Select Git revision
GF_LaplacexForm.cpp 24.18 KiB
// GetDP - Copyright (C) 1997-2018 P. Dular and C. Geuzaine, University of Liege
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <getdp@onelab.info>.
//
// Contributor(s):
// Ruth Sabariego
//
#include <math.h>
#include "ProData.h"
#include "ProDefine.h"
#include "BF.h"
#include "GF.h"
#include "GeoData.h"
#include "Message.h"
#define SQU(a) ((a)*(a))
#define THESIGN(a) ((a)>=0 ? 1 : -1)
#define ONE_OVER_TWO_PI 1.5915494309189534E-01
#define ONE_OVER_FOUR_PI 7.9577471545947668E-02
#define MAX_NODES 6
#define EPSILON 1.e-8
#define EPSILON2 1.e-20
#define RADIUS 0.154797 /* this is a hack... */
/* ------------------------------------------------------------------------ */
/* G F _ L a p l a c e x F o r m */
/* ------------------------------------------------------------------------ */
void GF_LaplacexForm(GF_ARGX)
{
double xs[MAX_NODES], ys[MAX_NODES], zs[MAX_NODES], u[3], v[3], n[3];
double u2=0., v2=0., xl=0., yl=0., zl=0., zl_2=0. ;
double Area, m0[3], m1[3], m2[3] ;
int Type_Int=0, i, j = 1 ;
double a=0., b=0., c=0., d, e, f, i1, I1 = 0., Iua, Iva, r2;
double s0m=0., s0p=0., s1m=0., s1p=0., s2m=0., s2p=0., t00, t10, t20, t0m_2, t0p_2, t1p_2;
double r00_2=0., r10_2=0., r20_2=0., r00, r10, r20, r0p=0., r0m=0., r1p=0.;
double f20=0., f21=0., f22=0., B0, B1, B2 ;
double f30, f31, f32, N10, N20, N30 ;
Val->Val[MAX_DIM] = 0.0 ;
switch ((int)Fct->Para[0]) {
case _2D :
switch (Element->ElementSource->Type) {
case POINT :
xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
r2 = SQU(x-xs[0])+SQU(y-ys[0]) ;
if (r2 > SQU(RADIUS)){
Val->Type = SCALAR ;
Val->Val[0] = - ONE_OVER_FOUR_PI * log(r2) ;
}
else{
Val->Type = SCALAR ;
Val->Val[0] = - ONE_OVER_FOUR_PI * log(SQU(RADIUS)) ;
}
break ;
case LINE :
xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ;
if(xFunctionBF == (void(*)())BF_Volume) {
a = SQU(xs[0]-xs[1]) + SQU(ys[0]-ys[1]) ;
b = 2. * ((x-xs[0])*(xs[0]-xs[1]) + (y-ys[0])*(ys[0]-ys[1])) ;
c = SQU(x-xs[0]) + SQU(y-ys[0]) ;
d = 0.5 * b / a ;
e = c / a ;
f = e - d*d ;
if (f > EPSILON) { Type_Int = 1; }
else if (fabs(f) < EPSILON){ Type_Int = 0; }
else { Type_Int = -1; f = -f; }
if (Element->Num == Element->ElementSource->Num) Type_Int = 2 ;
if ((c == 0) || ((b == -2*a) && (c == a))) Type_Int = 3 ;
switch (Type_Int) {
case -1 :
I1 = log(a) +
( (d+1.) * log(SQU(d+1.) - f) - 2.*(d+1.) +
sqrt(f) * log((d+1.+sqrt(f))/(d+1.-sqrt(f))) ) -
( d*log(d*d-f) - 2.*d + sqrt(f)*log((d+sqrt(f))/(d-sqrt(f))) ) ;
break ;
case 0 :
I1 = log(a) + (d+1.)*log(SQU(d+1.)) - d*log(SQU(d)) - 2. ;
break ;
case 1 :
I1 = log(a) +
( (d+1.) * log(SQU(d+1.) + f) - 2.*(d+1.) +
2.*sqrt(f) * atan((d+1.)/sqrt(f)) ) -
( d*log(d*d+f) - 2.*d + 2.*sqrt(f)*atan(d/sqrt(f)) ) ;
break ;
case 2 :
i1 = -b / (2.*a) ;
I1 = 2. * i1 * (log(i1) - 1.) +
2. * (1.-i1) * (log(1.-i1) - 1.) + log(a) ;
break ;
case 3 :
I1 = .5 * log(a) - 1. ;
break ;
}
Val->Type = SCALAR ;
Val->Val[0] = - ONE_OVER_FOUR_PI * I1 ;
}
else {
Message::Error("Unknown Basis Function Type for 'GF_LaplacexForm'");
}
break ;
default :
Message::Error("Unknown Element Type (%s) for 'GF_LaplacexForm'",
Get_StringForDefine(Element_Type, Element->ElementSource->Type));
}
break;
case _3D :
switch (Element->ElementSource->Type) {
case LINE :
xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
zs[0] = Element->ElementSource->z[0] ;
xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ;
zs[1] = Element->ElementSource->z[1] ;
a = SQU(xs[0]-xs[1]) + SQU(ys[0]-ys[1]) + SQU(zs[0]-zs[1]) ;
b = 2. * ((x-xs[0])*(xs[0]-xs[1]) +
(y-ys[0])*(ys[0]-ys[1]) +
(z-zs[0])*(zs[0]-zs[1])) ;
c = SQU(x-xs[0]) + SQU(y-ys[0]) + SQU(z-zs[0]) + SQU(RADIUS) ;
Val->Val[0] = ONE_OVER_FOUR_PI *
log( ( 2.*sqrt(a*(a+b+c))+2.*a+b ) / ( 2.*sqrt(a*c)+b ) ) ;
Val->Type = SCALAR ;
break ;
case TRIANGLE :
case QUADRANGLE :
if(xFunctionBF == (void(*)())BF_Volume) Type_Int = 1 ;
if(xFunctionBF == (void(*)())BF_Node) Type_Int = 2 ;
xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
zs[0] = Element->ElementSource->z[0] ;
xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ;
zs[1] = Element->ElementSource->z[1] ;
xs[2] = Element->ElementSource->x[2] ; ys[2] = Element->ElementSource->y[2] ;
zs[2] = Element->ElementSource->z[2] ;
if (Element->ElementSource->Type == QUADRANGLE) {
xs[3] = Element->ElementSource->x[3] ; ys[3] = Element->ElementSource->y[3] ;
zs[3] = Element->ElementSource->z[3] ;
j = 0 ;
};
for(i = j; i < 2; i++){
/* triangle side lengths */
a = sqrt(SQU(xs[1]-xs[0]) + SQU(ys[1]-ys[0]) + SQU(zs[1]-zs[0]));
b = sqrt(SQU(xs[2]-xs[1]) + SQU(ys[2]-ys[1]) + SQU(zs[2]-zs[1]));
c = sqrt(SQU(xs[2]-xs[0]) + SQU(ys[2]-ys[0]) + SQU(zs[2]-zs[0]));
/* local system (u,v,w) centered at (xs[0],ys[0],zs[0]) */
u[0] = (xs[1]-xs[0])/a;
u[1] = (ys[1]-ys[0])/a;
u[2] = (zs[1]-zs[0])/a;
/* triangle normal */
Geo_CreateNormal(Element->ElementSource->Type,xs,ys,zs,n);
/* v = n /\ u */
v[0] = n[1]*u[2]-n[2]*u[1];
v[1] = n[2]*u[0]-n[0]*u[2];
v[2] = n[0]*u[1]-n[1]*u[0];
u2 = (xs[2]-xs[0])*u[0] + (ys[2]-ys[0])*u[1] + (zs[2]-zs[0])*u[2]; /* u2 coordinate */
v2 = (xs[2]-xs[0])*v[0] + (ys[2]-ys[0])*v[1] + (zs[2]-zs[0])*v[2]; /* triangle height, v2 coordinate */
/* local coordinates of the observation point (xl, yl, zl) */
xl = u[0] * (x-xs[0]) + u[1] * (y-ys[0]) + u[2] * (z-zs[0]);
yl = v[0] * (x-xs[0]) + v[1] * (y-ys[0]) + v[2] * (z-zs[0]);
zl = n[0] * (x-xs[0]) + n[1] * (y-ys[0]) + n[2] * (z-zs[0]);
s0m = -( (a-xl) * (a-u2) + yl*v2 ) / b;
s0p = s0m + b;
s1p = ( xl * u2 + yl * v2 ) / c;
s1m = s1p - c;
s2m = - xl;
s2p = a - xl;
/* distance observation point projection on triangle plane to triangle local vertices*/
/* t1m = t0p ; t2p = t0m ; t2m = t1p ; */
t00 = (yl * (u2-a) + v2 * (a-xl)) / b;
t10 = (xl * v2 - yl * u2) / c;
t20 = yl;
t0m_2 = (a-xl)*(a-xl) + yl*yl;
t0p_2 = (u2-xl)*(u2-xl) + (v2-yl)*(v2-yl);
t1p_2 = xl*xl + yl*yl;
/* minimum distances^2 from the observation point to each triangle side*/
zl_2 = SQU(zl) ;
r00_2 = SQU(t00) + zl_2 ;
r10_2 = SQU(t10) + zl_2 ;
r20_2 = SQU(t20) + zl_2 ;
/* distances from observation point to the vertices*/
r0p = sqrt(t0p_2 + zl_2);
r0m = sqrt(t0m_2 + zl_2);
r1p = sqrt(t1p_2 + zl_2);
r00 = sqrt(r00_2);
r10 = sqrt(r10_2);
r20 = sqrt(r20_2);
/* intermediate functions */
if(r00 <= EPSILON*(fabs(s0m)+fabs(s0p)) ){ f20 = log(s0m/s0p) ; B0 = 0; }
else{
if (!(r0m + s0m))
Message::Error("1/0 in GF_LaplacexForm (case _3D TRIANGLE) Num %d Obs %.15e %.15e %.15e",
Element->ElementSource->Num, x, y, z) ;
f20 = log((r0p + s0p) / (r0m + s0m));
B0 = atan(t00*s0p/(r00_2+fabs(zl)*r0p))-atan(t00*s0m/(r00_2+fabs(zl)*r0m));
}
if(r10 <= EPSILON*(fabs(s1m)+fabs(s1p)) ){ f21 = log(s1m/s1p); B1 = 0; }
else{
if(!(r0p + s1m))
Message::Error("1/0 in GF_LaplacexForm (case _3D TRIANGLE) Num %d Obs %.15e %.15e %.15e",
Element->ElementSource->Num, x, y, z) ;
f21 = log((r1p + s1p) / (r0p + s1m));
B1 = atan(t10*s1p/(r10_2+fabs(zl)*r1p))-atan(t10*s1m/(r10_2+fabs(zl)*r0p));
}
if(r20 <= EPSILON*(fabs(s2m)+fabs(s2p)) ){ f22 = log(s2m/s2p); B2 = 0; }
else{
if(!(r1p+s2m))
Message::Error("1/0 in GF_LaplacexForm (case _3D TRIANGLE) Num %d Obs %.15e %.15e %.15e",
Element->ElementSource->Num, x, y, z) ;
f22 = log((r0m + s2p) / (r1p + s2m));
B2 = atan(t20*s2p/(r20_2+fabs(zl)*r0m))-atan(t20*s2m/(r20_2+fabs(zl)*r1p));
}
I1 += -fabs(zl)*(B0+B1+B2) + t00*f20+t10*f21+t20*f22 ; /* 1/r integral solution*/
if (j == 0){ xs[1] = xs[2]; ys[1] = ys[2]; zs[1] = zs[2]; xs[2] = xs[3]; ys[2] = ys[3]; zs[2] = zs[3];}
}
switch ( Type_Int ){
case 1 : /* BF_Volume */
Area = a * v2/2 ;/* Triangle area */
Val->Val[0] = I1 /Area ;
break;
case 2 : /* BF_Node */
if (!v2)
Message::Error("1/0 in GF_LaplacexForm (case _3D TRIANGLE) v2 %e", v2);
f30 = (s0p*r0p-s0m*r0m) + r00_2 * f20 ; /* f3i */
f31 = (s1p*r1p-s1m*r0p) + r10_2 * f21 ;
f32 = (s2p*r0m-s2m*r1p) + r20_2 * f22 ;
m0[0] = ((ys[2] - ys[1]) * n[2] - (zs[2] - zs[1]) * n[1])*f30/b ;
m0[1] = ((zs[2] - zs[1]) * n[0] - (xs[2] - xs[1]) * n[2])*f30/b ;
m0[2] = ((xs[2] - xs[1]) * n[1] - (ys[2] - ys[1]) * n[0])*f30/b ;
m1[0] = ((ys[0] - ys[2]) * n[2] - (zs[0] - zs[2]) * n[1])*f31/c ;
m1[1] = ((zs[0] - zs[2]) * n[0] - (xs[0] - xs[2]) * n[2])*f31/c ;
m1[2] = ((xs[0] - xs[2]) * n[1] - (ys[0] - ys[2]) * n[0])*f31/c ;
m2[0] = (u[1] * n[2] - u[2]* n[1])*f32 ;
m2[1] = (u[2] * n[0] - u[0]* n[2])*f32 ;
m2[2] = (u[0] * n[1] - u[1]* n[0])*f32 ;
Iua = (u[0] * (m0[0] + m1[0] + m2[0]) +
u[1] * (m0[1] + m1[1] + m2[1]) +
u[2] * (m0[2] + m1[2] + m2[2]))/2 ;
Iva = (v[0] * (m0[0] + m1[0] + m2[0]) +
v[1] * (m0[1] + m1[1] + m2[1]) +
v[2] * (m0[2] + m1[2] + m2[2]))/2 ;
switch(EntityNum){
case 1 :
N10 = 1 - xl/a + (u2/a -1) * yl/v2 ;
Val->Val[0] = N10 * I1 - Iua/a + (u2/a-1) * Iva/v2 ;
break;
case 2 :
N20 = xl/a - u2/a * yl/v2 ;
Val->Val[0] = N20 * I1 + Iua/a - u2/a * Iva/v2 ;
break;
case 3 :
N30 = yl/v2 ;
Val->Val[0] = N30 * I1 + Iva/v2 ;
break;
}
break;
default :
Message::Error("Unknown Basis Function Type for 'GF_LaplacexForm'");
}
Val->Val[0] *= ONE_OVER_FOUR_PI ;
if (j == 0){ Val->Val[0] /= 2; }
Val->Type = SCALAR ;
break ;
default :
Message::Error("Unknown Element Type (%s) for 'GF_LaplacexForm'",
Get_StringForDefine(Element_Type, Element->ElementSource->Type));
}
break ;
default :
Message::Error("Unknown Dimension (%d) for 'GF_LaplacexForm'",
(int)Fct->Para[0]);
}
}
/* ------------------------------------------------------------------------ */
/* G F _ G r a d L a p l a c e x F o r m */
/* ------------------------------------------------------------------------ */
void GF_GradLaplacexForm(GF_ARGX)
{
double xs[MAX_NODES], ys[MAX_NODES], zs[MAX_NODES] ;
double xxs, yys, r2, EPS ;
double a, b, c, a2, I1, I2 ;
double f0[3], f1[3], f2[3], N10, N20, N30 ;
double m0[3], m1[3], m2[3], s0[3], s1[3] ;
double umf2i, us0, us1, us2, vmf2i, vs0, vs1, vs2 ;
double u[3], v[3], n[3], u2, v2, xl, yl, zl, zl_2 ;
double area, I[3], Iua[3], Iva[3] ;
double s0m, s0p, s1m, s1p, s2m, s2p, t00, t10, t20, t0m_2, t0p_2, t1p_2;
double r00_2, r10_2, r20_2, r00, r10, r20, r0p, r0m, r1p, f20, f21, f22, B0, B1, B2, B ;
int Type_Int=0 ;
Val->Val[MAX_DIM] = Val->Val[MAX_DIM + 1] = Val->Val[MAX_DIM + 2] = 0. ;
switch ((int)Fct->Para[0]) {
case _2D :
switch (Element->ElementSource->Type) {
case POINT :
Val->Type = VECTOR ;
if (Element->Num == Element->ElementSource->Num) {
Val->Val[0] = Val->Val[1] = Val->Val[2] = 0. ;
return ;
}
xxs = x - Element->ElementSource->x[0] ;
yys = y - Element->ElementSource->y[0] ;
r2 = SQU(xxs)+SQU(yys) ;
if (r2 > EPSILON2) {
Val->Val[0] = - ONE_OVER_TWO_PI * xxs / r2 ;
Val->Val[1] = - ONE_OVER_TWO_PI * yys / r2 ;
Val->Val[2] = 0. ;
}
else {
Val->Val[0] = Val->Val[1] = Val->Val[2] = 0. ;
}
break ;
default :
Message::Error("Unknown Element Type (%s) for 'GF_GradLaplacexForm'",
Get_StringForDefine(Element_Type, Element->ElementSource->Type));
}
break ;
case _3D :
switch (Element->ElementSource->Type) {
case LINE :
Val->Type = VECTOR ;
xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
zs[0] = Element->ElementSource->z[0] ;
xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ;
zs[1] = Element->ElementSource->z[1] ;
a = SQU(xs[0]-xs[1]) + SQU(ys[0]-ys[1]) + SQU(zs[0]-zs[1]) ;
b = 2. * ((x-xs[0])*(xs[0]-xs[1]) +
(y-ys[0])*(ys[0]-ys[1]) +
(z-zs[0])*(zs[0]-zs[1])) ;
c = SQU(x-xs[0]) + SQU(y-ys[0]) + SQU(z-zs[0]) + SQU(RADIUS) ;
I1 = 2./(4.*a*c-b*b) * ( (2.*a+b)/sqrt(a+b+c) - b/sqrt(c) ) ;
I2 = 2./(-4.*a*c+b*b) * ( (2.*c+b)/sqrt(a+b+c) - 2.*sqrt(c) ) ;
a2 = sqrt(a) ;
Val->Val[0] = ONE_OVER_FOUR_PI * ( (xs[0]-x) * I1 + (xs[1]-xs[0]) * I2 ) * a2 ;
Val->Val[1] = ONE_OVER_FOUR_PI * ( (ys[0]-y) * I1 + (ys[1]-ys[0]) * I2 ) * a2 ;
Val->Val[2] = ONE_OVER_FOUR_PI * ( (zs[0]-z) * I1 + (zs[1]-zs[0]) * I2 ) * a2 ;
break ;
case TRIANGLE :
Val->Type = VECTOR ;
xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
zs[0] = Element->ElementSource->z[0] ;
xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ;
zs[1] = Element->ElementSource->z[1] ;
xs[2] = Element->ElementSource->x[2] ; ys[2] = Element->ElementSource->y[2] ;
zs[2] = Element->ElementSource->z[2] ;
if(xFunctionBF == (void(*)())BF_Volume) Type_Int = 1 ;
if(xFunctionBF == (void(*)())BF_Node) Type_Int = 2 ;
/* triangle side lengths */
a = sqrt(SQU(xs[1]-xs[0]) + SQU(ys[1]-ys[0]) + SQU(zs[1]-zs[0]));
b = sqrt(SQU(xs[2]-xs[1]) + SQU(ys[2]-ys[1]) + SQU(zs[2]-zs[1]));
c = sqrt(SQU(xs[2]-xs[0]) + SQU(ys[2]-ys[0]) + SQU(zs[2]-zs[0]));
/* local system (u,v,w) centered at (xs[0],ys[0],zs[0]) */
u[0] = (xs[1]-xs[0])/a;
u[1] = (ys[1]-ys[0])/a;
u[2] = (zs[1]-zs[0])/a;
/* triangle normal */
Geo_CreateNormal(Element->ElementSource->Type,xs,ys,zs,n);
v[0] = n[1]*u[2]-n[2]*u[1];
v[1] = n[2]*u[0]-n[0]*u[2];
v[2] = n[0]*u[1]-n[1]*u[0];
u2 = (xs[2]-xs[0])*u[0] + (ys[2]-ys[0])*u[1] + (zs[2]-zs[0])*u[2]; /* u2 coordinate */
v2 = (xs[2]-xs[0])*v[0] + (ys[2]-ys[0])*v[1] + (zs[2]-zs[0])*v[2]; /* triangle height, v2 coordinate*/
/* local coordinates of the observation point (xl, yl, zl)*/
xl = u[0] * (x-xs[0]) + u[1] * (y-ys[0]) + u[2] * (z-zs[0]);
yl = v[0] * (x-xs[0]) + v[1] * (y-ys[0]) + v[2] * (z-zs[0]);
zl = n[0] * (x-xs[0]) + n[1] * (y-ys[0]) + n[2] * (z-zs[0]);
area = a * v2/2 ;/* Triangle area */
if (!zl) zl = sqrt(area) * 1e-15 ;
s0m = -( (a-xl) * (a-u2) + yl*v2 ) / b;
s0p = s0m + b;
s1p = ( xl * u2 + yl * v2 ) / c;
s1m = s1p - c;
s2m = - xl;
s2p = a - xl;
/* distance observation point projection on triangle plane to triangle local vertices*/
t00 = (yl * (u2-a) + v2 * (a-xl)) / b;
t10 = (xl * v2 - yl * u2) / c;
t20 = yl;
t0m_2 = ((a-xl)*(a-xl) + yl*yl);
t0p_2 = ((u2-xl)*(u2-xl) + (v2-yl)*(v2-yl));
t1p_2 = (xl*xl + yl*yl);
/* minimum distances^2 from the observation point to each triangle side*/
zl_2 = SQU(zl) ;
r00_2 = SQU(t00) + zl_2 ;
r10_2 = SQU(t10) + zl_2 ;
r20_2 = SQU(t20) + zl_2 ;
r00 = sqrt(r00_2);
r10 = sqrt(r10_2);
r20 = sqrt(r20_2);
/* distances from observation point to the vertices*/
r0p = sqrt(t0p_2 + zl_2);
r0m = sqrt(t0m_2 + zl_2);
r1p = sqrt(t1p_2 + zl_2);
EPS = EPSILON*(fabs(s0m)+fabs(s0p));
B0 = (r00 <= EPS) ? 0. : atan(t00*s0p/(r00_2+fabs(zl)*r0p))-atan(t00*s0m/(r00_2+fabs(zl)*r0m));
f20 = ((r0m + s0m) <= EPS) ? log(s0m/s0p) : log((r0p + s0p) / (r0m + s0m)) ;
EPS = EPSILON*(fabs(s1m)+fabs(s1p)) ;
B1 = (r10 <=EPS) ? 0. : atan(t10*s1p/(r10_2+fabs(zl)*r1p))-atan(t10*s1m/(r10_2+fabs(zl)*r0p));
f21 = ((r0p + s1m)<=EPS) ? log(s1m/s1p) : log((r1p + s1p) / (r0p + s1m));
EPS = EPSILON*(fabs(s2m)+fabs(s2p)) ;
B2 = (r20 <= EPS) ? 0. : atan(t20*s2p/(r20_2+fabs(zl)*r0m))-atan(t20*s2m/(r20_2+fabs(zl)*r1p));
f22 = ((r1p + s2m)< EPS) ? log(s2m/s2p): log((r0m + s2p) / (r1p + s2m));
B = B0 + B1 + B2 ;
s0[0] = (xs[2] - xs[1])/b ;
s0[1] = (ys[2] - ys[1])/b ;
s0[2] = (zs[2] - zs[1])/b ;
s1[0] = (xs[0] - xs[2])/c ;
s1[1] = (ys[0] - ys[2])/c ;
s1[2] = (zs[0] - zs[2])/c ;
m0[0] = s0[1] * n[2] - s0[2]* n[1] ;
m0[1] = s0[2] * n[0] - s0[0]* n[2] ;
m0[2] = s0[0] * n[1] - s0[1]* n[0] ;
m1[0] = s1[1]* n[2] - s1[2] * n[1] ;
m1[1] = s1[2]* n[0] - s1[0] * n[2] ;
m1[2] = s1[0]* n[1] - s1[1] * n[0] ;
m2[0] = u[1] * n[2] - u[2]* n[1] ;
m2[1] = u[2] * n[0] - u[0]* n[2] ;
m2[2] = u[0] * n[1] - u[1]* n[0] ;
/* Grad(1/r) integral solution*/
I[0] = -n[0] * THESIGN(zl) * B - (m0[0]*f20 + m1[0]*f21 + m2[0]*f22) ;
I[1] = -n[1] * THESIGN(zl) * B - (m0[1]*f20 + m1[1]*f21 + m2[1]*f22) ;
I[2] = -n[2] * THESIGN(zl) * B - (m0[2]*f20 + m1[2]*f21 + m2[2]*f22) ;
switch ( Type_Int ){
case 1 : /* BF_Volume */
Val->Val[0] = I[0]/area ;
Val->Val[1] = I[1]/area ;
Val->Val[2] = I[2]/area ;
break;
case 2 : /* BF_Node */
if (!v2 )
Message::Error("1/0 in GF_LaplacexForm (case _3D TRIANGLE) v2 %e", v2);
f0[0] = s0[0] * t00 * f20 - m0[0]*(r0p-r0m) ; /* fi */
f0[1] = s0[1] * t00 * f20 - m0[1]*(r0p-r0m) ;
f0[2] = s0[2] * t00 * f20 - m0[2]*(r0p-r0m) ;
f1[0] = s1[0] * t10 * f21 - m1[0]*(r1p-r0p) ;
f1[1] = s1[1] * t10 * f21 - m1[1]*(r1p-r0p) ;
f1[2] = s1[2] * t10 * f21 - m1[2]*(r1p-r0p) ;
f2[0] = u[0] * t20 * f22 - m2[0]*(r0m-r1p) ;
f2[1] = u[1] * t20 * f22 - m2[1]*(r0m-r1p) ;
f2[2] = u[2] * t20 * f22 - m2[2]*(r0m-r1p) ;
umf2i = u[0]*(m0[0]*f20 + m1[0]*f21 + m2[0]*f22) +
u[1]*(m0[1]*f20 + m1[1]*f21 + m2[1]*f22) +
u[2]*(m0[2]*f20 + m1[2]*f21 + m2[2]*f22) ;
us0 = u[0] * s0[0] + u[1] * s0[1] + u[2] * s0[2] ;
us1 = u[0] * s1[0] + u[1] * s1[1] + u[2] * s1[2] ;
us2 = u[0] * u[0] + u[1] * u[1] + u[2] * u[2] ;
vmf2i = v[0]*(m0[0]*f20 + m1[0]*f21 + m2[0]*f22) +
v[1]*(m0[1]*f20 + m1[1]*f21 + m2[1]*f22) +
v[2]*(m0[2]*f20 + m1[2]*f21 + m2[2]*f22) ;
vs0 = v[0] * s0[0] + v[1] * s0[1] + v[2] * s0[2] ;
vs1 = v[0] * s1[0] + v[1] * s1[1] + v[2] * s1[2] ;
vs2 = v[0] * u[0] + v[1] * u[1] + v[2] * u[2] ;
B *= fabs(zl);
umf2i *= zl ;
vmf2i *= zl ;
Iua[0] = n[0] * umf2i - B * u[0] + f0[0] * us0 + f1[0] * us1 + f2[0] * us2 ;
Iua[1] = n[1] * umf2i - B * u[1] + f0[1] * us0 + f1[1] * us1 + f2[1] * us2 ;
Iua[2] = n[2] * umf2i - B * u[2] + f0[2] * us0 + f1[2] * us1 + f2[2] * us2 ;
Iva[0] = n[0] * vmf2i - B * v[0] + f0[0] * vs0 + f1[0] * vs1 + f2[0] * vs2 ;
Iva[1] = n[1] * vmf2i - B * v[1] + f0[1] * vs0 + f1[1] * vs1 + f2[1] * vs2 ;
Iva[2] = n[2] * vmf2i - B * v[2] + f0[2] * vs0 + f1[2] * vs1 + f2[2] * vs2 ;
switch(EntityNum){
case 1 :
N10 = 1 - xl/a + (u2/a -1) * yl/v2 ;
Val->Val[0] = N10 * I[0] - Iua[0]/a + (u2/a-1) * Iva[0]/v2 ;
Val->Val[1] = N10 * I[1] - Iua[1]/a + (u2/a-1) * Iva[1]/v2 ;
Val->Val[2] = N10 * I[2] - Iua[2]/a + (u2/a-1) * Iva[2]/v2 ;
break;
case 2 :
N20 = xl/a - u2/a * yl/v2 ;
Val->Val[0] = N20 * I[0] + Iua[0]/a - u2/a * Iva[0]/v2 ;
Val->Val[1] = N20 * I[1] + Iua[1]/a - u2/a * Iva[1]/v2 ;
Val->Val[2] = N20 * I[2] + Iua[2]/a - u2/a * Iva[2]/v2 ;
break;
case 3 :
N30 = yl/v2 ;
Val->Val[0] = N30 * I[0] + Iva[0]/v2 ;
Val->Val[1] = N30 * I[1] + Iva[1]/v2 ;
Val->Val[2] = N30 * I[2] + Iva[2]/v2 ;
break;
}
break;
}
Val->Val[0] *= ONE_OVER_FOUR_PI ;
Val->Val[1] *= ONE_OVER_FOUR_PI ;
Val->Val[2] *= ONE_OVER_FOUR_PI ;
break ;
default :
Message::Error("Unknown Element Type (%s) for 'GF_GradLaplacexForm'",
Get_StringForDefine(Element_Type, Element->ElementSource->Type));
}
break ;
default :
Message::Error("Unknown Dimension (%d) for 'GF_GradLaplacexForm'",
(int)Fct->Para[0]);
}
}
/* ------------------------------------------------------------------------ */
/* G F _ N P x G r a d L a p l a c e x F o r m */
/* ------------------------------------------------------------------------ */
void GF_NPxGradLaplacexForm(GF_ARGX)
{
double xs[MAX_NODES], ys[MAX_NODES] ;
double xp[MAX_NODES], yp[MAX_NODES], N[3] ;
int Type_Int;
double a, b, c, d, m, n, Jp, i1, Is, I1=0 ;
struct Value ValGrad ;
Val->Type = SCALAR ;
Val->Val[MAX_DIM] = 0.0 ;
if (Element->Num == Element->ElementSource->Num) {
Val->Val[0] = 0.0 ;
return ;
}
switch ((int)Fct->Para[0]) {
case _2D :
switch (Element->ElementSource->Type) {
case LINE :
if (Element->Type != LINE)
Message::Error("GF_NPxGradLaplacexForm not ready for mixed geometrical elements");
xs[0] = Element->ElementSource->x[0] ; ys[0] = Element->ElementSource->y[0] ;
xs[1] = Element->ElementSource->x[1] ; ys[1] = Element->ElementSource->y[1] ;
if(xFunctionBF == (void(*)())BF_Volume) {
if ((x == xs[0]) && (y == ys[0]))
Type_Int = 1 ;
else if ((x == xs[1]) && (y == ys[1]))
Type_Int = 2 ;
else
Type_Int = 3 ;
xp[0] = Element->x[0] ; yp[0] = Element->y[0] ;
xp[1] = Element->x[1] ; yp[1] = Element->y[1] ;
a = SQU(xs[0]-xs[1]) + SQU(ys[0]-ys[1]) ;
b = 2. * ((x-xs[0]) * (xs[0]-xs[1]) + (y-ys[0]) * (ys[0]-ys[1])) ;
c = SQU(x-xs[0]) + SQU(y-ys[0]) ;
d = 4.*a*c - b*b ;
switch (Type_Int) {
case 1 :
case 2 :
Message::Error("Degenerate case not done in 'GF_NPxGradLaplacexForm'");
break ;
case 3 :
if (fabs(d) < EPSILON2) {
I1 = 0.0 ;
}
else {
if(d<0) Message::Error("Unexpected value in 'GF_NPxGradLaplacexForm'");
i1 = sqrt(d) ;
Is = 2. / i1 * (atan((2.*a+b)/i1) - atan(b/i1)) ;
Jp = sqrt(SQU(xp[0]-xp[1])+SQU(yp[0]-yp[1])) ;
m = ((ys[0]-ys[1]) * (xp[0]-xp[1]) + (xs[0]-xs[1]) * (yp[1]-yp[0])) / Jp ;
n = ((yp[1]-yp[0]) * (x-xs[0]) + (xp[0]-xp[1]) * (y-ys[0])) / Jp ;
I1 = m /(2.*a) * log((a+b)/c+1.) + (n - m*b/(2.*a)) * Is ;
}
break ;
}
Val->Val[0] = - ONE_OVER_TWO_PI * I1 ;
}
else {
Message::Error("Unknown Basis Function Type for 'GF_NPxGradLaplacexForm'");
}
break ;
default :
Message::Error("Unknown Element Type (%s) for 'GF_NPxGradLaplacexForm'",
Get_StringForDefine(Element_Type, Element->ElementSource->Type));
}
break ;
case _3D:
switch (Element->ElementSource->Type) {
case TRIANGLE :
Geo_CreateNormal(Element->Type,
Element->x,Element->y,Element->z, N);
GF_GradLaplacexForm(Element, Fct, xFunctionBF, EntityNum, x, y, z, &ValGrad) ;
Val->Val[0] = N[0]*ValGrad.Val[0] + N[1]*ValGrad.Val[1] + N[2]*ValGrad.Val[2] ;
break ;
default :
Message::Error("Unknown Element Type (%s) for 'GF_NPxGradLaplacexForm'",
Get_StringForDefine(Element_Type, Element->ElementSource->Type));
}
break ;
default :
Message::Error("Unknown Dimension (%d) for 'GF_NPxGradLaplacexForm'",
(int)Fct->Para[0]);
}
}
/* ------------------------------------------------------------------------ */
/* G F _ N S x G r a d L a p l a c e x F o r m */
/* ------------------------------------------------------------------------ */
void GF_NSxGradLaplacexForm(GF_ARGX)
{
Message::Error("Not done: 'GF_NSxGradLaplacexForm'");
}
/* ------------------------------------------------------------------------ */
/* G F _ A p p r o x i m a t e L a p l a c e x F o r m */
/* ------------------------------------------------------------------------ */
void GF_ApproximateLaplacexForm(GF_ARGX)
{
switch ((int)Fct->Para[1]) {
case 0 :
GF_LaplacexForm(Element, Fct, (void(*)())BF_Volume, 1, x, y, z, Val);
break ;
default :
Message::Error("Bad Parameter Value in 'GF_ApproximateLaplacexForm'");
break;
}
}