdges.begin(); it != discEdges.end(); it++){
        (*it)->createTopo();
        (*it)->parametrize();
      }
    
    
    }
    
    GModel *GModel::buildCutGModel(gLevelset *ls)
    {
      std::map<int, std::vector<MElement*> > elements[10];
      std::map<int, std::map<int, std::string> > physicals[4];
      std::map<int, MVertex*> vertexMap;
    
      Msg::Info("Cutting mesh...");
      double t1 = Cpu();
    
      GModel *cutGM = buildCutMesh(this, ls, elements, vertexMap, physicals);
    
      for(int i = 0; i < (int)(sizeof(elements) / sizeof(elements[0])); i++)
        cutGM->_storeElementsInEntities(elements[i]);
    
      cutGM->_associateEntityWithMeshVertices();
    
      cutGM->_storeVerticesInEntities(vertexMap);
    
      for(int i = 0; i < 4; i++)
        cutGM->_storePhysicalTagsInEntities(i, physicals[i]);
    
      double t2 = Cpu();
    
      Msg::Info("Mesh cutting complete (%g s)", t2 - t1);
      return cutGM;
    }
    
    void GModel::load(std::string fileName){
      GModel *temp = GModel::current();
      GModel::setCurrent(this);
      MergeFile(fileName.c_str());
      GModel::setCurrent(temp);
    }
    
    void GModel::save(std::string fileName){
      GModel *temp = GModel::current();
      GModel::setCurrent(this);
      int guess = GuessFileFormatFromFileName(fileName);
      CreateOutputFile (fileName, guess);
      GModel::setCurrent(temp);
    }
    
    #ifdef HAVE_LUA
    #include "Bindings.h"
    void GModel::registerBindings(binding *b){
      classBinding *cb = b->addClass<GModel>("GModel");
      methodBinding *cm;
      cm = cb->addMethod("mesh",&GModel::mesh);
      cm = cb->addMethod("load",&GModel::load);
      cm = cb->addMethod("save",&GModel::save);
      cb->setConstructor(constructorPtr<GModel>);
    }
    #endif