Skip to content
Snippets Groups Projects
Select Git revision
  • e8949e6257949e7ecd036e57e33541cd244cad86
  • master default protected
  • revert-ef4a3a4f
  • patch_releases_4_14
  • overlaps_tags_and_distributed_export
  • overlaps_tags_and_distributed_export_rebased
  • relaying
  • alphashapes
  • steplayer
  • bl
  • pluginMeshQuality
  • fixBugsAmaury
  • hierarchical-basis
  • new_export_boris
  • oras_vs_osm
  • reassign_partitions
  • distributed_fwi
  • rename-classes
  • fix/fortran-api-example-t4
  • robust_partitions
  • reducing_files
  • gmsh_4_14_0
  • gmsh_4_13_1
  • gmsh_4_13_0
  • gmsh_4_12_2
  • gmsh_4_12_1
  • gmsh_4_12_0
  • gmsh_4_11_1
  • gmsh_4_11_0
  • gmsh_4_10_5
  • gmsh_4_10_4
  • gmsh_4_10_3
  • gmsh_4_10_2
  • gmsh_4_10_1
  • gmsh_4_10_0
  • gmsh_4_9_5
  • gmsh_4_9_4
  • gmsh_4_9_3
  • gmsh_4_9_2
  • gmsh_4_9_1
  • gmsh_4_9_0
41 results

FlGui.h

Blame
  • triangle.c 525.54 KiB
    /*****************************************************************************/
    /*                                                                           */
    /*      888888888        ,o,                          / 888                  */
    /*         888    88o88o  "    o8888o  88o8888o o88888o 888  o88888o         */
    /*         888    888    888       88b 888  888 888 888 888 d888  88b        */
    /*         888    888    888  o88^o888 888  888 "88888" 888 8888oo888        */
    /*         888    888    888 C888  888 888  888  /      888 q888             */
    /*         888    888    888  "88o^888 888  888 Cb      888  "88oooo"        */
    /*                                              "8oo8D                       */
    /*                                                                           */
    /*  A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.      */
    /*  (triangle.c)                                                             */
    /*                                                                           */
    /*  Version 1.3                                                              */
    /*  July 19, 1996                                                            */
    /*                                                                           */
    /*  Copyright 1996                                                           */
    /*  Jonathan Richard Shewchuk                                                */
    /*  School of Computer Science                                               */
    /*  Carnegie Mellon University                                               */
    /*  5000 Forbes Avenue                                                       */
    /*  Pittsburgh, Pennsylvania  15213-3891                                     */
    /*  jrs@cs.cmu.edu                                                           */
    /*                                                                           */
    /*  This program may be freely redistributed under the condition that the    */
    /*    copyright notices (including this entire header and the copyright      */
    /*    notice printed when the `-h' switch is selected) are not removed, and  */
    /*    no compensation is received.  Private, research, and institutional     */
    /*    use is free.  You may distribute modified versions of this code UNDER  */
    /*    THE CONDITION THAT THIS CODE AND ANY MODIFICATIONS MADE TO IT IN THE   */
    /*    SAME FILE REMAIN UNDER COPYRIGHT OF THE ORIGINAL AUTHOR, BOTH SOURCE   */
    /*    AND OBJECT CODE ARE MADE FREELY AVAILABLE WITHOUT CHARGE, AND CLEAR    */
    /*    NOTICE IS GIVEN OF THE MODIFICATIONS.  Distribution of this code as    */
    /*    part of a commercial system is permissible ONLY BY DIRECT ARRANGEMENT  */
    /*    WITH THE AUTHOR.  (If you are not directly supplying this code to a    */
    /*    customer, and you are instead telling them how they can obtain it for  */
    /*    free, then you are not required to make any arrangement with me.)      */
    /*                                                                           */
    /*  Hypertext instructions for Triangle are available on the Web at          */
    /*                                                                           */
    /*      http://www.cs.cmu.edu/~quake/triangle.html                           */
    /*                                                                           */
    /*  Some of the references listed below are marked [*].  These are available */
    /*    for downloading from the Web page                                      */
    /*                                                                           */
    /*      http://www.cs.cmu.edu/~quake/triangle.research.html                  */
    /*                                                                           */
    /*  A paper discussing some aspects of Triangle is available.  See Jonathan  */
    /*    Richard Shewchuk, "Triangle:  Engineering a 2D Quality Mesh Generator  */
    /*    and Delaunay Triangulator," First Workshop on Applied Computational    */
    /*    Geometry, ACM, May 1996.  [*]                                          */
    /*                                                                           */
    /*  Triangle was created as part of the Archimedes project in the School of  */
    /*    Computer Science at Carnegie Mellon University.  Archimedes is a       */
    /*    system for compiling parallel finite element solvers.  For further     */
    /*    information, see Anja Feldmann, Omar Ghattas, John R. Gilbert, Gary L. */
    /*    Miller, David R. O'Hallaron, Eric J. Schwabe, Jonathan R. Shewchuk,    */
    /*    and Shang-Hua Teng, "Automated Parallel Solution of Unstructured PDE   */
    /*    Problems."  To appear in Communications of the ACM, we hope.           */
    /*                                                                           */
    /*  The quality mesh generation algorithm is due to Jim Ruppert, "A          */
    /*    Delaunay Refinement Algorithm for Quality 2-Dimensional Mesh           */
    /*    Generation," Journal of Algorithms 18(3):548-585, May 1995.  [*]       */
    /*                                                                           */
    /*  My implementation of the divide-and-conquer and incremental Delaunay     */
    /*    triangulation algorithms follows closely the presentation of Guibas    */
    /*    and Stolfi, even though I use a triangle-based data structure instead  */
    /*    of their quad-edge data structure.  (In fact, I originally implemented */
    /*    Triangle using the quad-edge data structure, but switching to a        */
    /*    triangle-based data structure sped Triangle by a factor of two.)  The  */
    /*    mesh manipulation primitives and the two aforementioned Delaunay       */
    /*    triangulation algorithms are described by Leonidas J. Guibas and Jorge */
    /*    Stolfi, "Primitives for the Manipulation of General Subdivisions and   */
    /*    the Computation of Voronoi Diagrams," ACM Transactions on Graphics     */
    /*    4(2):74-123, April 1985.                                               */
    /*                                                                           */
    /*  Their O(n log n) divide-and-conquer algorithm is adapted from Der-Tsai   */
    /*    Lee and Bruce J. Schachter, "Two Algorithms for Constructing the       */
    /*    Delaunay Triangulation," International Journal of Computer and         */
    /*    Information Science 9(3):219-242, 1980.  The idea to improve the       */
    /*    divide-and-conquer algorithm by alternating between vertical and       */
    /*    horizontal cuts was introduced by Rex A. Dwyer, "A Faster Divide-and-  */
    /*    Conquer Algorithm for Constructing Delaunay Triangulations,"           */
    /*    Algorithmica 2(2):137-151, 1987.                                       */
    /*                                                                           */
    /*  The incremental insertion algorithm was first proposed by C. L. Lawson,  */
    /*    "Software for C1 Surface Interpolation," in Mathematical Software III, */
    /*    John R. Rice, editor, Academic Press, New York, pp. 161-194, 1977.     */
    /*    For point location, I use the algorithm of Ernst P. Mucke, Isaac       */
    /*    Saias, and Binhai Zhu, "Fast Randomized Point Location Without         */
    /*    Preprocessing in Two- and Three-dimensional Delaunay Triangulations,"  */
    /*    Proceedings of the Twelfth Annual Symposium on Computational Geometry, */
    /*    ACM, May 1996.  [*]  If I were to randomize the order of point         */
    /*    insertion (I currently don't bother), their result combined with the   */
    /*    result of Leonidas J. Guibas, Donald E. Knuth, and Micha Sharir,       */
    /*    "Randomized Incremental Construction of Delaunay and Voronoi           */
    /*    Diagrams," Algorithmica 7(4):381-413, 1992, would yield an expected    */
    /*    O(n^{4/3}) bound on running time.                                      */
    /*                                                                           */
    /*  The O(n log n) sweepline Delaunay triangulation algorithm is taken from  */
    /*    Steven Fortune, "A Sweepline Algorithm for Voronoi Diagrams",          */
    /*    Algorithmica 2(2):153-174, 1987.  A random sample of edges on the      */
    /*    boundary of the triangulation are maintained in a splay tree for the   */
    /*    purpose of point location.  Splay trees are described by Daniel        */
    /*    Dominic Sleator and Robert Endre Tarjan, "Self-Adjusting Binary Search */
    /*    Trees," Journal of the ACM 32(3):652-686, July 1985.                   */
    /*                                                                           */
    /*  The algorithms for exact computation of the signs of determinants are    */
    /*    described in Jonathan Richard Shewchuk, "Adaptive Precision Floating-  */
    /*    Point Arithmetic and Fast Robust Geometric Predicates," Technical      */
    /*    Report CMU-CS-96-140, School of Computer Science, Carnegie Mellon      */
    /*    University, Pittsburgh, Pennsylvania, May 1996.  [*]  (Submitted to    */
    /*    Discrete & Computational Geometry.)  An abbreviated version appears as */
    /*    Jonathan Richard Shewchuk, "Robust Adaptive Floating-Point Geometric   */
    /*    Predicates," Proceedings of the Twelfth Annual Symposium on Computa-   */
    /*    tional Geometry, ACM, May 1996.  [*]  Many of the ideas for my exact   */
    /*    arithmetic routines originate with Douglas M. Priest, "Algorithms for  */
    /*    Arbitrary Precision Floating Point Arithmetic," Tenth Symposium on     */
    /*    Computer Arithmetic, 132-143, IEEE Computer Society Press, 1991.  [*]  */
    /*    Many of the ideas for the correct evaluation of the signs of           */
    /*    determinants are taken from Steven Fortune and Christopher J. Van Wyk, */
    /*    "Efficient Exact Arithmetic for Computational Geometry," Proceedings   */
    /*    of the Ninth Annual Symposium on Computational Geometry, ACM,          */
    /*    pp. 163-172, May 1993, and from Steven Fortune, "Numerical Stability   */
    /*    of Algorithms for 2D Delaunay Triangulations," International Journal   */
    /*    of Computational Geometry & Applications 5(1-2):193-213, March-June    */
    /*    1995.                                                                  */
    /*                                                                           */
    /*  For definitions of and results involving Delaunay triangulations,        */
    /*    constrained and conforming versions thereof, and other aspects of      */
    /*    triangular mesh generation, see the excellent survey by Marshall Bern  */
    /*    and David Eppstein, "Mesh Generation and Optimal Triangulation," in    */
    /*    Computing and Euclidean Geometry, Ding-Zhu Du and Frank Hwang,         */
    /*    editors, World Scientific, Singapore, pp. 23-90, 1992.                 */
    /*                                                                           */
    /*  The time for incrementally adding PSLG (planar straight line graph)      */
    /*    segments to create a constrained Delaunay triangulation is probably    */
    /*    O(n^2) per segment in the worst case and O(n) per edge in the common   */
    /*    case, where n is the number of triangles that intersect the segment    */
    /*    before it is inserted.  This doesn't count point location, which can   */
    /*    be much more expensive.  (This note does not apply to conforming       */
    /*    Delaunay triangulations, for which a different method is used to       */
    /*    insert segments.)                                                      */
    /*                                                                           */
    /*  The time for adding segments to a conforming Delaunay triangulation is   */
    /*    not clear, but does not depend upon n alone.  In some cases, very      */
    /*    small features (like a point lying next to a segment) can cause a      */
    /*    single segment to be split an arbitrary number of times.  Of course,   */
    /*    floating-point precision is a practical barrier to how much this can   */
    /*    happen.                                                                */
    /*                                                                           */
    /*  The time for deleting a point from a Delaunay triangulation is O(n^2) in */
    /*    the worst case and O(n) in the common case, where n is the degree of   */
    /*    the point being deleted.  I could improve this to expected O(n) time   */
    /*    by "inserting" the neighboring vertices in random order, but n is      */
    /*    usually quite small, so it's not worth the bother.  (The O(n) time     */
    /*    for random insertion follows from L. Paul Chew, "Building Voronoi      */
    /*    Diagrams for Convex Polygons in Linear Expected Time," Technical       */
    /*    Report PCS-TR90-147, Department of Mathematics and Computer Science,   */
    /*    Dartmouth College, 1990.                                               */
    /*                                                                           */
    /*  Ruppert's Delaunay refinement algorithm typically generates triangles    */
    /*    at a linear rate (constant time per triangle) after the initial        */
    /*    triangulation is formed.  There may be pathological cases where more   */
    /*    time is required, but these never arise in practice.                   */
    /*                                                                           */
    /*  The segment intersection formulae are straightforward.  If you want to   */
    /*    see them derived, see Franklin Antonio.  "Faster Line Segment          */
    /*    Intersection."  In Graphics Gems III (David Kirk, editor), pp. 199-    */
    /*    202.  Academic Press, Boston, 1992.                                    */
    /*                                                                           */
    /*  If you make any improvements to this code, please please please let me   */
    /*    know, so that I may obtain the improvements.  Even if you don't change */
    /*    the code, I'd still love to hear what it's being used for.             */
    /*                                                                           */
    /*  Disclaimer:  Neither I nor Carnegie Mellon warrant this code in any way  */
    /*    whatsoever.  This code is provided "as-is".  Use at your own risk.     */
    /*                                                                           */
    /*****************************************************************************/
    
    /* For single precision (which will save some memory and reduce paging),     */
    /*   define the symbol SINGLE by using the -DSINGLE compiler switch or by    */
    /*   writing "#define SINGLE" below.                                         */
    /*                                                                           */
    /* For double precision (which will allow you to refine meshes to a smaller  */
    /*   edge length), leave SINGLE undefined.                                   */
    /*                                                                           */
    /* Double precision uses more memory, but improves the resolution of the     */
    /*   meshes you can generate with Triangle.  It also reduces the likelihood  */
    /*   of a floating exception due to overflow.  Finally, it is much faster    */
    /*   than single precision on 64-bit architectures like the DEC Alpha.  I    */
    /*   recommend double precision unless you want to generate a mesh for which */
    /*   you do not have enough memory.                                          */
    
    /* #define SINGLE */
    
    #ifdef SINGLE
    #define REAL float
    #else /* not SINGLE */
    #define REAL double
    #endif /* not SINGLE */
    
    /* If yours is not a Unix system, define the NO_TIMER compiler switch to     */
    /*   remove the Unix-specific timing code.                                   */
    
    /* #define NO_TIMER */
    
    /* To insert lots of self-checks for internal errors, define the SELF_CHECK  */
    /*   symbol.  This will slow down the program significantly.  It is best to  */
    /*   define the symbol using the -DSELF_CHECK compiler switch, but you could */
    /*   write "#define SELF_CHECK" below.  If you are modifying this code, I    */
    /*   recommend you turn self-checks on.                                      */
    
    /* #define SELF_CHECK */
    
    /* To compile Triangle as a callable object library (triangle.o), define the */
    /*   TRILIBRARY symbol.  Read the file triangle.h for details on how to call */
    /*   the procedure triangulate() that results.                               */
    
    /* #define TRILIBRARY */
    
    /* It is possible to generate a smaller version of Triangle using one or     */
    /*   both of the following symbols.  Define the REDUCED symbol to eliminate  */
    /*   all features that are primarily of research interest; specifically, the */
    /*   -i, -F, -s, and -C switches.  Define the CDT_ONLY symbol to eliminate   */
    /*   all meshing algorithms above and beyond constrained Delaunay            */
    /*   triangulation; specifically, the -r, -q, -a, -S, and -s switches.       */
    /*   These reductions are most likely to be useful when generating an object */
    /*   library (triangle.o) by defining the TRILIBRARY symbol.                 */
    
    /* #define REDUCED */
    /* #define CDT_ONLY */
    
    /* On some machines, the exact arithmetic routines might be defeated by the  */
    /*   use of internal extended precision floating-point registers.  Sometimes */
    /*   this problem can be fixed by defining certain values to be volatile,    */
    /*   thus forcing them to be stored to memory and rounded off.  This isn't   */
    /*   a great solution, though, as it slows Triangle down.                    */
    /*                                                                           */
    /* To try this out, write "#define INEXACT volatile" below.  Normally,       */
    /*   however, INEXACT should be defined to be nothing.  ("#define INEXACT".) */
    
    #define INEXACT /* Nothing */
    /* #define INEXACT volatile */
    
    /* Maximum number of characters in a file name (including the null).         */
    
    #define FILENAMESIZE 512
    
    /* Maximum number of characters in a line read from a file (including the    */
    /*   null).                                                                  */
    
    #define INPUTLINESIZE 512
    
    /* For efficiency, a variety of data structures are allocated in bulk.  The  */
    /*   following constants determine how many of each structure is allocated   */
    /*   at once.                                                                */
    
    #define TRIPERBLOCK 4092           /* Number of triangles allocated at once. */
    #define SHELLEPERBLOCK 508       /* Number of shell edges allocated at once. */
    #define POINTPERBLOCK 4092            /* Number of points allocated at once. */
    #define VIRUSPERBLOCK 1020   /* Number of virus triangles allocated at once. */
    /* Number of encroached segments allocated at once. */
    #define BADSEGMENTPERBLOCK 252
    /* Number of skinny triangles allocated at once. */
    #define BADTRIPERBLOCK 4092
    /* Number of splay tree nodes allocated at once. */
    #define SPLAYNODEPERBLOCK 508
    
    /* The point marker DEADPOINT is an arbitrary number chosen large enough to  */
    /*   (hopefully) not conflict with user boundary markers.  Make sure that it */
    /*   is small enough to fit into your machine's integer size.                */
    
    #define DEADPOINT -1073741824
    
    /* The next line is used to outsmart some very stupid compilers.  If your    */
    /*   compiler is smarter, feel free to replace the "int" with "void".        */
    /*   Not that it matters.                                                    */
    
    #define VOID int
    
    /* Two constants for algorithms based on random sampling.  Both constants    */
    /*   have been chosen empirically to optimize their respective algorithms.   */
    
    /* Used for the point location scheme of Mucke, Saias, and Zhu, to decide    */
    /*   how large a random sample of triangles to inspect.                      */
    #define SAMPLEFACTOR 11
    /* Used in Fortune's sweepline Delaunay algorithm to determine what fraction */
    /*   of boundary edges should be maintained in the splay tree for point      */
    /*   location on the front.                                                  */
    #define SAMPLERATE 10
    
    /* A number that speaks for itself, every kissable digit.                    */
    
    #define PI 3.141592653589793238462643383279502884197169399375105820974944592308
    
    /* Another fave.                                                             */
    
    #define SQUAREROOTTWO 1.4142135623730950488016887242096980785696718753769480732
    
    /* And here's one for those of you who are intimidated by math.              */
    
    #define ONETHIRD 0.333333333333333333333333333333333333333333333333333333333333
    
    #include <stdio.h>
    #include <string.h>
    #include <math.h>
    #ifndef NO_TIMER
    #include <sys/time.h>
    #endif /* NO_TIMER */
    #ifdef TRILIBRARY
    #include "triangle.h"
    #endif /* TRILIBRARY */
    
    /* The following obscenity seems to be necessary to ensure that this program */
    /* will port to Dec Alphas running OSF/1, because their stdio.h file commits */
    /* the unpardonable sin of including stdlib.h.  Hence, malloc(), free(), and */
    /* exit() may or may not already be defined at this point.  I declare these  */
    /* functions explicitly because some non-ANSI C compilers lack stdlib.h.     */
    
    #ifndef _STDLIB_H_
    extern void *malloc();
    extern void free();
    extern void exit();
    extern double strtod();
    extern long strtol();
    #endif /* _STDLIB_H_ */
    
    /* A few forward declarations.                                               */
    
    void poolrestart();
    #ifndef TRILIBRARY
    char *readline();
    char *findfield();
    #endif /* not TRILIBRARY */
    
    /* Labels that signify whether a record consists primarily of pointers or of */
    /*   floating-point words.  Used to make decisions about data alignment.     */
    
    enum wordtype {POINTER, FLOATINGPOINT};
    
    /* Labels that signify the result of point location.  The result of a        */
    /*   search indicates that the point falls in the interior of a triangle, on */
    /*   an edge, on a vertex, or outside the mesh.                              */
    
    enum locateresult {INTRIANGLE, ONEDGE, ONVERTEX, OUTSIDE};
    
    /* Labels that signify the result of site insertion.  The result indicates   */
    /*   that the point was inserted with complete success, was inserted but     */
    /*   encroaches on a segment, was not inserted because it lies on a segment, */
    /*   or was not inserted because another point occupies the same location.   */
    
    enum insertsiteresult {SUCCESSFULPOINT, ENCROACHINGPOINT, VIOLATINGPOINT,
                           DUPLICATEPOINT};
    
    /* Labels that signify the result of direction finding.  The result          */
    /*   indicates that a segment connecting the two query points falls within   */
    /*   the direction triangle, along the left edge of the direction triangle,  */
    /*   or along the right edge of the direction triangle.                      */
    
    enum finddirectionresult {WITHIN, LEFTCOLLINEAR, RIGHTCOLLINEAR};
    
    /* Labels that signify the result of the circumcenter computation routine.   */
    /*   The return value indicates which edge of the triangle is shortest.      */
    
    enum circumcenterresult {OPPOSITEORG, OPPOSITEDEST, OPPOSITEAPEX};
    
    /*****************************************************************************/
    /*                                                                           */
    /*  The basic mesh data structures                                           */
    /*                                                                           */
    /*  There are three:  points, triangles, and shell edges (abbreviated        */
    /*  `shelle').  These three data structures, linked by pointers, comprise    */
    /*  the mesh.  A point simply represents a point in space and its properties.*/
    /*  A triangle is a triangle.  A shell edge is a special data structure used */
    /*  to represent impenetrable segments in the mesh (including the outer      */
    /*  boundary, boundaries of holes, and internal boundaries separating two    */
    /*  triangulated regions).  Shell edges represent boundaries defined by the  */
    /*  user that triangles may not lie across.                                  */
    /*                                                                           */
    /*  A triangle consists of a list of three vertices, a list of three         */
    /*  adjoining triangles, a list of three adjoining shell edges (when shell   */
    /*  edges are used), an arbitrary number of optional user-defined floating-  */
    /*  point attributes, and an optional area constraint.  The latter is an     */
    /*  upper bound on the permissible area of each triangle in a region, used   */
    /*  for mesh refinement.                                                     */
    /*                                                                           */
    /*  For a triangle on a boundary of the mesh, some or all of the neighboring */
    /*  triangles may not be present.  For a triangle in the interior of the     */
    /*  mesh, often no neighboring shell edges are present.  Such absent         */
    /*  triangles and shell edges are never represented by NULL pointers; they   */
    /*  are represented by two special records:  `dummytri', the triangle that   */
    /*  fills "outer space", and `dummysh', the omnipresent shell edge.          */
    /*  `dummytri' and `dummysh' are used for several reasons; for instance,     */
    /*  they can be dereferenced and their contents examined without causing the */
    /*  memory protection exception that would occur if NULL were dereferenced.  */
    /*                                                                           */
    /*  However, it is important to understand that a triangle includes other    */
    /*  information as well.  The pointers to adjoining vertices, triangles, and */
    /*  shell edges are ordered in a way that indicates their geometric relation */
    /*  to each other.  Furthermore, each of these pointers contains orientation */
    /*  information.  Each pointer to an adjoining triangle indicates which face */
    /*  of that triangle is contacted.  Similarly, each pointer to an adjoining  */
    /*  shell edge indicates which side of that shell edge is contacted, and how */
    /*  the shell edge is oriented relative to the triangle.                     */
    /*                                                                           */
    /*  Shell edges are found abutting edges of triangles; either sandwiched     */
    /*  between two triangles, or resting against one triangle on an exterior    */
    /*  boundary or hole boundary.                                               */
    /*                                                                           */
    /*  A shell edge consists of a list of two vertices, a list of two           */
    /*  adjoining shell edges, and a list of two adjoining triangles.  One of    */
    /*  the two adjoining triangles may not be present (though there should      */
    /*  always be one), and neighboring shell edges might not be present.        */
    /*  Shell edges also store a user-defined integer "boundary marker".         */
    /*  Typically, this integer is used to indicate what sort of boundary        */
    /*  conditions are to be applied at that location in a finite element        */
    /*  simulation.                                                              */
    /*                                                                           */
    /*  Like triangles, shell edges maintain information about the relative      */
    /*  orientation of neighboring objects.                                      */
    /*                                                                           */
    /*  Points are relatively simple.  A point is a list of floating point       */
    /*  numbers, starting with the x, and y coordinates, followed by an          */
    /*  arbitrary number of optional user-defined floating-point attributes,     */
    /*  followed by an integer boundary marker.  During the segment insertion    */
    /*  phase, there is also a pointer from each point to a triangle that may    */
    /*  contain it.  Each pointer is not always correct, but when one is, it     */
    /*  speeds up segment insertion.  These pointers are assigned values once    */
    /*  at the beginning of the segment insertion phase, and are not used or     */
    /*  updated at any other time.  Edge swapping during segment insertion will  */
    /*  render some of them incorrect.  Hence, don't rely upon them for          */
    /*  anything.  For the most part, points do not have any information about   */
    /*  what triangles or shell edges they are linked to.                        */
    /*                                                                           */
    /*****************************************************************************/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  Handles                                                                  */
    /*                                                                           */
    /*  The oriented triangle (`triedge') and oriented shell edge (`edge') data  */
    /*  structures defined below do not themselves store any part of the mesh.   */
    /*  The mesh itself is made of `triangle's, `shelle's, and `point's.         */
    /*                                                                           */
    /*  Oriented triangles and oriented shell edges will usually be referred to  */
    /*  as "handles".  A handle is essentially a pointer into the mesh; it       */
    /*  allows you to "hold" one particular part of the mesh.  Handles are used  */
    /*  to specify the regions in which one is traversing and modifying the mesh.*/
    /*  A single `triangle' may be held by many handles, or none at all.  (The   */
    /*  latter case is not a memory leak, because the triangle is still          */
    /*  connected to other triangles in the mesh.)                               */
    /*                                                                           */
    /*  A `triedge' is a handle that holds a triangle.  It holds a specific side */
    /*  of the triangle.  An `edge' is a handle that holds a shell edge.  It     */
    /*  holds either the left or right side of the edge.                         */
    /*                                                                           */
    /*  Navigation about the mesh is accomplished through a set of mesh          */
    /*  manipulation primitives, further below.  Many of these primitives take   */
    /*  a handle and produce a new handle that holds the mesh near the first     */
    /*  handle.  Other primitives take two handles and glue the corresponding    */
    /*  parts of the mesh together.  The exact position of the handles is        */
    /*  important.  For instance, when two triangles are glued together by the   */
    /*  bond() primitive, they are glued by the sides on which the handles lie.  */
    /*                                                                           */
    /*  Because points have no information about which triangles they are        */
    /*  attached to, I commonly represent a point by use of a handle whose       */
    /*  origin is the point.  A single handle can simultaneously represent a     */
    /*  triangle, an edge, and a point.                                          */
    /*                                                                           */
    /*****************************************************************************/
    
    /* The triangle data structure.  Each triangle contains three pointers to    */
    /*   adjoining triangles, plus three pointers to vertex points, plus three   */
    /*   pointers to shell edges (defined below; these pointers are usually      */
    /*   `dummysh').  It may or may not also contain user-defined attributes     */
    /*   and/or a floating-point "area constraint".  It may also contain extra   */
    /*   pointers for nodes, when the user asks for high-order elements.         */
    /*   Because the size and structure of a `triangle' is not decided until     */
    /*   runtime, I haven't simply defined the type `triangle' to be a struct.   */
    
    typedef REAL **triangle;            /* Really:  typedef triangle *triangle   */
    
    /* An oriented triangle:  includes a pointer to a triangle and orientation.  */
    /*   The orientation denotes an edge of the triangle.  Hence, there are      */
    /*   three possible orientations.  By convention, each edge is always        */
    /*   directed to point counterclockwise about the corresponding triangle.    */
    
    struct triedge {
      triangle *tri;
      int orient;                                         /* Ranges from 0 to 2. */
    };
    
    /* The shell data structure.  Each shell edge contains two pointers to       */
    /*   adjoining shell edges, plus two pointers to vertex points, plus two     */
    /*   pointers to adjoining triangles, plus one shell marker.                 */
    
    typedef REAL **shelle;                  /* Really:  typedef shelle *shelle   */
    
    /* An oriented shell edge:  includes a pointer to a shell edge and an        */
    /*   orientation.  The orientation denotes a side of the edge.  Hence, there */
    /*   are two possible orientations.  By convention, the edge is always       */
    /*   directed so that the "side" denoted is the right side of the edge.      */
    
    struct edge {
      shelle *sh;
      int shorient;                                       /* Ranges from 0 to 1. */
    };
    
    /* The point data structure.  Each point is actually an array of REALs.      */
    /*   The number of REALs is unknown until runtime.  An integer boundary      */
    /*   marker, and sometimes a pointer to a triangle, is appended after the    */
    /*   REALs.                                                                  */
    
    typedef REAL *point;
    
    /* A queue used to store encroached segments.  Each segment's vertices are   */
    /*   stored so that one can check whether a segment is still the same.       */
    
    struct badsegment {
      struct edge encsegment;                          /* An encroached segment. */
      point segorg, segdest;                                /* The two vertices. */
      struct badsegment *nextsegment;     /* Pointer to next encroached segment. */
    };
    
    /* A queue used to store bad triangles.  The key is the square of the cosine */
    /*   of the smallest angle of the triangle.  Each triangle's vertices are    */
    /*   stored so that one can check whether a triangle is still the same.      */
    
    struct badface {
      struct triedge badfacetri;                              /* A bad triangle. */
      REAL key;                             /* cos^2 of smallest (apical) angle. */
      point faceorg, facedest, faceapex;                  /* The three vertices. */
      struct badface *nextface;                 /* Pointer to next bad triangle. */
    };
    
    /* A node in a heap used to store events for the sweepline Delaunay          */
    /*   algorithm.  Nodes do not point directly to their parents or children in */
    /*   the heap.  Instead, each node knows its position in the heap, and can   */
    /*   look up its parent and children in a separate array.  The `eventptr'    */
    /*   points either to a `point' or to a triangle (in encoded format, so that */
    /*   an orientation is included).  In the latter case, the origin of the     */
    /*   oriented triangle is the apex of a "circle event" of the sweepline      */
    /*   algorithm.  To distinguish site events from circle events, all circle   */
    /*   events are given an invalid (smaller than `xmin') x-coordinate `xkey'.  */
    
    struct event {
      REAL xkey, ykey;                              /* Coordinates of the event. */
      VOID *eventptr;       /* Can be a point or the location of a circle event. */
      int heapposition;              /* Marks this event's position in the heap. */
    };
    
    /* A node in the splay tree.  Each node holds an oriented ghost triangle     */
    /*   that represents a boundary edge of the growing triangulation.  When a   */
    /*   circle event covers two boundary edges with a triangle, so that they    */
    /*   are no longer boundary edges, those edges are not immediately deleted   */
    /*   from the tree; rather, they are lazily deleted when they are next       */
    /*   encountered.  (Since only a random sample of boundary edges are kept    */
    /*   in the tree, lazy deletion is faster.)  `keydest' is used to verify     */
    /*   that a triangle is still the same as when it entered the splay tree; if */
    /*   it has been rotated (due to a circle event), it no longer represents a  */
    /*   boundary edge and should be deleted.                                    */
    
    struct splaynode {
      struct triedge keyedge;                  /* Lprev of an edge on the front. */
      point keydest;            /* Used to verify that splay node is still live. */
      struct splaynode *lchild, *rchild;              /* Children in splay tree. */
    };
    
    /* A type used to allocate memory.  firstblock is the first block of items.  */
    /*   nowblock is the block from which items are currently being allocated.   */
    /*   nextitem points to the next slab of free memory for an item.            */
    /*   deaditemstack is the head of a linked list (stack) of deallocated items */
    /*   that can be recycled.  unallocateditems is the number of items that     */
    /*   remain to be allocated from nowblock.                                   */
    /*                                                                           */
    /* Traversal is the process of walking through the entire list of items, and */
    /*   is separate from allocation.  Note that a traversal will visit items on */
    /*   the "deaditemstack" stack as well as live items.  pathblock points to   */
    /*   the block currently being traversed.  pathitem points to the next item  */
    /*   to be traversed.  pathitemsleft is the number of items that remain to   */
    /*   be traversed in pathblock.                                              */
    /*                                                                           */
    /* itemwordtype is set to POINTER or FLOATINGPOINT, and is used to suggest   */
    /*   what sort of word the record is primarily made up of.  alignbytes       */
    /*   determines how new records should be aligned in memory.  itembytes and  */
    /*   itemwords are the length of a record in bytes (after rounding up) and   */
    /*   words.  itemsperblock is the number of items allocated at once in a     */
    /*   single block.  items is the number of currently allocated items.        */
    /*   maxitems is the maximum number of items that have been allocated at     */
    /*   once; it is the current number of items plus the number of records kept */
    /*   on deaditemstack.                                                       */
    
    struct memorypool {
      VOID **firstblock, **nowblock;
      VOID *nextitem;
      VOID *deaditemstack;
      VOID **pathblock;
      VOID *pathitem;
      enum wordtype itemwordtype;
      int alignbytes;
      int itembytes, itemwords;
      int itemsperblock;
      long items, maxitems;
      int unallocateditems;
      int pathitemsleft;
    };
    
    /* Variables used to allocate memory for triangles, shell edges, points,     */
    /*   viri (triangles being eaten), bad (encroached) segments, bad (skinny    */
    /*   or too large) triangles, and splay tree nodes.                          */
    
    struct memorypool triangles;
    struct memorypool shelles;
    struct memorypool points;
    struct memorypool viri;
    struct memorypool badsegments;
    struct memorypool badtriangles;
    struct memorypool splaynodes;
    
    /* Variables that maintain the bad triangle queues.  The tails are pointers  */
    /*   to the pointers that have to be filled in to enqueue an item.           */
    
    struct badface *queuefront[64];
    struct badface **queuetail[64];
    
    REAL xmin, xmax, ymin, ymax;                              /* x and y bounds. */
    REAL xminextreme;        /* Nonexistent x value used as a flag in sweepline. */
    int inpoints;                                     /* Number of input points. */
    int inelements;                                /* Number of input triangles. */
    int insegments;                                 /* Number of input segments. */
    int holes;                                         /* Number of input holes. */
    int regions;                                     /* Number of input regions. */
    long edges;                                       /* Number of output edges. */
    int mesh_dim;                                  /* Dimension (ought to be 2). */
    int nextras;                              /* Number of attributes per point. */
    int eextras;                           /* Number of attributes per triangle. */
    long hullsize;                            /* Number of edges of convex hull. */
    int triwords;                                   /* Total words per triangle. */
    int shwords;                                  /* Total words per shell edge. */
    int pointmarkindex;             /* Index to find boundary marker of a point. */
    int point2triindex;         /* Index to find a triangle adjacent to a point. */
    int highorderindex;    /* Index to find extra nodes for high-order elements. */
    int elemattribindex;              /* Index to find attributes of a triangle. */
    int areaboundindex;               /* Index to find area bound of a triangle. */
    int checksegments;           /* Are there segments in the triangulation yet? */
    int readnodefile;                             /* Has a .node file been read? */
    long samples;                /* Number of random samples for point location. */
    unsigned long randomseed;                     /* Current random number seed. */
    
    REAL splitter;       /* Used to split REAL factors for exact multiplication. */
    REAL epsilon;                             /* Floating-point machine epsilon. */
    REAL resulterrbound;
    REAL ccwerrboundA, ccwerrboundB, ccwerrboundC;
    REAL iccerrboundA, iccerrboundB, iccerrboundC;
    
    long incirclecount;                   /* Number of incircle tests performed. */
    long counterclockcount;       /* Number of counterclockwise tests performed. */
    long hyperbolacount;        /* Number of right-of-hyperbola tests performed. */
    long circumcentercount;    /* Number of circumcenter calculations performed. */
    long circletopcount;         /* Number of circle top calculations performed. */
    
    /* Switches for the triangulator.                                            */
    /*   poly: -p switch.  refine: -r switch.                                    */
    /*   quality: -q switch.                                                     */
    /*     minangle: minimum angle bound, specified after -q switch.             */
    /*     goodangle: cosine squared of minangle.                                */
    /*   vararea: -a switch without number.                                      */
    /*   fixedarea: -a switch with number.                                       */
    /*     maxarea: maximum area bound, specified after -a switch.               */
    /*   regionattrib: -A switch.  convex: -c switch.                            */
    /*   firstnumber: inverse of -z switch.  All items are numbered starting     */
    /*     from firstnumber.                                                     */
    /*   edgesout: -e switch.  voronoi: -v switch.                               */
    /*   neighbors: -n switch.  geomview: -g switch.                             */
    /*   nobound: -B switch.  nopolywritten: -P switch.                          */
    /*   nonodewritten: -N switch.  noelewritten: -E switch.                     */
    /*   noiterationnum: -I switch.  noholes: -O switch.                         */
    /*   noexact: -X switch.                                                     */
    /*   order: element order, specified after -o switch.                        */
    /*   nobisect: count of how often -Y switch is selected.                     */
    /*   steiner: maximum number of Steiner points, specified after -S switch.   */
    /*     steinerleft: number of Steiner points not yet used.                   */
    /*   incremental: -i switch.  sweepline: -F switch.                          */
    /*   dwyer: inverse of -l switch.                                            */
    /*   splitseg: -s switch.                                                    */
    /*   docheck: -C switch.                                                     */
    /*   quiet: -Q switch.  verbose: count of how often -V switch is selected.   */
    /*   useshelles: -p, -r, -q, or -c switch; determines whether shell edges    */
    /*     are used at all.                                                      */
    /*                                                                           */
    /* Read the instructions to find out the meaning of these switches.          */
    
    int poly, refine, quality, vararea, fixedarea, regionattrib, convex;
    int firstnumber;
    int edgesout, voronoi, neighbors, geomview;
    int nobound, nopolywritten, nonodewritten, noelewritten, noiterationnum;
    int noholes, noexact;
    int incremental, sweepline, dwyer;
    int splitseg;
    int docheck;
    int quiet, verbose;
    int useshelles;
    int order;
    int nobisect;
    int steiner, steinerleft;
    REAL minangle, goodangle;
    REAL maxarea;
    
    /* Variables for file names.                                                 */
    
    #ifndef TRILIBRARY
    char innodefilename[FILENAMESIZE];
    char inelefilename[FILENAMESIZE];
    char inpolyfilename[FILENAMESIZE];
    char areafilename[FILENAMESIZE];
    char outnodefilename[FILENAMESIZE];
    char outelefilename[FILENAMESIZE];
    char outpolyfilename[FILENAMESIZE];
    char edgefilename[FILENAMESIZE];
    char vnodefilename[FILENAMESIZE];
    char vedgefilename[FILENAMESIZE];
    char neighborfilename[FILENAMESIZE];
    char offfilename[FILENAMESIZE];
    #endif /* not TRILIBRARY */
    
    /* Triangular bounding box points.                                           */
    
    point infpoint1, infpoint2, infpoint3;
    
    /* Pointer to the `triangle' that occupies all of "outer space".             */
    
    triangle *dummytri;
    triangle *dummytribase;      /* Keep base address so we can free() it later. */
    
    /* Pointer to the omnipresent shell edge.  Referenced by any triangle or     */
    /*   shell edge that isn't really connected to a shell edge at that          */
    /*   location.                                                               */
    
    shelle *dummysh;
    shelle *dummyshbase;         /* Keep base address so we can free() it later. */
    
    /* Pointer to a recently visited triangle.  Improves point location if       */
    /*   proximate points are inserted sequentially.                             */
    
    struct triedge recenttri;
    
    /*****************************************************************************/
    /*                                                                           */
    /*  Mesh manipulation primitives.  Each triangle contains three pointers to  */
    /*  other triangles, with orientations.  Each pointer points not to the      */
    /*  first byte of a triangle, but to one of the first three bytes of a       */
    /*  triangle.  It is necessary to extract both the triangle itself and the   */
    /*  orientation.  To save memory, I keep both pieces of information in one   */
    /*  pointer.  To make this possible, I assume that all triangles are aligned */
    /*  to four-byte boundaries.  The `decode' routine below decodes a pointer,  */
    /*  extracting an orientation (in the range 0 to 2) and a pointer to the     */
    /*  beginning of a triangle.  The `encode' routine compresses a pointer to a */
    /*  triangle and an orientation into a single pointer.  My assumptions that  */
    /*  triangles are four-byte-aligned and that the `unsigned long' type is     */
    /*  long enough to hold a pointer are two of the few kludges in this program.*/
    /*                                                                           */
    /*  Shell edges are manipulated similarly.  A pointer to a shell edge        */
    /*  carries both an address and an orientation in the range 0 to 1.          */
    /*                                                                           */
    /*  The other primitives take an oriented triangle or oriented shell edge,   */
    /*  and return an oriented triangle or oriented shell edge or point; or they */
    /*  change the connections in the data structure.                            */
    /*                                                                           */
    /*****************************************************************************/
    
    /********* Mesh manipulation primitives begin here                   *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /* Fast lookup arrays to speed some of the mesh manipulation primitives.     */
    
    int plus1mod3[3] = {1, 2, 0};
    int minus1mod3[3] = {2, 0, 1};
    
    /********* Primitives for triangles                                  *********/
    /*                                                                           */
    /*                                                                           */
    
    /* decode() converts a pointer to an oriented triangle.  The orientation is  */
    /*   extracted from the two least significant bits of the pointer.           */
    
    #define decode(ptr, triedge)                                                  \
      (triedge).orient = (int) ((unsigned long) (ptr) & (unsigned long) 3l);      \
      (triedge).tri = (triangle *)                                                \
                      ((unsigned long) (ptr) ^ (unsigned long) (triedge).orient)
    
    /* encode() compresses an oriented triangle into a single pointer.  It       */
    /*   relies on the assumption that all triangles are aligned to four-byte    */
    /*   boundaries, so the two least significant bits of (triedge).tri are zero.*/
    
    #define encode(triedge)                                                       \
      (triangle) ((unsigned long) (triedge).tri | (unsigned long) (triedge).orient)
    
    /* The following edge manipulation primitives are all described by Guibas    */
    /*   and Stolfi.  However, they use an edge-based data structure, whereas I  */
    /*   am using a triangle-based data structure.                               */
    
    /* sym() finds the abutting triangle, on the same edge.  Note that the       */
    /*   edge direction is necessarily reversed, because triangle/edge handles   */
    /*   are always directed counterclockwise around the triangle.               */
    
    #define sym(triedge1, triedge2)                                               \
      ptr = (triedge1).tri[(triedge1).orient];                                    \
      decode(ptr, triedge2);
    
    #define symself(triedge)                                                      \
      ptr = (triedge).tri[(triedge).orient];                                      \
      decode(ptr, triedge);
    
    /* lnext() finds the next edge (counterclockwise) of a triangle.             */
    
    #define lnext(triedge1, triedge2)                                             \
      (triedge2).tri = (triedge1).tri;                                            \
      (triedge2).orient = plus1mod3[(triedge1).orient]
    
    #define lnextself(triedge)                                                    \
      (triedge).orient = plus1mod3[(triedge).orient]
    
    /* lprev() finds the previous edge (clockwise) of a triangle.                */
    
    #define lprev(triedge1, triedge2)                                             \
      (triedge2).tri = (triedge1).tri;                                            \
      (triedge2).orient = minus1mod3[(triedge1).orient]
    
    #define lprevself(triedge)                                                    \
      (triedge).orient = minus1mod3[(triedge).orient]
    
    /* onext() spins counterclockwise around a point; that is, it finds the next */
    /*   edge with the same origin in the counterclockwise direction.  This edge */
    /*   will be part of a different triangle.                                   */
    
    #define onext(triedge1, triedge2)                                             \
      lprev(triedge1, triedge2);                                                  \
      symself(triedge2);
    
    #define onextself(triedge)                                                    \
      lprevself(triedge);                                                         \
      symself(triedge);
    
    /* oprev() spins clockwise around a point; that is, it finds the next edge   */
    /*   with the same origin in the clockwise direction.  This edge will be     */
    /*   part of a different triangle.                                           */
    
    #define oprev(triedge1, triedge2)                                             \
      sym(triedge1, triedge2);                                                    \
      lnextself(triedge2);
    
    #define oprevself(triedge)                                                    \
      symself(triedge);                                                           \
      lnextself(triedge);
    
    /* dnext() spins counterclockwise around a point; that is, it finds the next */
    /*   edge with the same destination in the counterclockwise direction.  This */
    /*   edge will be part of a different triangle.                              */
    
    #define dnext(triedge1, triedge2)                                             \
      sym(triedge1, triedge2);                                                    \
      lprevself(triedge2);
    
    #define dnextself(triedge)                                                    \
      symself(triedge);                                                           \
      lprevself(triedge);
    
    /* dprev() spins clockwise around a point; that is, it finds the next edge   */
    /*   with the same destination in the clockwise direction.  This edge will   */
    /*   be part of a different triangle.                                        */
    
    #define dprev(triedge1, triedge2)                                             \
      lnext(triedge1, triedge2);                                                  \
      symself(triedge2);
    
    #define dprevself(triedge)                                                    \
      lnextself(triedge);                                                         \
      symself(triedge);
    
    /* rnext() moves one edge counterclockwise about the adjacent triangle.      */
    /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
    /*   changing triangles twice.)                                              */
    
    #define rnext(triedge1, triedge2)                                             \
      sym(triedge1, triedge2);                                                    \
      lnextself(triedge2);                                                        \
      symself(triedge2);
    
    #define rnextself(triedge)                                                    \
      symself(triedge);                                                           \
      lnextself(triedge);                                                         \
      symself(triedge);
    
    /* rnext() moves one edge clockwise about the adjacent triangle.             */
    /*   (It's best understood by reading Guibas and Stolfi.  It involves        */
    /*   changing triangles twice.)                                              */
    
    #define rprev(triedge1, triedge2)                                             \
      sym(triedge1, triedge2);                                                    \
      lprevself(triedge2);                                                        \
      symself(triedge2);
    
    #define rprevself(triedge)                                                    \
      symself(triedge);                                                           \
      lprevself(triedge);                                                         \
      symself(triedge);
    
    /* These primitives determine or set the origin, destination, or apex of a   */
    /* triangle.                                                                 */
    
    #define org(triedge, pointptr)                                                \
      pointptr = (point) (triedge).tri[plus1mod3[(triedge).orient] + 3]
    
    #define dest(triedge, pointptr)                                               \
      pointptr = (point) (triedge).tri[minus1mod3[(triedge).orient] + 3]
    
    #define apex(triedge, pointptr)                                               \
      pointptr = (point) (triedge).tri[(triedge).orient + 3]
    
    #define setorg(triedge, pointptr)                                             \
      (triedge).tri[plus1mod3[(triedge).orient] + 3] = (triangle) pointptr
    
    #define setdest(triedge, pointptr)                                            \
      (triedge).tri[minus1mod3[(triedge).orient] + 3] = (triangle) pointptr
    
    #define setapex(triedge, pointptr)                                            \
      (triedge).tri[(triedge).orient + 3] = (triangle) pointptr
    
    #define setvertices2null(triedge)                                             \
      (triedge).tri[3] = (triangle) NULL;                                         \
      (triedge).tri[4] = (triangle) NULL;                                         \
      (triedge).tri[5] = (triangle) NULL;
    
    /* Bond two triangles together.                                              */
    
    #define bond(triedge1, triedge2)                                              \
      (triedge1).tri[(triedge1).orient] = encode(triedge2);                       \
      (triedge2).tri[(triedge2).orient] = encode(triedge1)
    
    /* Dissolve a bond (from one side).  Note that the other triangle will still */
    /*   think it's connected to this triangle.  Usually, however, the other     */
    /*   triangle is being deleted entirely, or bonded to another triangle, so   */
    /*   it doesn't matter.                                                      */
    
    #define dissolve(triedge)                                                     \
      (triedge).tri[(triedge).orient] = (triangle) dummytri
    
    /* Copy a triangle/edge handle.                                              */
    
    #define triedgecopy(triedge1, triedge2)                                       \
      (triedge2).tri = (triedge1).tri;                                            \
      (triedge2).orient = (triedge1).orient
    
    /* Test for equality of triangle/edge handles.                               */
    
    #define triedgeequal(triedge1, triedge2)                                      \
      (((triedge1).tri == (triedge2).tri) &&                                      \
       ((triedge1).orient == (triedge2).orient))
    
    /* Primitives to infect or cure a triangle with the virus.  These rely on    */
    /*   the assumption that all shell edges are aligned to four-byte boundaries.*/
    
    #define infect(triedge)                                                       \
      (triedge).tri[6] = (triangle)                                               \
                         ((unsigned long) (triedge).tri[6] | (unsigned long) 2l)
    
    #define uninfect(triedge)                                                     \
      (triedge).tri[6] = (triangle)                                               \
                         ((unsigned long) (triedge).tri[6] & ~ (unsigned long) 2l)
    
    /* Test a triangle for viral infection.                                      */
    
    #define infected(triedge)                                                     \
      (((unsigned long) (triedge).tri[6] & (unsigned long) 2l) != 0)
    
    /* Check or set a triangle's attributes.                                     */
    
    #define elemattribute(triedge, attnum)                                        \
      ((REAL *) (triedge).tri)[elemattribindex + (attnum)]
    
    #define setelemattribute(triedge, attnum, value)                              \
      ((REAL *) (triedge).tri)[elemattribindex + (attnum)] = value
    
    /* Check or set a triangle's maximum area bound.                             */
    
    #define areabound(triedge)  ((REAL *) (triedge).tri)[areaboundindex]
    
    #define setareabound(triedge, value)                                          \
      ((REAL *) (triedge).tri)[areaboundindex] = value
    
    /********* Primitives for shell edges                                *********/
    /*                                                                           */
    /*                                                                           */
    
    /* sdecode() converts a pointer to an oriented shell edge.  The orientation  */
    /*   is extracted from the least significant bit of the pointer.  The two    */
    /*   least significant bits (one for orientation, one for viral infection)   */
    /*   are masked out to produce the real pointer.                             */
    
    #define sdecode(sptr, edge)                                                   \
      (edge).shorient = (int) ((unsigned long) (sptr) & (unsigned long) 1l);      \
      (edge).sh = (shelle *)                                                      \
                  ((unsigned long) (sptr) & ~ (unsigned long) 3l)
    
    /* sencode() compresses an oriented shell edge into a single pointer.  It    */
    /*   relies on the assumption that all shell edges are aligned to two-byte   */
    /*   boundaries, so the least significant bit of (edge).sh is zero.          */
    
    #define sencode(edge)                                                         \
      (shelle) ((unsigned long) (edge).sh | (unsigned long) (edge).shorient)
    
    /* ssym() toggles the orientation of a shell edge.                           */
    
    #define ssym(edge1, edge2)                                                    \
      (edge2).sh = (edge1).sh;                                                    \
      (edge2).shorient = 1 - (edge1).shorient
    
    #define ssymself(edge)                                                        \
      (edge).shorient = 1 - (edge).shorient
    
    /* spivot() finds the other shell edge (from the same segment) that shares   */
    /*   the same origin.                                                        */
    
    #define spivot(edge1, edge2)                                                  \
      sptr = (edge1).sh[(edge1).shorient];                                        \
      sdecode(sptr, edge2)
    
    #define spivotself(edge)                                                      \
      sptr = (edge).sh[(edge).shorient];                                          \
      sdecode(sptr, edge)
    
    /* snext() finds the next shell edge (from the same segment) in sequence;    */
    /*   one whose origin is the input shell edge's destination.                 */
    
    #define snext(edge1, edge2)                                                   \
      sptr = (edge1).sh[1 - (edge1).shorient];                                    \
      sdecode(sptr, edge2)
    
    #define snextself(edge)                                                       \
      sptr = (edge).sh[1 - (edge).shorient];                                      \
      sdecode(sptr, edge)
    
    /* These primitives determine or set the origin or destination of a shell    */
    /*   edge.                                                                   */
    
    #define sorg(edge, pointptr)                                                  \
      pointptr = (point) (edge).sh[2 + (edge).shorient]
    
    #define sdest(edge, pointptr)                                                 \
      pointptr = (point) (edge).sh[3 - (edge).shorient]
    
    #define setsorg(edge, pointptr)                                               \
      (edge).sh[2 + (edge).shorient] = (shelle) pointptr
    
    #define setsdest(edge, pointptr)                                              \
      (edge).sh[3 - (edge).shorient] = (shelle) pointptr
    
    /* These primitives read or set a shell marker.  Shell markers are used to   */
    /*   hold user boundary information.                                         */
    
    #define mark(edge)  (* (int *) ((edge).sh + 6))
    
    #define setmark(edge, value)                                                  \
      * (int *) ((edge).sh + 6) = value
    
    /* Bond two shell edges together.                                            */
    
    #define sbond(edge1, edge2)                                                   \
      (edge1).sh[(edge1).shorient] = sencode(edge2);                              \
      (edge2).sh[(edge2).shorient] = sencode(edge1)
    
    /* Dissolve a shell edge bond (from one side).  Note that the other shell    */
    /*   edge will still think it's connected to this shell edge.                */
    
    #define sdissolve(edge)                                                       \
      (edge).sh[(edge).shorient] = (shelle) dummysh
    
    /* Copy a shell edge.                                                        */
    
    #define shellecopy(edge1, edge2)                                              \
      (edge2).sh = (edge1).sh;                                                    \
      (edge2).shorient = (edge1).shorient
    
    /* Test for equality of shell edges.                                         */
    
    #define shelleequal(edge1, edge2)                                             \
      (((edge1).sh == (edge2).sh) &&                                              \
       ((edge1).shorient == (edge2).shorient))
    
    /********* Primitives for interacting triangles and shell edges      *********/
    /*                                                                           */
    /*                                                                           */
    
    /* tspivot() finds a shell edge abutting a triangle.                         */
    
    #define tspivot(triedge, edge)                                                \
      sptr = (shelle) (triedge).tri[6 + (triedge).orient];                        \
      sdecode(sptr, edge)
    
    /* stpivot() finds a triangle abutting a shell edge.  It requires that the   */
    /*   variable `ptr' of type `triangle' be defined.                           */
    
    #define stpivot(edge, triedge)                                                \
      ptr = (triangle) (edge).sh[4 + (edge).shorient];                            \
      decode(ptr, triedge)
    
    /* Bond a triangle to a shell edge.                                          */
    
    #define tsbond(triedge, edge)                                                 \
      (triedge).tri[6 + (triedge).orient] = (triangle) sencode(edge);             \
      (edge).sh[4 + (edge).shorient] = (shelle) encode(triedge)
    
    /* Dissolve a bond (from the triangle side).                                 */
    
    #define tsdissolve(triedge)                                                   \
      (triedge).tri[6 + (triedge).orient] = (triangle) dummysh
    
    /* Dissolve a bond (from the shell edge side).                               */
    
    #define stdissolve(edge)                                                      \
      (edge).sh[4 + (edge).shorient] = (shelle) dummytri
    
    /********* Primitives for points                                     *********/
    /*                                                                           */
    /*                                                                           */
    
    #define pointmark(pt)  ((int *) (pt))[pointmarkindex]
    
    #define setpointmark(pt, value)                                               \
      ((int *) (pt))[pointmarkindex] = value
    
    #define point2tri(pt)  ((triangle *) (pt))[point2triindex]
    
    #define setpoint2tri(pt, value)                                               \
      ((triangle *) (pt))[point2triindex] = value
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh manipulation primitives end here                     *********/
    
    /********* User interaction routines begin here                      *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  syntax()   Print list of command line switches.                          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void syntax()
    {
    #ifdef CDT_ONLY
    #ifdef REDUCED
      printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n");
    #else /* not REDUCED */
      printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n");
    #endif /* not REDUCED */
    #else /* not CDT_ONLY */
    #ifdef REDUCED
      printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n");
    #else /* not REDUCED */
      printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n");
    #endif /* not REDUCED */
    #endif /* not CDT_ONLY */
    
      printf("    -p  Triangulates a Planar Straight Line Graph (.poly file).\n");
    #ifndef CDT_ONLY
      printf("    -r  Refines a previously generated mesh.\n");
      printf(
        "    -q  Quality mesh generation.  A minimum angle may be specified.\n");
      printf("    -a  Applies a maximum triangle area constraint.\n");
    #endif /* not CDT_ONLY */
      printf(
        "    -A  Applies attributes to identify elements in certain regions.\n");
      printf("    -c  Encloses the convex hull with segments.\n");
      printf("    -e  Generates an edge list.\n");
      printf("    -v  Generates a Voronoi diagram.\n");
      printf("    -n  Generates a list of triangle neighbors.\n");
      printf("    -g  Generates an .off file for Geomview.\n");
      printf("    -B  Suppresses output of boundary information.\n");
      printf("    -P  Suppresses output of .poly file.\n");
      printf("    -N  Suppresses output of .node file.\n");
      printf("    -E  Suppresses output of .ele file.\n");
      printf("    -I  Suppresses mesh iteration numbers.\n");
      printf("    -O  Ignores holes in .poly file.\n");
      printf("    -X  Suppresses use of exact arithmetic.\n");
      printf("    -z  Numbers all items starting from zero (rather than one).\n");
      printf("    -o2 Generates second-order subparametric elements.\n");
    #ifndef CDT_ONLY
      printf("    -Y  Suppresses boundary segment splitting.\n");
      printf("    -S  Specifies maximum number of added Steiner points.\n");
    #endif /* not CDT_ONLY */
    #ifndef REDUCED
      printf("    -i  Uses incremental method, rather than divide-and-conquer.\n");
      printf("    -F  Uses Fortune's sweepline algorithm, rather than d-and-c.\n");
    #endif /* not REDUCED */
      printf("    -l  Uses vertical cuts only, rather than alternating cuts.\n");
    #ifndef REDUCED
    #ifndef CDT_ONLY
      printf(
        "    -s  Force segments into mesh by splitting (instead of using CDT).\n");
    #endif /* not CDT_ONLY */
      printf("    -C  Check consistency of final mesh.\n");
    #endif /* not REDUCED */
      printf("    -Q  Quiet:  No terminal output except errors.\n");
      printf("    -V  Verbose:  Detailed information on what I'm doing.\n");
      printf("    -h  Help:  Detailed instructions for Triangle.\n");
      exit(0);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  info()   Print out complete instructions.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void info()
    {
      printf("Triangle\n");
      printf(
    "A Two-Dimensional Quality Mesh Generator and Delaunay Triangulator.\n");
      printf("Version 1.3\n\n");
      printf(
    "Copyright 1996 Jonathan Richard Shewchuk  (bugs/comments to jrs@cs.cmu.edu)\n"
    );
      printf("School of Computer Science / Carnegie Mellon University\n");
      printf("5000 Forbes Avenue / Pittsburgh, Pennsylvania  15213-3891\n");
      printf(
    "Created as part of the Archimedes project (tools for parallel FEM).\n");
      printf(
    "Supported in part by NSF Grant CMS-9318163 and an NSERC 1967 Scholarship.\n");
      printf("There is no warranty whatsoever.  Use at your own risk.\n");
    #ifdef SINGLE
      printf("This executable is compiled for single precision arithmetic.\n\n\n");
    #else /* not SINGLE */
      printf("This executable is compiled for double precision arithmetic.\n\n\n");
    #endif /* not SINGLE */
      printf(
    "Triangle generates exact Delaunay triangulations, constrained Delaunay\n");
      printf(
    "triangulations, and quality conforming Delaunay triangulations.  The latter\n"
    );
      printf(
    "can be generated with no small angles, and are thus suitable for finite\n");
      printf(
    "element analysis.  If no command line switches are specified, your .node\n");
      printf(
    "input file will be read, and the Delaunay triangulation will be returned in\n"
    );
      printf(".node and .ele output files.  The command syntax is:\n\n");
    #ifdef CDT_ONLY
    #ifdef REDUCED
      printf("triangle [-pAcevngBPNEIOXzo_lQVh] input_file\n\n");
    #else /* not REDUCED */
      printf("triangle [-pAcevngBPNEIOXzo_iFlCQVh] input_file\n\n");
    #endif /* not REDUCED */
    #else /* not CDT_ONLY */
    #ifdef REDUCED
      printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__lQVh] input_file\n\n");
    #else /* not REDUCED */
      printf("triangle [-prq__a__AcevngBPNEIOXzo_YS__iFlsCQVh] input_file\n\n");
    #endif /* not REDUCED */
    #endif /* not CDT_ONLY */
      printf(
    "Underscores indicate that numbers may optionally follow certain switches;\n");
      printf(
    "do not leave any space between a switch and its numeric parameter.\n");
      printf(
    "input_file must be a file with extension .node, or extension .poly if the\n");
      printf(
    "-p switch is used.  If -r is used, you must supply .node and .ele files,\n");
      printf(
    "and possibly a .poly file and .area file as well.  The formats of these\n");
      printf("files are described below.\n\n");
      printf("Command Line Switches:\n\n");
      printf(
    "    -p  Reads a Planar Straight Line Graph (.poly file), which can specify\n"
    );
      printf(
    "        points, segments, holes, and regional attributes and area\n");
      printf(
    "        constraints.  Will generate a constrained Delaunay triangulation\n");
      printf(
    "        fitting the input; or, if -s, -q, or -a is used, a conforming\n");
      printf(
    "        Delaunay triangulation.  If -p is not used, Triangle reads a .node\n"
    );
      printf("        file by default.\n");
      printf(
    "    -r  Refines a previously generated mesh.  The mesh is read from a .node\n"
    );
      printf(
    "        file and an .ele file.  If -p is also used, a .poly file is read\n");
      printf(
    "        and used to constrain edges in the mesh.  Further details on\n");
      printf("        refinement are given below.\n");
      printf(
    "    -q  Quality mesh generation by Jim Ruppert's Delaunay refinement\n");
      printf(
    "        algorithm.  Adds points to the mesh to ensure that no angles\n");
      printf(
    "        smaller than 20 degrees occur.  An alternative minimum angle may be\n"
    );
      printf(
    "        specified after the `q'.  If the minimum angle is 20.7 degrees or\n");
      printf(
    "        smaller, the triangulation algorithm is theoretically guaranteed to\n"
    );
      printf(
    "        terminate (assuming infinite precision arithmetic - Triangle may\n");
      printf(
    "        fail to terminate if you run out of precision).  In practice, the\n");
      printf(
    "        algorithm often succeeds for minimum angles up to 33.8 degrees.\n");
      printf(
    "        For highly refined meshes, however, it may be necessary to reduce\n");
      printf(
    "        the minimum angle to well below 20 to avoid problems associated\n");
      printf(
    "        with insufficient floating-point precision.  The specified angle\n");
      printf("        may include a decimal point.\n");
      printf(
    "    -a  Imposes a maximum triangle area.  If a number follows the `a', no\n");
      printf(
    "        triangle will be generated whose area is larger than that number.\n");
      printf(
    "        If no number is specified, an .area file (if -r is used) or .poly\n");
      printf(
    "        file (if -r is not used) specifies a number of maximum area\n");
      printf(
    "        constraints.  An .area file contains a separate area constraint for\n"
    );
      printf(
    "        each triangle, and is useful for refining a finite element mesh\n");
      printf(
    "        based on a posteriori error estimates.  A .poly file can optionally\n"
    );
      printf(
    "        contain an area constraint for each segment-bounded region, thereby\n"
    );
      printf(
    "        enforcing triangle densities in a first triangulation.  You can\n");
      printf(
    "        impose both a fixed area constraint and a varying area constraint\n");
      printf(
    "        by invoking the -a switch twice, once with and once without a\n");
      printf(
    "        number following.  Each area specified may include a decimal point.\n"
    );
      printf(
    "    -A  Assigns an additional attribute to each triangle that identifies\n");
      printf(
    "        what segment-bounded region each triangle belongs to.  Attributes\n");
      printf(
    "        are assigned to regions by the .poly file.  If a region is not\n");
      printf(
    "        explicitly marked by the .poly file, triangles in that region are\n");
      printf(
    "        assigned an attribute of zero.  The -A switch has an effect only\n");
      printf("        when the -p switch is used and the -r switch is not.\n");
      printf(
    "    -c  Creates segments on the convex hull of the triangulation.  If you\n");
      printf(
    "        are triangulating a point set, this switch causes a .poly file to\n");
      printf(
    "        be written, containing all edges in the convex hull.  (By default,\n"
    );
      printf(
    "        a .poly file is written only if a .poly file is read.)  If you are\n"
    );
      printf(
    "        triangulating a PSLG, this switch specifies that the interior of\n");
      printf(
    "        the convex hull of the PSLG should be triangulated.  If you do not\n"
    );
      printf(
    "        use this switch when triangulating a PSLG, it is assumed that you\n");
      printf(
    "        have identified the region to be triangulated by surrounding it\n");
      printf(
    "        with segments of the input PSLG.  Beware:  if you are not careful,\n"
    );
      printf(
    "        this switch can cause the introduction of an extremely thin angle\n");
      printf(
    "        between a PSLG segment and a convex hull segment, which can cause\n");
      printf(
    "        overrefinement or failure if Triangle runs out of precision.  If\n");
      printf(
    "        you are refining a mesh, the -c switch works differently; it\n");
      printf(
    "        generates the set of boundary edges of the mesh, rather than the\n");
      printf("        convex hull.\n");
      printf(
    "    -e  Outputs (to an .edge file) a list of edges of the triangulation.\n");
      printf(
    "    -v  Outputs the Voronoi diagram associated with the triangulation.\n");
      printf("        Does not attempt to detect degeneracies.\n");
      printf(
    "    -n  Outputs (to a .neigh file) a list of triangles neighboring each\n");
      printf("        triangle.\n");
      printf(
    "    -g  Outputs the mesh to an Object File Format (.off) file, suitable for\n"
    );
      printf("        viewing with the Geometry Center's Geomview package.\n");
      printf(
    "    -B  No boundary markers in the output .node, .poly, and .edge output\n");
      printf(
    "        files.  See the detailed discussion of boundary markers below.\n");
      printf(
    "    -P  No output .poly file.  Saves disk space, but you lose the ability\n");
      printf(
    "        to impose segment constraints on later refinements of the mesh.\n");
      printf("    -N  No output .node file.\n");
      printf("    -E  No output .ele file.\n");
      printf(
    "    -I  No iteration numbers.  Suppresses the output of .node and .poly\n");
      printf(
    "        files, so your input files won't be overwritten.  (If your input is\n"
    );
      printf(
    "        a .poly file only, a .node file will be written.)  Cannot be used\n");
      printf(
    "        with the -r switch, because that would overwrite your input .ele\n");
      printf(
    "        file.  Shouldn't be used with the -s, -q, or -a switch if you are\n");
      printf(
    "        using a .node file for input, because no .node file will be\n");
      printf("        written, so there will be no record of any added points.\n");
      printf("    -O  No holes.  Ignores the holes in the .poly file.\n");
      printf(
    "    -X  No exact arithmetic.  Normally, Triangle uses exact floating-point\n"
    );
      printf(
    "        arithmetic for certain tests if it thinks the inexact tests are not\n"
    );
      printf(
    "        accurate enough.  Exact arithmetic ensures the robustness of the\n");
      printf(
    "        triangulation algorithms, despite floating-point roundoff error.\n");
      printf(
    "        Disabling exact arithmetic with the -X switch will cause a small\n");
      printf(
    "        improvement in speed and create the possibility (albeit small) that\n"
    );
      printf(
    "        Triangle will fail to produce a valid mesh.  Not recommended.\n");
      printf(
    "    -z  Numbers all items starting from zero (rather than one).  Note that\n"
    );
      printf(
    "        this switch is normally overrided by the value used to number the\n");
      printf(
    "        first point of the input .node or .poly file.  However, this switch\n"
    );
      printf("        is useful when calling Triangle from another program.\n");
      printf(
    "    -o2 Generates second-order subparametric elements with six nodes each.\n"
    );
      printf(
    "    -Y  No new points on the boundary.  This switch is useful when the mesh\n"
    );
      printf(
    "        boundary must be preserved so that it conforms to some adjacent\n");
      printf(
    "        mesh.  Be forewarned that you will probably sacrifice some of the\n");
      printf(
    "        quality of the mesh; Triangle will try, but the resulting mesh may\n"
    );
      printf(
    "        contain triangles of poor aspect ratio.  Works well if all the\n");
      printf(
    "        boundary points are closely spaced.  Specify this switch twice\n");
      printf(
    "        (`-YY') to prevent all segment splitting, including internal\n");
      printf("        boundaries.\n");
      printf(
    "    -S  Specifies the maximum number of Steiner points (points that are not\n"
    );
      printf(
    "        in the input, but are added to meet the constraints of minimum\n");
      printf(
    "        angle and maximum area).  The default is to allow an unlimited\n");
      printf(
    "        number.  If you specify this switch with no number after it,\n");
      printf(
    "        the limit is set to zero.  Triangle always adds points at segment\n");
      printf(
    "        intersections, even if it needs to use more points than the limit\n");
      printf(
    "        you set.  When Triangle inserts segments by splitting (-s), it\n");
      printf(
    "        always adds enough points to ensure that all the segments appear in\n"
    );
      printf(
    "        the triangulation, again ignoring the limit.  Be forewarned that\n");
      printf(
    "        the -S switch may result in a conforming triangulation that is not\n"
    );
      printf(
    "        truly Delaunay, because Triangle may be forced to stop adding\n");
      printf(
    "        points when the mesh is in a state where a segment is non-Delaunay\n"
    );
      printf(
    "        and needs to be split.  If so, Triangle will print a warning.\n");
      printf(
    "    -i  Uses an incremental rather than divide-and-conquer algorithm to\n");
      printf(
    "        form a Delaunay triangulation.  Try it if the divide-and-conquer\n");
      printf("        algorithm fails.\n");
      printf(
    "    -F  Uses Steven Fortune's sweepline algorithm to form a Delaunay\n");
      printf(
    "        triangulation.  Warning:  does not use exact arithmetic for all\n");
      printf("        calculations.  An exact result is not guaranteed.\n");
      printf(
    "    -l  Uses only vertical cuts in the divide-and-conquer algorithm.  By\n");
      printf(
    "        default, Triangle uses alternating vertical and horizontal cuts,\n");
      printf(
    "        which usually improve the speed except with point sets that are\n");
      printf(
    "        small or short and wide.  This switch is primarily of theoretical\n");
      printf("        interest.\n");
      printf(
    "    -s  Specifies that segments should be forced into the triangulation by\n"
    );
      printf(
    "        recursively splitting them at their midpoints, rather than by\n");
      printf(
    "        generating a constrained Delaunay triangulation.  Segment splitting\n"
    );
      printf(
    "        is true to Ruppert's original algorithm, but can create needlessly\n"
    );
      printf("        small triangles near external small features.\n");
      printf(
    "    -C  Check the consistency of the final mesh.  Uses exact arithmetic for\n"
    );
      printf(
    "        checking, even if the -X switch is used.  Useful if you suspect\n");
      printf("        Triangle is buggy.\n");
      printf(
    "    -Q  Quiet: Suppresses all explanation of what Triangle is doing, unless\n"
    );
      printf("        an error occurs.\n");
      printf(
    "    -V  Verbose: Gives detailed information about what Triangle is doing.\n");
      printf(
    "        Add more `V's for increasing amount of detail.  `-V' gives\n");
      printf(
    "        information on algorithmic progress and more detailed statistics.\n");
      printf(
    "        `-VV' gives point-by-point details, and will print so much that\n");
      printf(
    "        Triangle will run much more slowly.  `-VVV' gives information only\n"
    );
      printf("        a debugger could love.\n");
      printf("    -h  Help:  Displays these instructions.\n");
      printf("\n");
      printf("Definitions:\n");
      printf("\n");
      printf(
    "  A Delaunay triangulation of a point set is a triangulation whose vertices\n"
    );
      printf(
    "  are the point set, having the property that no point in the point set\n");
      printf(
    "  falls in the interior of the circumcircle (circle that passes through all\n"
    );
      printf("  three vertices) of any triangle in the triangulation.\n\n");
      printf(
    "  A Voronoi diagram of a point set is a subdivision of the plane into\n");
      printf(
    "  polygonal regions (some of which may be infinite), where each region is\n");
      printf(
    "  the set of points in the plane that are closer to some input point than\n");
      printf(
    "  to any other input point.  (The Voronoi diagram is the geometric dual of\n"
    );
      printf("  the Delaunay triangulation.)\n\n");
      printf(
    "  A Planar Straight Line Graph (PSLG) is a collection of points and\n");
      printf(
    "  segments.  Segments are simply edges, whose endpoints are points in the\n");
      printf(
    "  PSLG.  The file format for PSLGs (.poly files) is described below.\n");
      printf("\n");
      printf(
    "  A constrained Delaunay triangulation of a PSLG is similar to a Delaunay\n");
      printf(
    "  triangulation, but each PSLG segment is present as a single edge in the\n");
      printf(
    "  triangulation.  (A constrained Delaunay triangulation is not truly a\n");
      printf("  Delaunay triangulation.)\n\n");
      printf(
    "  A conforming Delaunay triangulation of a PSLG is a true Delaunay\n");
      printf(
    "  triangulation in which each PSLG segment may have been subdivided into\n");
      printf(
    "  several edges by the insertion of additional points.  These inserted\n");
      printf(
    "  points are necessary to allow the segments to exist in the mesh while\n");
      printf("  maintaining the Delaunay property.\n\n");
      printf("File Formats:\n\n");
      printf(
    "  All files may contain comments prefixed by the character '#'.  Points,\n");
      printf(
    "  triangles, edges, holes, and maximum area constraints must be numbered\n");
      printf(
    "  consecutively, starting from either 1 or 0.  Whichever you choose, all\n");
      printf(
    "  input files must be consistent; if the nodes are numbered from 1, so must\n"
    );
      printf(
    "  be all other objects.  Triangle automatically detects your choice while\n");
      printf(
    "  reading the .node (or .poly) file.  (When calling Triangle from another\n");
      printf(
    "  program, use the -z switch if you wish to number objects from zero.)\n");
      printf("  Examples of these file formats are given below.\n\n");
      printf("  .node files:\n");
      printf(
    "    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
      printf(
    "                                           <# of boundary markers (0 or 1)>\n"
    );
      printf(
    "    Remaining lines:  <point #> <x> <y> [attributes] [boundary marker]\n");
      printf("\n");
      printf(
    "    The attributes, which are typically floating-point values of physical\n");
      printf(
    "    quantities (such as mass or conductivity) associated with the nodes of\n"
    );
      printf(
    "    a finite element mesh, are copied unchanged to the output mesh.  If -s,\n"
    );
      printf(
    "    -q, or -a is selected, each new Steiner point added to the mesh will\n");
      printf("    have attributes assigned to it by linear interpolation.\n\n");
      printf(
    "    If the fourth entry of the first line is `1', the last column of the\n");
      printf(
    "    remainder of the file is assumed to contain boundary markers.  Boundary\n"
    );
      printf(
    "    markers are used to identify boundary points and points resting on PSLG\n"
    );
      printf(
    "    segments; a complete description appears in a section below.  The .node\n"
    );
      printf(
    "    file produced by Triangle will contain boundary markers in the last\n");
      printf("    column unless they are suppressed by the -B switch.\n\n");
      printf("  .ele files:\n");
      printf(
    "    First line:  <# of triangles> <points per triangle> <# of attributes>\n");
      printf(
    "    Remaining lines:  <triangle #> <point> <point> <point> ... [attributes]\n"
    );
      printf("\n");
      printf(
    "    Points are indices into the corresponding .node file.  The first three\n"
    );
      printf(
    "    points are the corners, and are listed in counterclockwise order around\n"
    );
      printf(
    "    each triangle.  (The remaining points, if any, depend on the type of\n");
      printf(
    "    finite element used.)  The attributes are just like those of .node\n");
      printf(
    "    files.  Because there is no simple mapping from input to output\n");
      printf(
    "    triangles, an attempt is made to interpolate attributes, which may\n");
      printf(
    "    result in a good deal of diffusion of attributes among nearby triangles\n"
    );
      printf(
    "    as the triangulation is refined.  Diffusion does not occur across\n");
      printf(
    "    segments, so attributes used to identify segment-bounded regions remain\n"
    );
      printf(
    "    intact.  In output .ele files, all triangles have three points each\n");
      printf(
    "    unless the -o2 switch is used, in which case they have six, and the\n");
      printf(
    "    fourth, fifth, and sixth points lie on the midpoints of the edges\n");
      printf("    opposite the first, second, and third corners.\n\n");
      printf("  .poly files:\n");
      printf(
    "    First line:  <# of points> <dimension (must be 2)> <# of attributes>\n");
      printf(
    "                                           <# of boundary markers (0 or 1)>\n"
    );
      printf(
    "    Following lines:  <point #> <x> <y> [attributes] [boundary marker]\n");
      printf("    One line:  <# of segments> <# of boundary markers (0 or 1)>\n");
      printf(
    "    Following lines:  <segment #> <endpoint> <endpoint> [boundary marker]\n");
      printf("    One line:  <# of holes>\n");
      printf("    Following lines:  <hole #> <x> <y>\n");
      printf(
    "    Optional line:  <# of regional attributes and/or area constraints>\n");
      printf(
    "    Optional following lines:  <constraint #> <x> <y> <attrib> <max area>\n");
      printf("\n");
      printf(
    "    A .poly file represents a PSLG, as well as some additional information.\n"
    );
      printf(
    "    The first section lists all the points, and is identical to the format\n"
    );
      printf(
    "    of .node files.  <# of points> may be set to zero to indicate that the\n"
    );
      printf(
    "    points are listed in a separate .node file; .poly files produced by\n");
      printf(
    "    Triangle always have this format.  This has the advantage that a point\n"
    );
      printf(
    "    set may easily be triangulated with or without segments.  (The same\n");
      printf(
    "    effect can be achieved, albeit using more disk space, by making a copy\n"
    );
      printf(
    "    of the .poly file with the extension .node; all sections of the file\n");
      printf("    but the first are ignored.)\n\n");
      printf(
    "    The second section lists the segments.  Segments are edges whose\n");
      printf(
    "    presence in the triangulation is enforced.  Each segment is specified\n");
      printf(
    "    by listing the indices of its two endpoints.  This means that you must\n"
    );
      printf(
    "    include its endpoints in the point list.  If -s, -q, and -a are not\n");
      printf(
    "    selected, Triangle will produce a constrained Delaunay triangulation,\n");
      printf(
    "    in which each segment appears as a single edge in the triangulation.\n");
      printf(
    "    If -q or -a is selected, Triangle will produce a conforming Delaunay\n");
      printf(
    "    triangulation, in which segments may be subdivided into smaller edges.\n"
    );
      printf("    Each segment, like each point, may have a boundary marker.\n\n");
      printf(
    "    The third section lists holes (and concavities, if -c is selected) in\n");
      printf(
    "    the triangulation.  Holes are specified by identifying a point inside\n");
      printf(
    "    each hole.  After the triangulation is formed, Triangle creates holes\n");
      printf(
    "    by eating triangles, spreading out from each hole point until its\n");
      printf(
    "    progress is blocked by PSLG segments; you must be careful to enclose\n");
      printf(
    "    each hole in segments, or your whole triangulation may be eaten away.\n");
      printf(
    "    If the two triangles abutting a segment are eaten, the segment itself\n");
      printf(
    "    is also eaten.  Do not place a hole directly on a segment; if you do,\n");
      printf("    Triangle will choose one side of the segment arbitrarily.\n\n");
      printf(
    "    The optional fourth section lists regional attributes (to be assigned\n");
      printf(
    "    to all triangles in a region) and regional constraints on the maximum\n");
      printf(
    "    triangle area.  Triangle will read this section only if the -A switch\n");
      printf(
    "    is used or the -a switch is used without a number following it, and the\n"
    );
      printf(
    "    -r switch is not used.  Regional attributes and area constraints are\n");
      printf(
    "    propagated in the same manner as holes; you specify a point for each\n");
      printf(
    "    attribute and/or constraint, and the attribute and/or constraint will\n");
      printf(
    "    affect the whole region (bounded by segments) containing the point.  If\n"
    );
      printf(
    "    two values are written on a line after the x and y coordinate, the\n");
      printf(
    "    former is assumed to be a regional attribute (but will only be applied\n"
    );
      printf(
    "    if the -A switch is selected), and the latter is assumed to be a\n");
      printf(
    "    regional area constraint (but will only be applied if the -a switch is\n"
    );
      printf(
    "    selected).  You may also specify just one value after the coordinates,\n"
    );
      printf(
    "    which can serve as both an attribute and an area constraint, depending\n"
    );
      printf(
    "    on the choice of switches.  If you are using the -A and -a switches\n");
      printf(
    "    simultaneously and wish to assign an attribute to some region without\n");
      printf("    imposing an area constraint, use a negative maximum area.\n\n");
      printf(
    "    When a triangulation is created from a .poly file, you must either\n");
      printf(
    "    enclose the entire region to be triangulated in PSLG segments, or\n");
      printf(
    "    use the -c switch, which encloses the convex hull of the input point\n");
      printf(
    "    set.  If you do not use the -c switch, Triangle will eat all triangles\n"
    );
      printf(
    "    on the outer boundary that are not protected by segments; if you are\n");
      printf(
    "    not careful, your whole triangulation may be eaten away.  If you do\n");
      printf(
    "    use the -c switch, you can still produce concavities by appropriate\n");
      printf("    placement of holes just inside the convex hull.\n\n");
      printf(
    "    An ideal PSLG has no intersecting segments, nor any points that lie\n");
      printf(
    "    upon segments (except, of course, the endpoints of each segment.)  You\n"
    );
      printf(
    "    aren't required to make your .poly files ideal, but you should be aware\n"
    );
      printf(
    "    of what can go wrong.  Segment intersections are relatively safe -\n");
      printf(
    "    Triangle will calculate the intersection points for you and add them to\n"
    );
      printf(
    "    the triangulation - as long as your machine's floating-point precision\n"
    );
      printf(
    "    doesn't become a problem.  You are tempting the fates if you have three\n"
    );
      printf(
    "    segments that cross at the same location, and expect Triangle to figure\n"
    );
      printf(
    "    out where the intersection point is.  Thanks to floating-point roundoff\n"
    );
      printf(
    "    error, Triangle will probably decide that the three segments intersect\n"
    );
      printf(
    "    at three different points, and you will find a minuscule triangle in\n");
      printf(
    "    your output - unless Triangle tries to refine the tiny triangle, uses\n");
      printf(
    "    up the last bit of machine precision, and fails to terminate at all.\n");
      printf(
    "    You're better off putting the intersection point in the input files,\n");
      printf(
    "    and manually breaking up each segment into two.  Similarly, if you\n");
      printf(
    "    place a point at the middle of a segment, and hope that Triangle will\n");
      printf(
    "    break up the segment at that point, you might get lucky.  On the other\n"
    );
      printf(
    "    hand, Triangle might decide that the point doesn't lie precisely on the\n"
    );
      printf(
    "    line, and you'll have a needle-sharp triangle in your output - or a lot\n"
    );
      printf("    of tiny triangles if you're generating a quality mesh.\n\n");
      printf(
    "    When Triangle reads a .poly file, it also writes a .poly file, which\n");
      printf(
    "    includes all edges that are part of input segments.  If the -c switch\n");
      printf(
    "    is used, the output .poly file will also include all of the edges on\n");
      printf(
    "    the convex hull.  Hence, the output .poly file is useful for finding\n");
      printf(
    "    edges associated with input segments and setting boundary conditions in\n"
    );
      printf(
    "    finite element simulations.  More importantly, you will need it if you\n"
    );
      printf(
    "    plan to refine the output mesh, and don't want segments to be missing\n");
      printf("    in later triangulations.\n\n");
      printf("  .area files:\n");
      printf("    First line:  <# of triangles>\n");
      printf("    Following lines:  <triangle #> <maximum area>\n\n");
      printf(
    "    An .area file associates with each triangle a maximum area that is used\n"
    );
      printf(
    "    for mesh refinement.  As with other file formats, every triangle must\n");
      printf(
    "    be represented, and they must be numbered consecutively.  A triangle\n");
      printf(
    "    may be left unconstrained by assigning it a negative maximum area.\n");
      printf("\n");
      printf("  .edge files:\n");
      printf("    First line:  <# of edges> <# of boundary markers (0 or 1)>\n");
      printf(
    "    Following lines:  <edge #> <endpoint> <endpoint> [boundary marker]\n");
      printf("\n");
      printf(
    "    Endpoints are indices into the corresponding .node file.  Triangle can\n"
    );
      printf(
    "    produce .edge files (use the -e switch), but cannot read them.  The\n");
      printf(
    "    optional column of boundary markers is suppressed by the -B switch.\n");
      printf("\n");
      printf(
    "    In Voronoi diagrams, one also finds a special kind of edge that is an\n");
      printf(
    "    infinite ray with only one endpoint.  For these edges, a different\n");
      printf("    format is used:\n\n");
      printf("        <edge #> <endpoint> -1 <direction x> <direction y>\n\n");
      printf(
    "    The `direction' is a floating-point vector that indicates the direction\n"
    );
      printf("    of the infinite ray.\n\n");
      printf("  .neigh files:\n");
      printf(
    "    First line:  <# of triangles> <# of neighbors per triangle (always 3)>\n"
    );
      printf(
    "    Following lines:  <triangle #> <neighbor> <neighbor> <neighbor>\n");
      printf("\n");
      printf(
    "    Neighbors are indices into the corresponding .ele file.  An index of -1\n"
    );
      printf(
    "    indicates a mesh boundary, and therefore no neighbor.  Triangle can\n");
      printf(
    "    produce .neigh files (use the -n switch), but cannot read them.\n");
      printf("\n");
      printf(
    "    The first neighbor of triangle i is opposite the first corner of\n");
      printf("    triangle i, and so on.\n\n");
      printf("Boundary Markers:\n\n");
      printf(
    "  Boundary markers are tags used mainly to identify which output points and\n"
    );
      printf(
    "  edges are associated with which PSLG segment, and to identify which\n");
      printf(
    "  points and edges occur on a boundary of the triangulation.  A common use\n"
    );
      printf(
    "  is to determine where boundary conditions should be applied to a finite\n");
      printf(
    "  element mesh.  You can prevent boundary markers from being written into\n");
      printf("  files produced by Triangle by using the -B switch.\n\n");
      printf(
    "  The boundary marker associated with each segment in an output .poly file\n"
    );
      printf("  or edge in an output .edge file is chosen as follows:\n");
      printf(
    "    - If an output edge is part or all of a PSLG segment with a nonzero\n");
      printf(
    "      boundary marker, then the edge is assigned the same marker.\n");
      printf(
    "    - Otherwise, if the edge occurs on a boundary of the triangulation\n");
      printf(
    "      (including boundaries of holes), then the edge is assigned the marker\n"
    );
      printf("      one (1).\n");
      printf("    - Otherwise, the edge is assigned the marker zero (0).\n");
      printf(
    "  The boundary marker associated with each point in an output .node file is\n"
    );
      printf("  chosen as follows:\n");
      printf(
    "    - If a point is assigned a nonzero boundary marker in the input file,\n");
      printf(
    "      then it is assigned the same marker in the output .node file.\n");
      printf(
    "    - Otherwise, if the point lies on a PSLG segment (including the\n");
      printf(
    "      segment's endpoints) with a nonzero boundary marker, then the point\n");
      printf(
    "      is assigned the same marker.  If the point lies on several such\n");
      printf("      segments, one of the markers is chosen arbitrarily.\n");
      printf(
    "    - Otherwise, if the point occurs on a boundary of the triangulation,\n");
      printf("      then the point is assigned the marker one (1).\n");
      printf("    - Otherwise, the point is assigned the marker zero (0).\n");
      printf("\n");
      printf(
    "  If you want Triangle to determine for you which points and edges are on\n");
      printf(
    "  the boundary, assign them the boundary marker zero (or use no markers at\n"
    );
      printf(
    "  all) in your input files.  Alternatively, you can mark some of them and\n");
      printf("  leave others marked zero, allowing Triangle to label them.\n\n");
      printf("Triangulation Iteration Numbers:\n\n");
      printf(
    "  Because Triangle can read and refine its own triangulations, input\n");
      printf(
    "  and output files have iteration numbers.  For instance, Triangle might\n");
      printf(
    "  read the files mesh.3.node, mesh.3.ele, and mesh.3.poly, refine the\n");
      printf(
    "  triangulation, and output the files mesh.4.node, mesh.4.ele, and\n");
      printf("  mesh.4.poly.  Files with no iteration number are treated as if\n");
      printf(
    "  their iteration number is zero; hence, Triangle might read the file\n");
      printf(
    "  points.node, triangulate it, and produce the files points.1.node and\n");
      printf("  points.1.ele.\n\n");
      printf(
    "  Iteration numbers allow you to create a sequence of successively finer\n");
      printf(
    "  meshes suitable for multigrid methods.  They also allow you to produce a\n"
    );
      printf(
    "  sequence of meshes using error estimate-driven mesh refinement.\n");
      printf("\n");
      printf(
    "  If you're not using refinement or quality meshing, and you don't like\n");
      printf(
    "  iteration numbers, use the -I switch to disable them.  This switch will\n");
      printf(
    "  also disable output of .node and .poly files to prevent your input files\n"
    );
      printf(
    "  from being overwritten.  (If the input is a .poly file that contains its\n"
    );
      printf("  own points, a .node file will be written.)\n\n");
      printf("Examples of How to Use Triangle:\n\n");
      printf(
    "  `triangle dots' will read points from dots.node, and write their Delaunay\n"
    );
      printf(
    "  triangulation to dots.1.node and dots.1.ele.  (dots.1.node will be\n");
      printf(
    "  identical to dots.node.)  `triangle -I dots' writes the triangulation to\n"
    );
      printf(
    "  dots.ele instead.  (No additional .node file is needed, so none is\n");
      printf("  written.)\n\n");
      printf(
    "  `triangle -pe object.1' will read a PSLG from object.1.poly (and possibly\n"
    );
      printf(
    "  object.1.node, if the points are omitted from object.1.poly) and write\n");
      printf("  their constrained Delaunay triangulation to object.2.node and\n");
      printf(
    "  object.2.ele.  The segments will be copied to object.2.poly, and all\n");
      printf("  edges will be written to object.2.edge.\n\n");
      printf(
    "  `triangle -pq31.5a.1 object' will read a PSLG from object.poly (and\n");
      printf(
    "  possibly object.node), generate a mesh whose angles are all greater than\n"
    );
      printf(
    "  31.5 degrees and whose triangles all have area smaller than 0.1, and\n");
      printf(
    "  write the mesh to object.1.node and object.1.ele.  Each segment may have\n"
    );
      printf(
    "  been broken up into multiple edges; the resulting constrained edges are\n");
      printf("  written to object.1.poly.\n\n");
      printf(
    "  Here is a sample file `box.poly' describing a square with a square hole:\n"
    );
      printf("\n");
      printf(
    "    # A box with eight points in 2D, no attributes, one boundary marker.\n");
      printf("    8 2 0 1\n");
      printf("    # Outer box has these vertices:\n");
      printf("     1   0 0   0\n");
      printf("     2   0 3   0\n");
      printf("     3   3 0   0\n");
      printf("     4   3 3   33     # A special marker for this point.\n");
      printf("    # Inner square has these vertices:\n");
      printf("     5   1 1   0\n");
      printf("     6   1 2   0\n");
      printf("     7   2 1   0\n");
      printf("     8   2 2   0\n");
      printf("    # Five segments with boundary markers.\n");
      printf("    5 1\n");
      printf("     1   1 2   5      # Left side of outer box.\n");
      printf("     2   5 7   0      # Segments 2 through 5 enclose the hole.\n");
      printf("     3   7 8   0\n");
      printf("     4   8 6   10\n");
      printf("     5   6 5   0\n");
      printf("    # One hole in the middle of the inner square.\n");
      printf("    1\n");
      printf("     1   1.5 1.5\n\n");
      printf(
    "  Note that some segments are missing from the outer square, so one must\n");
      printf(
    "  use the `-c' switch.  After `triangle -pqc box.poly', here is the output\n"
    );
      printf(
    "  file `box.1.node', with twelve points.  The last four points were added\n");
      printf(
    "  to meet the angle constraint.  Points 1, 2, and 9 have markers from\n");
      printf(
    "  segment 1.  Points 6 and 8 have markers from segment 4.  All the other\n");
      printf(
    "  points but 4 have been marked to indicate that they lie on a boundary.\n");
      printf("\n");
      printf("    12  2  0  1\n");
      printf("       1    0   0      5\n");
      printf("       2    0   3      5\n");
      printf("       3    3   0      1\n");
      printf("       4    3   3     33\n");
      printf("       5    1   1      1\n");
      printf("       6    1   2     10\n");
      printf("       7    2   1      1\n");
      printf("       8    2   2     10\n");
      printf("       9    0   1.5    5\n");
      printf("      10    1.5   0    1\n");
      printf("      11    3   1.5    1\n");
      printf("      12    1.5   3    1\n");
      printf("    # Generated by triangle -pqc box.poly\n\n");
      printf("  Here is the output file `box.1.ele', with twelve triangles.\n\n");
      printf("    12  3  0\n");
      printf("       1     5   6   9\n");
      printf("       2    10   3   7\n");
      printf("       3     6   8  12\n");
      printf("       4     9   1   5\n");
      printf("       5     6   2   9\n");
      printf("       6     7   3  11\n");
      printf("       7    11   4   8\n");
      printf("       8     7   5  10\n");
      printf("       9    12   2   6\n");
      printf("      10     8   7  11\n");
      printf("      11     5   1  10\n");
      printf("      12     8   4  12\n");
      printf("    # Generated by triangle -pqc box.poly\n\n");
      printf(
    "  Here is the output file `box.1.poly'.  Note that segments have been added\n"
    );
      printf(
    "  to represent the convex hull, and some segments have been split by newly\n"
    );
      printf(
    "  added points.  Note also that <# of points> is set to zero to indicate\n");
      printf("  that the points should be read from the .node file.\n\n");
      printf("    0  2  0  1\n");
      printf("    12  1\n");
      printf("       1     1   9     5\n");
      printf("       2     5   7     1\n");
      printf("       3     8   7     1\n");
      printf("       4     6   8    10\n");
      printf("       5     5   6     1\n");
      printf("       6     3  10     1\n");
      printf("       7     4  11     1\n");
      printf("       8     2  12     1\n");
      printf("       9     9   2     5\n");
      printf("      10    10   1     1\n");
      printf("      11    11   3     1\n");
      printf("      12    12   4     1\n");
      printf("    1\n");
      printf("       1   1.5 1.5\n");
      printf("    # Generated by triangle -pqc box.poly\n\n");
      printf("Refinement and Area Constraints:\n\n");
      printf(
    "  The -r switch causes a mesh (.node and .ele files) to be read and\n");
      printf(
    "  refined.  If the -p switch is also used, a .poly file is read and used to\n"
    );
      printf(
    "  specify edges that are constrained and cannot be eliminated (although\n");
      printf(
    "  they can be divided into smaller edges) by the refinement process.\n");
      printf("\n");
      printf(
    "  When you refine a mesh, you generally want to impose tighter quality\n");
      printf(
    "  constraints.  One way to accomplish this is to use -q with a larger\n");
      printf(
    "  angle, or -a followed by a smaller area than you used to generate the\n");
      printf(
    "  mesh you are refining.  Another way to do this is to create an .area\n");
      printf(
    "  file, which specifies a maximum area for each triangle, and use the -a\n");
      printf(
    "  switch (without a number following).  Each triangle's area constraint is\n"
    );
      printf(
    "  applied to that triangle.  Area constraints tend to diffuse as the mesh\n");
      printf(
    "  is refined, so if there are large variations in area constraint between\n");
      printf("  adjacent triangles, you may not get the results you want.\n\n");
      printf(
    "  If you are refining a mesh composed of linear (three-node) elements, the\n"
    );
      printf(
    "  output mesh will contain all the nodes present in the input mesh, in the\n"
    );
      printf(
    "  same order, with new nodes added at the end of the .node file.  However,\n"
    );
      printf(
    "  there is no guarantee that each output element is contained in a single\n");
      printf(
    "  input element.  Often, output elements will overlap two input elements,\n");
      printf(
    "  and input edges are not present in the output mesh.  Hence, a sequence of\n"
    );
      printf(
    "  refined meshes will form a hierarchy of nodes, but not a hierarchy of\n");
      printf(
    "  elements.  If you a refining a mesh of higher-order elements, the\n");
      printf(
    "  hierarchical property applies only to the nodes at the corners of an\n");
      printf("  element; other nodes may not be present in the refined mesh.\n\n");
      printf(
    "  It is important to understand that maximum area constraints in .poly\n");
      printf(
    "  files are handled differently from those in .area files.  A maximum area\n"
    );
      printf(
    "  in a .poly file applies to the whole (segment-bounded) region in which a\n"
    );
      printf(
    "  point falls, whereas a maximum area in an .area file applies to only one\n"
    );
      printf(
    "  triangle.  Area constraints in .poly files are used only when a mesh is\n");
      printf(
    "  first generated, whereas area constraints in .area files are used only to\n"
    );
      printf(
    "  refine an existing mesh, and are typically based on a posteriori error\n");
      printf(
    "  estimates resulting from a finite element simulation on that mesh.\n");
      printf("\n");
      printf(
    "  `triangle -rq25 object.1' will read object.1.node and object.1.ele, then\n"
    );
      printf(
    "  refine the triangulation to enforce a 25 degree minimum angle, and then\n");
      printf(
    "  write the refined triangulation to object.2.node and object.2.ele.\n");
      printf("\n");
      printf(
    "  `triangle -rpaa6.2 z.3' will read z.3.node, z.3.ele, z.3.poly, and\n");
      printf(
    "  z.3.area.  After reconstructing the mesh and its segments, Triangle will\n"
    );
      printf(
    "  refine the mesh so that no triangle has area greater than 6.2, and\n");
      printf(
    "  furthermore the triangles satisfy the maximum area constraints in\n");
      printf(
    "  z.3.area.  The output is written to z.4.node, z.4.ele, and z.4.poly.\n");
      printf("\n");
      printf(
    "  The sequence `triangle -qa1 x', `triangle -rqa.3 x.1', `triangle -rqa.1\n");
      printf(
    "  x.2' creates a sequence of successively finer meshes x.1, x.2, and x.3,\n");
      printf("  suitable for multigrid.\n\n");
      printf("Convex Hulls and Mesh Boundaries:\n\n");
      printf(
    "  If the input is a point set (rather than a PSLG), Triangle produces its\n");
      printf(
    "  convex hull as a by-product in the output .poly file if you use the -c\n");
      printf(
    "  switch.  There are faster algorithms for finding a two-dimensional convex\n"
    );
      printf(
    "  hull than triangulation, of course, but this one comes for free.  If the\n"
    );
      printf(
    "  input is an unconstrained mesh (you are using the -r switch but not the\n");
      printf(
    "  -p switch), Triangle produces a list of its boundary edges (including\n");
      printf("  hole boundaries) as a by-product if you use the -c switch.\n\n");
      printf("Voronoi Diagrams:\n\n");
      printf(
    "  The -v switch produces a Voronoi diagram, in files suffixed .v.node and\n");
      printf(
    "  .v.edge.  For example, `triangle -v points' will read points.node,\n");
      printf(
    "  produce its Delaunay triangulation in points.1.node and points.1.ele,\n");
      printf(
    "  and produce its Voronoi diagram in points.1.v.node and points.1.v.edge.\n");
      printf(
    "  The .v.node file contains a list of all Voronoi vertices, and the .v.edge\n"
    );
      printf(
    "  file contains a list of all Voronoi edges, some of which may be infinite\n"
    );
      printf(
    "  rays.  (The choice of filenames makes it easy to run the set of Voronoi\n");
      printf("  vertices through Triangle, if so desired.)\n\n");
      printf(
    "  This implementation does not use exact arithmetic to compute the Voronoi\n"
    );
      printf(
    "  vertices, and does not check whether neighboring vertices are identical.\n"
    );
      printf(
    "  Be forewarned that if the Delaunay triangulation is degenerate or\n");
      printf(
    "  near-degenerate, the Voronoi diagram may have duplicate points, crossing\n"
    );
      printf(
    "  edges, or infinite rays whose direction vector is zero.  Also, if you\n");
      printf(
    "  generate a constrained (as opposed to conforming) Delaunay triangulation,\n"
    );
      printf(
    "  or if the triangulation has holes, the corresponding Voronoi diagram is\n");
      printf("  likely to have crossing edges and unlikely to make sense.\n\n");
      printf("Mesh Topology:\n\n");
      printf(
    "  You may wish to know which triangles are adjacent to a certain Delaunay\n");
      printf(
    "  edge in an .edge file, which Voronoi regions are adjacent to a certain\n");
      printf(
    "  Voronoi edge in a .v.edge file, or which Voronoi regions are adjacent to\n"
    );
      printf(
    "  each other.  All of this information can be found by cross-referencing\n");
      printf(
    "  output files with the recollection that the Delaunay triangulation and\n");
      printf("  the Voronoi diagrams are planar duals.\n\n");
      printf(
    "  Specifically, edge i of an .edge file is the dual of Voronoi edge i of\n");
      printf(
    "  the corresponding .v.edge file, and is rotated 90 degrees counterclock-\n");
      printf(
    "  wise from the Voronoi edge.  Triangle j of an .ele file is the dual of\n");
      printf(
    "  vertex j of the corresponding .v.node file; and Voronoi region k is the\n");
      printf("  dual of point k of the corresponding .node file.\n\n");
      printf(
    "  Hence, to find the triangles adjacent to a Delaunay edge, look at the\n");
      printf(
    "  vertices of the corresponding Voronoi edge; their dual triangles are on\n");
      printf(
    "  the left and right of the Delaunay edge, respectively.  To find the\n");
      printf(
    "  Voronoi regions adjacent to a Voronoi edge, look at the endpoints of the\n"
    );
      printf(
    "  corresponding Delaunay edge; their dual regions are on the right and left\n"
    );
      printf(
    "  of the Voronoi edge, respectively.  To find which Voronoi regions are\n");
      printf("  adjacent to each other, just read the list of Delaunay edges.\n");
      printf("\n");
      printf("Statistics:\n");
      printf("\n");
      printf(
    "  After generating a mesh, Triangle prints a count of the number of points,\n"
    );
      printf(
    "  triangles, edges, boundary edges, and segments in the output mesh.  If\n");
      printf(
    "  you've forgotten the statistics for an existing mesh, the -rNEP switches\n"
    );
      printf(
    "  (or -rpNEP if you've got a .poly file for the existing mesh) will\n");
      printf("  regenerate these statistics without writing any output.\n\n");
      printf(
    "  The -V switch produces extended statistics, including a rough estimate\n");
      printf(
    "  of memory use and a histogram of triangle aspect ratios and angles in the\n"
    );
      printf("  mesh.\n\n");
      printf("Exact Arithmetic:\n\n");
      printf(
    "  Triangle uses adaptive exact arithmetic to perform what computational\n");
      printf(
    "  geometers call the `orientation' and `incircle' tests.  If the floating-\n"
    );
      printf(
    "  point arithmetic of your machine conforms to the IEEE 754 standard (as\n");
      printf(
    "  most workstations do), and does not use extended precision internal\n");
      printf(
    "  registers, then your output is guaranteed to be an absolutely true\n");
      printf("  Delaunay or conforming Delaunay triangulation, roundoff error\n");
      printf(
    "  notwithstanding.  The word `adaptive' implies that these arithmetic\n");
      printf(
    "  routines compute the result only to the precision necessary to guarantee\n"
    );
      printf(
    "  correctness, so they are usually nearly as fast as their approximate\n");
      printf(
    "  counterparts.  The exact tests can be disabled with the -X switch.  On\n");
      printf(
    "  most inputs, this switch will reduce the computation time by about eight\n"
    );
      printf(
    "  percent - it's not worth the risk.  There are rare difficult inputs\n");
      printf(
    "  (having many collinear and cocircular points), however, for which the\n");
      printf(
    "  difference could be a factor of two.  These are precisely the inputs most\n"
    );
      printf("  likely to cause errors if you use the -X switch.\n\n");
      printf(
    "  Unfortunately, these routines don't solve every numerical problem.  Exact\n"
    );
      printf(
    "  arithmetic is not used to compute the positions of points, because the\n");
      printf(
    "  bit complexity of point coordinates would grow without bound.  Hence,\n");
      printf(
    "  segment intersections aren't computed exactly; in very unusual cases,\n");
      printf(
    "  roundoff error in computing an intersection point might actually lead to\n"
    );
      printf(
    "  an inverted triangle and an invalid triangulation.  (This is one reason\n");
      printf(
    "  to compute your own intersection points in your .poly files.)  Similarly,\n"
    );
      printf(
    "  exact arithmetic is not used to compute the vertices of the Voronoi\n");
      printf("  diagram.\n\n");
      printf(
    "  Underflow and overflow can also cause difficulties; the exact arithmetic\n"
    );
      printf(
    "  routines do not ameliorate out-of-bounds exponents, which can arise\n");
      printf(
    "  during the orientation and incircle tests.  As a rule of thumb, you\n");
      printf(
    "  should ensure that your input values are within a range such that their\n");
      printf(
    "  third powers can be taken without underflow or overflow.  Underflow can\n");
      printf(
    "  silently prevent the tests from being performed exactly, while overflow\n");
      printf("  will typically cause a floating exception.\n\n");
      printf("Calling Triangle from Another Program:\n\n");
      printf("  Read the file triangle.h for details.\n\n");
      printf("Troubleshooting:\n\n");
      printf("  Please read this section before mailing me bugs.\n\n");
      printf("  `My output mesh has no triangles!'\n\n");
      printf(
    "    If you're using a PSLG, you've probably failed to specify a proper set\n"
    );
      printf(
    "    of bounding segments, or forgotten to use the -c switch.  Or you may\n");
      printf(
    "    have placed a hole badly.  To test these possibilities, try again with\n"
    );
      printf(
    "    the -c and -O switches.  Alternatively, all your input points may be\n");
      printf(
    "    collinear, in which case you can hardly expect to triangulate them.\n");
      printf("\n");
      printf("  `Triangle doesn't terminate, or just crashes.'\n");
      printf("\n");
      printf(
    "    Bad things can happen when triangles get so small that the distance\n");
      printf(
    "    between their vertices isn't much larger than the precision of your\n");
      printf(
    "    machine's arithmetic.  If you've compiled Triangle for single-precision\n"
    );
      printf(
    "    arithmetic, you might do better by recompiling it for double-precision.\n"
    );
      printf(
    "    Then again, you might just have to settle for more lenient constraints\n"
    );
      printf(
    "    on the minimum angle and the maximum area than you had planned.\n");
      printf("\n");
      printf(
    "    You can minimize precision problems by ensuring that the origin lies\n");
      printf(
    "    inside your point set, or even inside the densest part of your\n");
      printf(
    "    mesh.  On the other hand, if you're triangulating an object whose x\n");
      printf(
    "    coordinates all fall between 6247133 and 6247134, you're not leaving\n");
      printf("    much floating-point precision for Triangle to work with.\n\n");
      printf(
    "    Precision problems can occur covertly if the input PSLG contains two\n");
      printf(
    "    segments that meet (or intersect) at a very small angle, or if such an\n"
    );
      printf(
    "    angle is introduced by the -c switch, which may occur if a point lies\n");
      printf(
    "    ever-so-slightly inside the convex hull, and is connected by a PSLG\n");
      printf(
    "    segment to a point on the convex hull.  If you don't realize that a\n");
      printf(
    "    small angle is being formed, you might never discover why Triangle is\n");
      printf(
    "    crashing.  To check for this possibility, use the -S switch (with an\n");
      printf(
    "    appropriate limit on the number of Steiner points, found by trial-and-\n"
    );
      printf(
    "    error) to stop Triangle early, and view the output .poly file with\n");
      printf(
    "    Show Me (described below).  Look carefully for small angles between\n");
      printf(
    "    segments; zoom in closely, as such segments might look like a single\n");
      printf("    segment from a distance.\n\n");
      printf(
    "    If some of the input values are too large, Triangle may suffer a\n");
      printf(
    "    floating exception due to overflow when attempting to perform an\n");
      printf(
    "    orientation or incircle test.  (Read the section on exact arithmetic\n");
      printf(
    "    above.)  Again, I recommend compiling Triangle for double (rather\n");
      printf("    than single) precision arithmetic.\n\n");
      printf(
    "  `The numbering of the output points doesn't match the input points.'\n");
      printf("\n");
      printf(
    "    You may have eaten some of your input points with a hole, or by placing\n"
    );
      printf("    them outside the area enclosed by segments.\n\n");
      printf(
    "  `Triangle executes without incident, but when I look at the resulting\n");
      printf(
    "  mesh, it has overlapping triangles or other geometric inconsistencies.'\n");
      printf("\n");
      printf(
    "    If you select the -X switch, Triangle's divide-and-conquer Delaunay\n");
      printf(
    "    triangulation algorithm occasionally makes mistakes due to floating-\n");
      printf(
    "    point roundoff error.  Although these errors are rare, don't use the -X\n"
    );
      printf("    switch.  If you still have problems, please report the bug.\n");
      printf("\n");
      printf(
    "  Strange things can happen if you've taken liberties with your PSLG.  Do\n");
      printf(
    "  you have a point lying in the middle of a segment?  Triangle sometimes\n");
      printf(
    "  copes poorly with that sort of thing.  Do you want to lay out a collinear\n"
    );
      printf(
    "  row of evenly spaced, segment-connected points?  Have you simply defined\n"
    );
      printf(
    "  one long segment connecting the leftmost point to the rightmost point,\n");
      printf(
    "  and a bunch of points lying along it?  This method occasionally works,\n");
      printf(
    "  especially with horizontal and vertical lines, but often it doesn't, and\n"
    );
      printf(
    "  you'll have to connect each adjacent pair of points with a separate\n");
      printf("  segment.  If you don't like it, tough.\n\n");
      printf(
    "  Furthermore, if you have segments that intersect other than at their\n");
      printf(
    "  endpoints, try not to let the intersections fall extremely close to PSLG\n"
    );
      printf("  points or each other.\n\n");
      printf(
    "  If you have problems refining a triangulation not produced by Triangle:\n");
      printf(
    "  Are you sure the triangulation is geometrically valid?  Is it formatted\n");
      printf(
    "  correctly for Triangle?  Are the triangles all listed so the first three\n"
    );
      printf("  points are their corners in counterclockwise order?\n\n");
      printf("Show Me:\n\n");
      printf(
    "  Triangle comes with a separate program named `Show Me', whose primary\n");
      printf(
    "  purpose is to draw meshes on your screen or in PostScript.  Its secondary\n"
    );
      printf(
    "  purpose is to check the validity of your input files, and do so more\n");
      printf(
    "  thoroughly than Triangle does.  Show Me requires that you have the X\n");
      printf(
    "  Windows system.  If you didn't receive Show Me with Triangle, complain to\n"
    );
      printf("  whomever you obtained Triangle from, then send me mail.\n\n");
      printf("Triangle on the Web:\n\n");
      printf(
    "  To see an illustrated, updated version of these instructions, check out\n");
      printf("\n");
      printf("    http://www.cs.cmu.edu/~quake/triangle.html\n");
      printf("\n");
      printf("A Brief Plea:\n");
      printf("\n");
      printf(
    "  If you use Triangle, and especially if you use it to accomplish real\n");
      printf(
    "  work, I would like very much to hear from you.  A short letter or email\n");
      printf(
    "  (to jrs@cs.cmu.edu) describing how you use Triangle will mean a lot to\n");
      printf(
    "  me.  The more people I know are using this program, the more easily I can\n"
    );
      printf(
    "  justify spending time on improvements and on the three-dimensional\n");
      printf(
    "  successor to Triangle, which in turn will benefit you.  Also, I can put\n");
      printf(
    "  you on a list to receive email whenever a new version of Triangle is\n");
      printf("  available.\n\n");
      printf(
    "  If you use a mesh generated by Triangle in a publication, please include\n"
    );
      printf("  an acknowledgment as well.\n\n");
      printf("Research credit:\n\n");
      printf(
    "  Of course, I can take credit for only a fraction of the ideas that made\n");
      printf(
    "  this mesh generator possible.  Triangle owes its existence to the efforts\n"
    );
      printf(
    "  of many fine computational geometers and other researchers, including\n");
      printf(
    "  Marshall Bern, L. Paul Chew, Boris Delaunay, Rex A. Dwyer, David\n");
      printf(
    "  Eppstein, Steven Fortune, Leonidas J. Guibas, Donald E. Knuth, C. L.\n");
      printf(
    "  Lawson, Der-Tsai Lee, Ernst P. Mucke, Douglas M. Priest, Jim Ruppert,\n");
      printf(
    "  Isaac Saias, Bruce J. Schachter, Micha Sharir, Jorge Stolfi, Christopher\n"
    );
      printf(
    "  J. Van Wyk, David F. Watson, and Binhai Zhu.  See the comments at the\n");
      printf("  beginning of the source code for references.\n\n");
      exit(0);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  internalerror()   Ask the user to send me the defective product.  Exit.  */
    /*                                                                           */
    /*****************************************************************************/
    
    void internalerror()
    {
      printf("  Please report this bug to jrs@cs.cmu.edu\n");
      printf("  Include the message above, your input data set, and the exact\n");
      printf("    command line you used to run Triangle.\n");
      exit(1);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  parsecommandline()   Read the command line, identify switches, and set   */
    /*                       up options and file names.                          */
    /*                                                                           */
    /*  The effects of this routine are felt entirely through global variables.  */
    /*                                                                           */
    /*****************************************************************************/
    
    void parsecommandline(argc, argv)
    int argc;
    char **argv;
    {
    #ifdef TRILIBRARY
    #define STARTINDEX 0
    #else /* not TRILIBRARY */
    #define STARTINDEX 1
      int increment;
      int meshnumber;
    #endif /* not TRILIBRARY */
      int i, j, k;
      char workstring[FILENAMESIZE];
    
      poly = refine = quality = vararea = fixedarea = regionattrib = convex = 0;
      firstnumber = 1;
      edgesout = voronoi = neighbors = geomview = 0;
      nobound = nopolywritten = nonodewritten = noelewritten = noiterationnum = 0;
      noholes = noexact = 0;
      incremental = sweepline = 0;
      dwyer = 1;
      splitseg = 0;
      docheck = 0;
      nobisect = 0;
      steiner = -1;
      order = 1;
      minangle = 0.0;
      maxarea = -1.0;
      quiet = verbose = 0;
    #ifndef TRILIBRARY
      innodefilename[0] = '\0';
    #endif /* not TRILIBRARY */
    
      for (i = STARTINDEX; i < argc; i++) {
    #ifndef TRILIBRARY
        if (argv[i][0] == '-') {
    #endif /* not TRILIBRARY */
          for (j = STARTINDEX; argv[i][j] != '\0'; j++) {
            if (argv[i][j] == 'p') {
              poly = 1;
    	}
    #ifndef CDT_ONLY
            if (argv[i][j] == 'r') {
              refine = 1;
    	}
            if (argv[i][j] == 'q') {
              quality = 1;
              if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                  (argv[i][j + 1] == '.')) {
                k = 0;
                while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                       (argv[i][j + 1] == '.')) {
                  j++;
                  workstring[k] = argv[i][j];
                  k++;
                }
                workstring[k] = '\0';
                minangle = (REAL) strtod(workstring, (char **) NULL);
    	  } else {
                minangle = 20.0;
    	  }
    	}
            if (argv[i][j] == 'a') {
              quality = 1;
              if (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                  (argv[i][j + 1] == '.')) {
                fixedarea = 1;
                k = 0;
                while (((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) ||
                       (argv[i][j + 1] == '.')) {
                  j++;
                  workstring[k] = argv[i][j];
                  k++;
                }
                workstring[k] = '\0';
                maxarea = (REAL) strtod(workstring, (char **) NULL);
                if (maxarea <= 0.0) {
                  printf("Error:  Maximum area must be greater than zero.\n");
                  exit(1);
    	    }
    	  } else {
                vararea = 1;
    	  }
    	}
    #endif /* not CDT_ONLY */
            if (argv[i][j] == 'A') {
              regionattrib = 1;
            }
            if (argv[i][j] == 'c') {
              convex = 1;
            }
            if (argv[i][j] == 'z') {
              firstnumber = 0;
            }
            if (argv[i][j] == 'e') {
              edgesout = 1;
    	}
            if (argv[i][j] == 'v') {
              voronoi = 1;
    	}
            if (argv[i][j] == 'n') {
              neighbors = 1;
    	}
            if (argv[i][j] == 'g') {
              geomview = 1;
    	}
            if (argv[i][j] == 'B') {
              nobound = 1;
    	}
            if (argv[i][j] == 'P') {
              nopolywritten = 1;
    	}
            if (argv[i][j] == 'N') {
              nonodewritten = 1;
    	}
            if (argv[i][j] == 'E') {
              noelewritten = 1;
    	}
    #ifndef TRILIBRARY
            if (argv[i][j] == 'I') {
              noiterationnum = 1;
    	}
    #endif /* not TRILIBRARY */
            if (argv[i][j] == 'O') {
              noholes = 1;
    	}
            if (argv[i][j] == 'X') {
              noexact = 1;
    	}
            if (argv[i][j] == 'o') {
              if (argv[i][j + 1] == '2') {
                j++;
                order = 2;
              }
    	}
    #ifndef CDT_ONLY
            if (argv[i][j] == 'Y') {
              nobisect++;
    	}
            if (argv[i][j] == 'S') {
              steiner = 0;
              while ((argv[i][j + 1] >= '0') && (argv[i][j + 1] <= '9')) {
                j++;
                steiner = steiner * 10 + (int) (argv[i][j] - '0');
              }
            }
    #endif /* not CDT_ONLY */
    #ifndef REDUCED
            if (argv[i][j] == 'i') {
              incremental = 1;
            }
            if (argv[i][j] == 'F') {
              sweepline = 1;
            }
    #endif /* not REDUCED */
            if (argv[i][j] == 'l') {
              dwyer = 0;
            }
    #ifndef REDUCED
    #ifndef CDT_ONLY
            if (argv[i][j] == 's') {
              splitseg = 1;
            }
    #endif /* not CDT_ONLY */
            if (argv[i][j] == 'C') {
              docheck = 1;
            }
    #endif /* not REDUCED */
            if (argv[i][j] == 'Q') {
              quiet = 1;
            }
            if (argv[i][j] == 'V') {
              verbose++;
            }
    #ifndef TRILIBRARY
            if ((argv[i][j] == 'h') || (argv[i][j] == 'H') ||
                (argv[i][j] == '?')) {
              info();
    	}
    #endif /* not TRILIBRARY */
          }
    #ifndef TRILIBRARY
        } else {
          strncpy(innodefilename, argv[i], FILENAMESIZE - 1);
          innodefilename[FILENAMESIZE - 1] = '\0';
        }
    #endif /* not TRILIBRARY */
      }
    #ifndef TRILIBRARY
      if (innodefilename[0] == '\0') {
        syntax();
      }
      if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".node")) {
        innodefilename[strlen(innodefilename) - 5] = '\0';
      }
      if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".poly")) {
        innodefilename[strlen(innodefilename) - 5] = '\0';
        poly = 1;
      }
    #ifndef CDT_ONLY
      if (!strcmp(&innodefilename[strlen(innodefilename) - 4], ".ele")) {
        innodefilename[strlen(innodefilename) - 4] = '\0';
        refine = 1;
      }
      if (!strcmp(&innodefilename[strlen(innodefilename) - 5], ".area")) {
        innodefilename[strlen(innodefilename) - 5] = '\0';
        refine = 1;
        quality = 1;
        vararea = 1;
      }
    #endif /* not CDT_ONLY */
    #endif /* not TRILIBRARY */
      steinerleft = steiner;
      useshelles = poly || refine || quality || convex;
      goodangle = cos(minangle * PI / 180.0);
      goodangle *= goodangle;
      if (refine && noiterationnum) {
        printf(
          "Error:  You cannot use the -I switch when refining a triangulation.\n");
        exit(1);
      }
      /* Be careful not to allocate space for element area constraints that */
      /*   will never be assigned any value (other than the default -1.0).  */
      if (!refine && !poly) {
        vararea = 0;
      }
      /* Be careful not to add an extra attribute to each element unless the */
      /*   input supports it (PSLG in, but not refining a preexisting mesh). */
      if (refine || !poly) {
        regionattrib = 0;
      }
    
    #ifndef TRILIBRARY
      strcpy(inpolyfilename, innodefilename);
      strcpy(inelefilename, innodefilename);
      strcpy(areafilename, innodefilename);
      increment = 0;
      strcpy(workstring, innodefilename);
      j = 1;
      while (workstring[j] != '\0') {
        if ((workstring[j] == '.') && (workstring[j + 1] != '\0')) {
          increment = j + 1;
        }
        j++;
      }
      meshnumber = 0;
      if (increment > 0) {
        j = increment;
        do {
          if ((workstring[j] >= '0') && (workstring[j] <= '9')) {
            meshnumber = meshnumber * 10 + (int) (workstring[j] - '0');
          } else {
            increment = 0;
          }
          j++;
        } while (workstring[j] != '\0');
      }
      if (noiterationnum) {
        strcpy(outnodefilename, innodefilename);
        strcpy(outelefilename, innodefilename);
        strcpy(edgefilename, innodefilename);
        strcpy(vnodefilename, innodefilename);
        strcpy(vedgefilename, innodefilename);
        strcpy(neighborfilename, innodefilename);
        strcpy(offfilename, innodefilename);
        strcat(outnodefilename, ".node");
        strcat(outelefilename, ".ele");
        strcat(edgefilename, ".edge");
        strcat(vnodefilename, ".v.node");
        strcat(vedgefilename, ".v.edge");
        strcat(neighborfilename, ".neigh");
        strcat(offfilename, ".off");
      } else if (increment == 0) {
        strcpy(outnodefilename, innodefilename);
        strcpy(outpolyfilename, innodefilename);
        strcpy(outelefilename, innodefilename);
        strcpy(edgefilename, innodefilename);
        strcpy(vnodefilename, innodefilename);
        strcpy(vedgefilename, innodefilename);
        strcpy(neighborfilename, innodefilename);
        strcpy(offfilename, innodefilename);
        strcat(outnodefilename, ".1.node");
        strcat(outpolyfilename, ".1.poly");
        strcat(outelefilename, ".1.ele");
        strcat(edgefilename, ".1.edge");
        strcat(vnodefilename, ".1.v.node");
        strcat(vedgefilename, ".1.v.edge");
        strcat(neighborfilename, ".1.neigh");
        strcat(offfilename, ".1.off");
      } else {
        workstring[increment] = '%';
        workstring[increment + 1] = 'd';
        workstring[increment + 2] = '\0';
        sprintf(outnodefilename, workstring, meshnumber + 1);
        strcpy(outpolyfilename, outnodefilename);
        strcpy(outelefilename, outnodefilename);
        strcpy(edgefilename, outnodefilename);
        strcpy(vnodefilename, outnodefilename);
        strcpy(vedgefilename, outnodefilename);
        strcpy(neighborfilename, outnodefilename);
        strcpy(offfilename, outnodefilename);
        strcat(outnodefilename, ".node");
        strcat(outpolyfilename, ".poly");
        strcat(outelefilename, ".ele");
        strcat(edgefilename, ".edge");
        strcat(vnodefilename, ".v.node");
        strcat(vedgefilename, ".v.edge");
        strcat(neighborfilename, ".neigh");
        strcat(offfilename, ".off");
      }
      strcat(innodefilename, ".node");
      strcat(inpolyfilename, ".poly");
      strcat(inelefilename, ".ele");
      strcat(areafilename, ".area");
    #endif /* not TRILIBRARY */
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* User interaction routines begin here                      *********/
    
    /********* Debugging routines begin here                             *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  printtriangle()   Print out the details of a triangle/edge handle.       */
    /*                                                                           */
    /*  I originally wrote this procedure to simplify debugging; it can be       */
    /*  called directly from the debugger, and presents information about a      */
    /*  triangle/edge handle in digestible form.  It's also used when the        */
    /*  highest level of verbosity (`-VVV') is specified.                        */
    /*                                                                           */
    /*****************************************************************************/
    
    void printtriangle(t)
    struct triedge *t;
    {
      struct triedge printtri;
      struct edge printsh;
      point printpoint;
    
      printf("triangle x%lx with orientation %d:\n", (unsigned long) t->tri,
             t->orient);
      decode(t->tri[0], printtri);
      if (printtri.tri == dummytri) {
        printf("    [0] = Outer space\n");
      } else {
        printf("    [0] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
      decode(t->tri[1], printtri);
      if (printtri.tri == dummytri) {
        printf("    [1] = Outer space\n");
      } else {
        printf("    [1] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
      decode(t->tri[2], printtri);
      if (printtri.tri == dummytri) {
        printf("    [2] = Outer space\n");
      } else {
        printf("    [2] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
      org(*t, printpoint);
      if (printpoint == (point) NULL)
        printf("    Origin[%d] = NULL\n", (t->orient + 1) % 3 + 3);
      else
        printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
               (t->orient + 1) % 3 + 3, (unsigned long) printpoint,
               printpoint[0], printpoint[1]);
      dest(*t, printpoint);
      if (printpoint == (point) NULL)
        printf("    Dest  [%d] = NULL\n", (t->orient + 2) % 3 + 3);
      else
        printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
               (t->orient + 2) % 3 + 3, (unsigned long) printpoint,
               printpoint[0], printpoint[1]);
      apex(*t, printpoint);
      if (printpoint == (point) NULL)
        printf("    Apex  [%d] = NULL\n", t->orient + 3);
      else
        printf("    Apex  [%d] = x%lx  (%.12g, %.12g)\n",
               t->orient + 3, (unsigned long) printpoint,
               printpoint[0], printpoint[1]);
      if (useshelles) {
        sdecode(t->tri[6], printsh);
        if (printsh.sh != dummysh) {
          printf("    [6] = x%lx  %d\n", (unsigned long) printsh.sh,
                 printsh.shorient);
        }
        sdecode(t->tri[7], printsh);
        if (printsh.sh != dummysh) {
          printf("    [7] = x%lx  %d\n", (unsigned long) printsh.sh,
                 printsh.shorient);
        }
        sdecode(t->tri[8], printsh);
        if (printsh.sh != dummysh) {
          printf("    [8] = x%lx  %d\n", (unsigned long) printsh.sh,
                 printsh.shorient);
        }
      }
      if (vararea) {
        printf("    Area constraint:  %.4g\n", areabound(*t));
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  printshelle()   Print out the details of a shell edge handle.            */
    /*                                                                           */
    /*  I originally wrote this procedure to simplify debugging; it can be       */
    /*  called directly from the debugger, and presents information about a      */
    /*  shell edge handle in digestible form.  It's also used when the highest   */
    /*  level of verbosity (`-VVV') is specified.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    void printshelle(s)
    struct edge *s;
    {
      struct edge printsh;
      struct triedge printtri;
      point printpoint;
    
      printf("shell edge x%lx with orientation %d and mark %d:\n",
             (unsigned long) s->sh, s->shorient, mark(*s));
      sdecode(s->sh[0], printsh);
      if (printsh.sh == dummysh) {
        printf("    [0] = No shell\n");
      } else {
        printf("    [0] = x%lx  %d\n", (unsigned long) printsh.sh,
               printsh.shorient);
      }
      sdecode(s->sh[1], printsh);
      if (printsh.sh == dummysh) {
        printf("    [1] = No shell\n");
      } else {
        printf("    [1] = x%lx  %d\n", (unsigned long) printsh.sh,
               printsh.shorient);
      }
      sorg(*s, printpoint);
      if (printpoint == (point) NULL)
        printf("    Origin[%d] = NULL\n", 2 + s->shorient);
      else
        printf("    Origin[%d] = x%lx  (%.12g, %.12g)\n",
               2 + s->shorient, (unsigned long) printpoint,
               printpoint[0], printpoint[1]);
      sdest(*s, printpoint);
      if (printpoint == (point) NULL)
        printf("    Dest  [%d] = NULL\n", 3 - s->shorient);
      else
        printf("    Dest  [%d] = x%lx  (%.12g, %.12g)\n",
               3 - s->shorient, (unsigned long) printpoint,
               printpoint[0], printpoint[1]);
      decode(s->sh[4], printtri);
      if (printtri.tri == dummytri) {
        printf("    [4] = Outer space\n");
      } else {
        printf("    [4] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
      decode(s->sh[5], printtri);
      if (printtri.tri == dummytri) {
        printf("    [5] = Outer space\n");
      } else {
        printf("    [5] = x%lx  %d\n", (unsigned long) printtri.tri,
               printtri.orient);
      }
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Debugging routines end here                               *********/
    
    /********* Memory management routines begin here                     *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  poolinit()   Initialize a pool of memory for allocation of items.        */
    /*                                                                           */
    /*  This routine initializes the machinery for allocating items.  A `pool'   */
    /*  is created whose records have size at least `bytecount'.  Items will be  */
    /*  allocated in `itemcount'-item blocks.  Each item is assumed to be a      */
    /*  collection of words, and either pointers or floating-point values are    */
    /*  assumed to be the "primary" word type.  (The "primary" word type is used */
    /*  to determine alignment of items.)  If `alignment' isn't zero, all items  */
    /*  will be `alignment'-byte aligned in memory.  `alignment' must be either  */
    /*  a multiple or a factor of the primary word size; powers of two are safe. */
    /*  `alignment' is normally used to create a few unused bits at the bottom   */
    /*  of each item's pointer, in which information may be stored.              */
    /*                                                                           */
    /*  Don't change this routine unless you understand it.                      */
    /*                                                                           */
    /*****************************************************************************/
    
    void poolinit(pool, bytecount, itemcount, wtype, alignment)
    struct memorypool *pool;
    int bytecount;
    int itemcount;
    enum wordtype wtype;
    int alignment;
    {
      int wordsize;
    
      /* Initialize values in the pool. */
      pool->itemwordtype = wtype;
      wordsize = (pool->itemwordtype == POINTER) ? sizeof(VOID *) : sizeof(REAL);
      /* Find the proper alignment, which must be at least as large as:   */
      /*   - The parameter `alignment'.                                   */
      /*   - The primary word type, to avoid unaligned accesses.          */
      /*   - sizeof(VOID *), so the stack of dead items can be maintained */
      /*       without unaligned accesses.                                */
      if (alignment > wordsize) {
        pool->alignbytes = alignment;
      } else {
        pool->alignbytes = wordsize;
      }
      if (sizeof(VOID *) > pool->alignbytes) {
        pool->alignbytes = sizeof(VOID *);
      }
      pool->itemwords = ((bytecount + pool->alignbytes - 1) / pool->alignbytes)
                      * (pool->alignbytes / wordsize);
      pool->itembytes = pool->itemwords * wordsize;
      pool->itemsperblock = itemcount;
    
      /* Allocate a block of items.  Space for `itemsperblock' items and one    */
      /*   pointer (to point to the next block) are allocated, as well as space */
      /*   to ensure alignment of the items.                                    */
      pool->firstblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
                                          + sizeof(VOID *) + pool->alignbytes);
      if (pool->firstblock == (VOID **) NULL) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      /* Set the next block pointer to NULL. */
      *(pool->firstblock) = (VOID *) NULL;
      poolrestart(pool);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  poolrestart()   Deallocate all items in a pool.                          */
    /*                                                                           */
    /*  The pool is returned to its starting state, except that no memory is     */
    /*  freed to the operating system.  Rather, the previously allocated blocks  */
    /*  are ready to be reused.                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    void poolrestart(pool)
    struct memorypool *pool;
    {
      unsigned long alignptr;
    
      pool->items = 0;
      pool->maxitems = 0;
    
      /* Set the currently active block. */
      pool->nowblock = pool->firstblock;
      /* Find the first item in the pool.  Increment by the size of (VOID *). */
      alignptr = (unsigned long) (pool->nowblock + 1);
      /* Align the item on an `alignbytes'-byte boundary. */
      pool->nextitem = (VOID *)
        (alignptr + (unsigned long) pool->alignbytes
         - (alignptr % (unsigned long) pool->alignbytes));
      /* There are lots of unallocated items left in this block. */
      pool->unallocateditems = pool->itemsperblock;
      /* The stack of deallocated items is empty. */
      pool->deaditemstack = (VOID *) NULL;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pooldeinit()   Free to the operating system all memory taken by a pool.  */
    /*                                                                           */
    /*****************************************************************************/
    
    void pooldeinit(pool)
    struct memorypool *pool;
    {
      while (pool->firstblock != (VOID **) NULL) {
        pool->nowblock = (VOID **) *(pool->firstblock);
        free(pool->firstblock);
        pool->firstblock = pool->nowblock;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  poolalloc()   Allocate space for an item.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    VOID *poolalloc(pool)
    struct memorypool *pool;
    {
      VOID *newitem;
      VOID **newblock;
      unsigned long alignptr;
    
      /* First check the linked list of dead items.  If the list is not   */
      /*   empty, allocate an item from the list rather than a fresh one. */
      if (pool->deaditemstack != (VOID *) NULL) {
        newitem = pool->deaditemstack;               /* Take first item in list. */
        pool->deaditemstack = * (VOID **) pool->deaditemstack;
      } else {
        /* Check if there are any free items left in the current block. */
        if (pool->unallocateditems == 0) {
          /* Check if another block must be allocated. */
          if (*(pool->nowblock) == (VOID *) NULL) {
            /* Allocate a new block of items, pointed to by the previous block. */
            newblock = (VOID **) malloc(pool->itemsperblock * pool->itembytes
                                        + sizeof(VOID *) + pool->alignbytes);
            if (newblock == (VOID **) NULL) {
              printf("Error:  Out of memory.\n");
              exit(1);
            }
            *(pool->nowblock) = (VOID *) newblock;
            /* The next block pointer is NULL. */
            *newblock = (VOID *) NULL;
          }
          /* Move to the new block. */
          pool->nowblock = (VOID **) *(pool->nowblock);
          /* Find the first item in the block.    */
          /*   Increment by the size of (VOID *). */
          alignptr = (unsigned long) (pool->nowblock + 1);
          /* Align the item on an `alignbytes'-byte boundary. */
          pool->nextitem = (VOID *)
            (alignptr + (unsigned long) pool->alignbytes
             - (alignptr % (unsigned long) pool->alignbytes));
          /* There are lots of unallocated items left in this block. */
          pool->unallocateditems = pool->itemsperblock;
        }
        /* Allocate a new item. */
        newitem = pool->nextitem;
        /* Advance `nextitem' pointer to next free item in block. */
        if (pool->itemwordtype == POINTER) {
          pool->nextitem = (VOID *) ((VOID **) pool->nextitem + pool->itemwords);
        } else {
          pool->nextitem = (VOID *) ((REAL *) pool->nextitem + pool->itemwords);
        }
        pool->unallocateditems--;
        pool->maxitems++;
      }
      pool->items++;
      return newitem;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pooldealloc()   Deallocate space for an item.                            */
    /*                                                                           */
    /*  The deallocated space is stored in a queue for later reuse.              */
    /*                                                                           */
    /*****************************************************************************/
    
    void pooldealloc(pool, dyingitem)
    struct memorypool *pool;
    VOID *dyingitem;
    {
      /* Push freshly killed item onto stack. */
      *((VOID **) dyingitem) = pool->deaditemstack;
      pool->deaditemstack = dyingitem;
      pool->items--;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  traversalinit()   Prepare to traverse the entire list of items.          */
    /*                                                                           */
    /*  This routine is used in conjunction with traverse().                     */
    /*                                                                           */
    /*****************************************************************************/
    
    void traversalinit(pool)
    struct memorypool *pool;
    {
      unsigned long alignptr;
    
      /* Begin the traversal in the first block. */
      pool->pathblock = pool->firstblock;
      /* Find the first item in the block.  Increment by the size of (VOID *). */
      alignptr = (unsigned long) (pool->pathblock + 1);
      /* Align with item on an `alignbytes'-byte boundary. */
      pool->pathitem = (VOID *)
        (alignptr + (unsigned long) pool->alignbytes
         - (alignptr % (unsigned long) pool->alignbytes));
      /* Set the number of items left in the current block. */
      pool->pathitemsleft = pool->itemsperblock;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  traverse()   Find the next item in the list.                             */
    /*                                                                           */
    /*  This routine is used in conjunction with traversalinit().  Be forewarned */
    /*  that this routine successively returns all items in the list, including  */
    /*  deallocated ones on the deaditemqueue.  It's up to you to figure out     */
    /*  which ones are actually dead.  Why?  I don't want to allocate extra      */
    /*  space just to demarcate dead items.  It can usually be done more         */
    /*  space-efficiently by a routine that knows something about the structure  */
    /*  of the item.                                                             */
    /*                                                                           */
    /*****************************************************************************/
    
    VOID *traverse(pool)
    struct memorypool *pool;
    {
      VOID *newitem;
      unsigned long alignptr;
    
      /* Stop upon exhausting the list of items. */
      if (pool->pathitem == pool->nextitem) {
        return (VOID *) NULL;
      }
      /* Check whether any untraversed items remain in the current block. */
      if (pool->pathitemsleft == 0) {
        /* Find the next block. */
        pool->pathblock = (VOID **) *(pool->pathblock);
        /* Find the first item in the block.  Increment by the size of (VOID *). */
        alignptr = (unsigned long) (pool->pathblock + 1);
        /* Align with item on an `alignbytes'-byte boundary. */
        pool->pathitem = (VOID *)
          (alignptr + (unsigned long) pool->alignbytes
           - (alignptr % (unsigned long) pool->alignbytes));
        /* Set the number of items left in the current block. */
        pool->pathitemsleft = pool->itemsperblock;
      }
      newitem = pool->pathitem;
      /* Find the next item in the block. */
      if (pool->itemwordtype == POINTER) {
        pool->pathitem = (VOID *) ((VOID **) pool->pathitem + pool->itemwords);
      } else {
        pool->pathitem = (VOID *) ((REAL *) pool->pathitem + pool->itemwords);
      }
      pool->pathitemsleft--;
      return newitem;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  dummyinit()   Initialize the triangle that fills "outer space" and the   */
    /*                omnipresent shell edge.                                    */
    /*                                                                           */
    /*  The triangle that fills "outer space", called `dummytri', is pointed to  */
    /*  by every triangle and shell edge on a boundary (be it outer or inner) of */
    /*  the triangulation.  Also, `dummytri' points to one of the triangles on   */
    /*  the convex hull (until the holes and concavities are carved), making it  */
    /*  possible to find a starting triangle for point location.                 */
    /*                                                                           */
    /*  The omnipresent shell edge, `dummysh', is pointed to by every triangle   */
    /*  or shell edge that doesn't have a full complement of real shell edges    */
    /*  to point to.                                                             */
    /*                                                                           */
    /*****************************************************************************/
    
    void dummyinit(trianglewords, shellewords)
    int trianglewords;
    int shellewords;
    {
      unsigned long alignptr;
    
      /* `triwords' and `shwords' are used by the mesh manipulation primitives */
      /*   to extract orientations of triangles and shell edges from pointers. */
      triwords = trianglewords;       /* Initialize `triwords' once and for all. */
      shwords = shellewords;           /* Initialize `shwords' once and for all. */
    
      /* Set up `dummytri', the `triangle' that occupies "outer space". */
      dummytribase = (triangle *) malloc(triwords * sizeof(triangle)
                                         + triangles.alignbytes);
      if (dummytribase == (triangle *) NULL) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      /* Align `dummytri' on a `triangles.alignbytes'-byte boundary. */
      alignptr = (unsigned long) dummytribase;
      dummytri = (triangle *)
        (alignptr + (unsigned long) triangles.alignbytes
         - (alignptr % (unsigned long) triangles.alignbytes));
      /* Initialize the three adjoining triangles to be "outer space".  These  */
      /*   will eventually be changed by various bonding operations, but their */
      /*   values don't really matter, as long as they can legally be          */
      /*   dereferenced.                                                       */
      dummytri[0] = (triangle) dummytri;
      dummytri[1] = (triangle) dummytri;
      dummytri[2] = (triangle) dummytri;
      /* Three NULL vertex points. */
      dummytri[3] = (triangle) NULL;
      dummytri[4] = (triangle) NULL;
      dummytri[5] = (triangle) NULL;
    
      if (useshelles) {
        /* Set up `dummysh', the omnipresent "shell edge" pointed to by any      */
        /*   triangle side or shell edge end that isn't attached to a real shell */
        /*   edge.                                                               */
        dummyshbase = (shelle *) malloc(shwords * sizeof(shelle)
                                        + shelles.alignbytes);
        if (dummyshbase == (shelle *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
        /* Align `dummysh' on a `shelles.alignbytes'-byte boundary. */
        alignptr = (unsigned long) dummyshbase;
        dummysh = (shelle *)
          (alignptr + (unsigned long) shelles.alignbytes
           - (alignptr % (unsigned long) shelles.alignbytes));
        /* Initialize the two adjoining shell edges to be the omnipresent shell */
        /*   edge.  These will eventually be changed by various bonding         */
        /*   operations, but their values don't really matter, as long as they  */
        /*   can legally be dereferenced.                                       */
        dummysh[0] = (shelle) dummysh;
        dummysh[1] = (shelle) dummysh;
        /* Two NULL vertex points. */
        dummysh[2] = (shelle) NULL;
        dummysh[3] = (shelle) NULL;
        /* Initialize the two adjoining triangles to be "outer space". */
        dummysh[4] = (shelle) dummytri;
        dummysh[5] = (shelle) dummytri;
        /* Set the boundary marker to zero. */
        * (int *) (dummysh + 6) = 0;
    
        /* Initialize the three adjoining shell edges of `dummytri' to be */
        /*   the omnipresent shell edge.                                  */
        dummytri[6] = (triangle) dummysh;
        dummytri[7] = (triangle) dummysh;
        dummytri[8] = (triangle) dummysh;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  initializepointpool()   Calculate the size of the point data structure   */
    /*                          and initialize its memory pool.                  */
    /*                                                                           */
    /*  This routine also computes the `pointmarkindex' and `point2triindex'     */
    /*  indices used to find values within each point.                           */
    /*                                                                           */
    /*****************************************************************************/
    
    void initializepointpool()
    {
      int pointsize;
    
      /* The index within each point at which the boundary marker is found.  */
      /*   Ensure the point marker is aligned to a sizeof(int)-byte address. */
      pointmarkindex = ((mesh_dim + nextras) * sizeof(REAL) + sizeof(int) - 1)
                     / sizeof(int);
      pointsize = (pointmarkindex + 1) * sizeof(int);
      if (poly) {
        /* The index within each point at which a triangle pointer is found.   */
        /*   Ensure the pointer is aligned to a sizeof(triangle)-byte address. */
        point2triindex = (pointsize + sizeof(triangle) - 1) / sizeof(triangle);
        pointsize = (point2triindex + 1) * sizeof(triangle);
      }
      /* Initialize the pool of points. */
      poolinit(&points, pointsize, POINTPERBLOCK,
               (sizeof(REAL) >= sizeof(triangle)) ? FLOATINGPOINT : POINTER, 0);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  initializetrisegpools()   Calculate the sizes of the triangle and shell  */
    /*                            edge data structures and initialize their      */
    /*                            memory pools.                                  */
    /*                                                                           */
    /*  This routine also computes the `highorderindex', `elemattribindex', and  */
    /*  `areaboundindex' indices used to find values within each triangle.       */
    /*                                                                           */
    /*****************************************************************************/
    
    void initializetrisegpools()
    {
      int trisize;
    
      /* The index within each triangle at which the extra nodes (above three)  */
      /*   associated with high order elements are found.  There are three      */
      /*   pointers to other triangles, three pointers to corners, and possibly */
      /*   three pointers to shell edges before the extra nodes.                */
      highorderindex = 6 + (useshelles * 3);
      /* The number of bytes occupied by a triangle. */
      trisize = ((order + 1) * (order + 2) / 2 + (highorderindex - 3)) *
                sizeof(triangle);
      /* The index within each triangle at which its attributes are found, */
      /*   where the index is measured in REALs.                           */
      elemattribindex = (trisize + sizeof(REAL) - 1) / sizeof(REAL);
      /* The index within each triangle at which the maximum area constraint  */
      /*   is found, where the index is measured in REALs.  Note that if the  */
      /*   `regionattrib' flag is set, an additional attribute will be added. */
      areaboundindex = elemattribindex + eextras + regionattrib;
      /* If triangle attributes or an area bound are needed, increase the number */
      /*   of bytes occupied by a triangle.                                      */
      if (vararea) {
        trisize = (areaboundindex + 1) * sizeof(REAL);
      } else if (eextras + regionattrib > 0) {
        trisize = areaboundindex * sizeof(REAL);
      }
      /* If a Voronoi diagram or triangle neighbor graph is requested, make    */
      /*   sure there's room to store an integer index in each triangle.  This */
      /*   integer index can occupy the same space as the shell edges or       */
      /*   attributes or area constraint or extra nodes.                       */
      if ((voronoi || neighbors) &&
          (trisize < 6 * sizeof(triangle) + sizeof(int))) {
        trisize = 6 * sizeof(triangle) + sizeof(int);
      }
      /* Having determined the memory size of a triangle, initialize the pool. */
      poolinit(&triangles, trisize, TRIPERBLOCK, POINTER, 4);
    
      if (useshelles) {
        /* Initialize the pool of shell edges. */
        poolinit(&shelles, 6 * sizeof(triangle) + sizeof(int), SHELLEPERBLOCK,
                 POINTER, 4);
    
        /* Initialize the "outer space" triangle and omnipresent shell edge. */
        dummyinit(triangles.itemwords, shelles.itemwords);
      } else {
        /* Initialize the "outer space" triangle. */
        dummyinit(triangles.itemwords, 0);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangledealloc()   Deallocate space for a triangle, marking it dead.    */
    /*                                                                           */
    /*****************************************************************************/
    
    void triangledealloc(dyingtriangle)
    triangle *dyingtriangle;
    {
      /* Set triangle's vertices to NULL.  This makes it possible to        */
      /*   detect dead triangles when traversing the list of all triangles. */
      dyingtriangle[3] = (triangle) NULL;
      dyingtriangle[4] = (triangle) NULL;
      dyingtriangle[5] = (triangle) NULL;
      pooldealloc(&triangles, (VOID *) dyingtriangle);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangletraverse()   Traverse the triangles, skipping dead ones.         */
    /*                                                                           */
    /*****************************************************************************/
    
    triangle *triangletraverse()
    {
      triangle *newtriangle;
    
      do {
        newtriangle = (triangle *) traverse(&triangles);
        if (newtriangle == (triangle *) NULL) {
          return (triangle *) NULL;
        }
      } while (newtriangle[3] == (triangle) NULL);            /* Skip dead ones. */
      return newtriangle;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  shelledealloc()   Deallocate space for a shell edge, marking it dead.    */
    /*                                                                           */
    /*****************************************************************************/
    
    void shelledealloc(dyingshelle)
    shelle *dyingshelle;
    {
      /* Set shell edge's vertices to NULL.  This makes it possible to */
      /*   detect dead shells when traversing the list of all shells.  */
      dyingshelle[2] = (shelle) NULL;
      dyingshelle[3] = (shelle) NULL;
      pooldealloc(&shelles, (VOID *) dyingshelle);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  shelletraverse()   Traverse the shell edges, skipping dead ones.         */
    /*                                                                           */
    /*****************************************************************************/
    
    shelle *shelletraverse()
    {
      shelle *newshelle;
    
      do {
        newshelle = (shelle *) traverse(&shelles);
        if (newshelle == (shelle *) NULL) {
          return (shelle *) NULL;
        }
      } while (newshelle[2] == (shelle) NULL);                /* Skip dead ones. */
      return newshelle;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pointdealloc()   Deallocate space for a point, marking it dead.          */
    /*                                                                           */
    /*****************************************************************************/
    
    void pointdealloc(dyingpoint)
    point dyingpoint;
    {
      /* Mark the point as dead.  This makes it possible to detect dead points */
      /*   when traversing the list of all points.                             */
      setpointmark(dyingpoint, DEADPOINT);
      pooldealloc(&points, (VOID *) dyingpoint);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pointtraverse()   Traverse the points, skipping dead ones.               */
    /*                                                                           */
    /*****************************************************************************/
    
    point pointtraverse()
    {
      point newpoint;
    
      do {
        newpoint = (point) traverse(&points);
        if (newpoint == (point) NULL) {
          return (point) NULL;
        }
      } while (pointmark(newpoint) == DEADPOINT);             /* Skip dead ones. */
      return newpoint;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  badsegmentdealloc()   Deallocate space for a bad segment, marking it     */
    /*                        dead.                                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void badsegmentdealloc(dyingseg)
    struct edge *dyingseg;
    {
      /* Set segment's orientation to -1.  This makes it possible to      */
      /*   detect dead segments when traversing the list of all segments. */
      dyingseg->shorient = -1;
      pooldealloc(&badsegments, (VOID *) dyingseg);
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  badsegmenttraverse()   Traverse the bad segments, skipping dead ones.    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    struct edge *badsegmenttraverse()
    {
      struct edge *newseg;
    
      do {
        newseg = (struct edge *) traverse(&badsegments);
        if (newseg == (struct edge *) NULL) {
          return (struct edge *) NULL;
        }
      } while (newseg->shorient == -1);                       /* Skip dead ones. */
      return newseg;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  getpoint()   Get a specific point, by number, from the list.             */
    /*                                                                           */
    /*  The first point is number 'firstnumber'.                                 */
    /*                                                                           */
    /*  Note that this takes O(n) time (with a small constant, if POINTPERBLOCK  */
    /*  is large).  I don't care to take the trouble to make it work in constant */
    /*  time.                                                                    */
    /*                                                                           */
    /*****************************************************************************/
    
    point getpoint(number)
    int number;
    {
      VOID **getblock;
      point foundpoint;
      unsigned long alignptr;
      int current;
    
      getblock = points.firstblock;
      current = firstnumber;
      /* Find the right block. */
      while (current + points.itemsperblock <= number) {
        getblock = (VOID **) *getblock;
        current += points.itemsperblock;
      }
      /* Now find the right point. */
      alignptr = (unsigned long) (getblock + 1);
      foundpoint = (point) (alignptr + (unsigned long) points.alignbytes
                            - (alignptr % (unsigned long) points.alignbytes));
      while (current < number) {
        foundpoint += points.itemwords;
        current++;
      }
      return foundpoint;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangledeinit()   Free all remaining allocated memory.                  */
    /*                                                                           */
    /*****************************************************************************/
    
    void triangledeinit()
    {
      pooldeinit(&triangles);
      free(dummytribase);
      if (useshelles) {
        pooldeinit(&shelles);
        free(dummyshbase);
      }
      pooldeinit(&points);
    #ifndef CDT_ONLY
      if (quality) {
        pooldeinit(&badsegments);
        if ((minangle > 0.0) || vararea || fixedarea) {
          pooldeinit(&badtriangles);
        }
      }
    #endif /* not CDT_ONLY */
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Memory management routines end here                       *********/
    
    /********* Constructors begin here                                   *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  maketriangle()   Create a new triangle with orientation zero.            */
    /*                                                                           */
    /*****************************************************************************/
    
    void maketriangle(newtriedge)
    struct triedge *newtriedge;
    {
      int i;
    
      newtriedge->tri = (triangle *) poolalloc(&triangles);
      /* Initialize the three adjoining triangles to be "outer space". */
      newtriedge->tri[0] = (triangle) dummytri;
      newtriedge->tri[1] = (triangle) dummytri;
      newtriedge->tri[2] = (triangle) dummytri;
      /* Three NULL vertex points. */
      newtriedge->tri[3] = (triangle) NULL;
      newtriedge->tri[4] = (triangle) NULL;
      newtriedge->tri[5] = (triangle) NULL;
      /* Initialize the three adjoining shell edges to be the omnipresent */
      /*   shell edge.                                                    */
      if (useshelles) {
        newtriedge->tri[6] = (triangle) dummysh;
        newtriedge->tri[7] = (triangle) dummysh;
        newtriedge->tri[8] = (triangle) dummysh;
      }
      for (i = 0; i < eextras; i++) {
        setelemattribute(*newtriedge, i, 0.0);
      }
      if (vararea) {
        setareabound(*newtriedge, -1.0);
      }
    
      newtriedge->orient = 0;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  makeshelle()   Create a new shell edge with orientation zero.            */
    /*                                                                           */
    /*****************************************************************************/
    
    void makeshelle(newedge)
    struct edge *newedge;
    {
      newedge->sh = (shelle *) poolalloc(&shelles);
      /* Initialize the two adjoining shell edges to be the omnipresent */
      /*   shell edge.                                                  */
      newedge->sh[0] = (shelle) dummysh;
      newedge->sh[1] = (shelle) dummysh;
      /* Two NULL vertex points. */
      newedge->sh[2] = (shelle) NULL;
      newedge->sh[3] = (shelle) NULL;
      /* Initialize the two adjoining triangles to be "outer space". */
      newedge->sh[4] = (shelle) dummytri;
      newedge->sh[5] = (shelle) dummytri;
      /* Set the boundary marker to zero. */
      setmark(*newedge, 0);
    
      newedge->shorient = 0;
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Constructors end here                                     *********/
    
    /********* Determinant evaluation routines begin here                *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /* The adaptive exact arithmetic geometric predicates implemented herein are */
    /*   described in detail in my Technical Report CMU-CS-96-140.  The complete */
    /*   reference is given in the header.                                       */
    
    /* Which of the following two methods of finding the absolute values is      */
    /*   fastest is compiler-dependent.  A few compilers can inline and optimize */
    /*   the fabs() call; but most will incur the overhead of a function call,   */
    /*   which is disastrously slow.  A faster way on IEEE machines might be to  */
    /*   mask the appropriate bit, but that's difficult to do in C.              */
    
    #define Absolute(a)  ((a) >= 0.0 ? (a) : -(a))
    /* #define Absolute(a)  fabs(a) */
    
    /* Many of the operations are broken up into two pieces, a main part that    */
    /*   performs an approximate operation, and a "tail" that computes the       */
    /*   roundoff error of that operation.                                       */
    /*                                                                           */
    /* The operations Fast_Two_Sum(), Fast_Two_Diff(), Two_Sum(), Two_Diff(),    */
    /*   Split(), and Two_Product() are all implemented as described in the      */
    /*   reference.  Each of these macros requires certain variables to be       */
    /*   defined in the calling routine.  The variables `bvirt', `c', `abig',    */
    /*   `_i', `_j', `_k', `_l', `_m', and `_n' are declared `INEXACT' because   */
    /*   they store the result of an operation that may incur roundoff error.    */
    /*   The input parameter `x' (or the highest numbered `x_' parameter) must   */
    /*   also be declared `INEXACT'.                                             */
    
    #define Fast_Two_Sum_Tail(a, b, x, y) \
      bvirt = x - a; \
      y = b - bvirt
    
    #define Fast_Two_Sum(a, b, x, y) \
      x = (REAL) (a + b); \
      Fast_Two_Sum_Tail(a, b, x, y)
    
    #define Two_Sum_Tail(a, b, x, y) \
      bvirt = (REAL) (x - a); \
      avirt = x - bvirt; \
      bround = b - bvirt; \
      around = a - avirt; \
      y = around + bround
    
    #define Two_Sum(a, b, x, y) \
      x = (REAL) (a + b); \
      Two_Sum_Tail(a, b, x, y)
    
    #define Two_Diff_Tail(a, b, x, y) \
      bvirt = (REAL) (a - x); \
      avirt = x + bvirt; \
      bround = bvirt - b; \
      around = a - avirt; \
      y = around + bround
    
    #define Two_Diff(a, b, x, y) \
      x = (REAL) (a - b); \
      Two_Diff_Tail(a, b, x, y)
    
    #define Split(a, ahi, alo) \
      c = (REAL) (splitter * a); \
      abig = (REAL) (c - a); \
      ahi = c - abig; \
      alo = a - ahi
    
    #define Two_Product_Tail(a, b, x, y) \
      Split(a, ahi, alo); \
      Split(b, bhi, blo); \
      err1 = x - (ahi * bhi); \
      err2 = err1 - (alo * bhi); \
      err3 = err2 - (ahi * blo); \
      y = (alo * blo) - err3
    
    #define Two_Product(a, b, x, y) \
      x = (REAL) (a * b); \
      Two_Product_Tail(a, b, x, y)
    
    /* Two_Product_Presplit() is Two_Product() where one of the inputs has       */
    /*   already been split.  Avoids redundant splitting.                        */
    
    #define Two_Product_Presplit(a, b, bhi, blo, x, y) \
      x = (REAL) (a * b); \
      Split(a, ahi, alo); \
      err1 = x - (ahi * bhi); \
      err2 = err1 - (alo * bhi); \
      err3 = err2 - (ahi * blo); \
      y = (alo * blo) - err3
    
    /* Square() can be done more quickly than Two_Product().                     */
    
    #define Square_Tail(a, x, y) \
      Split(a, ahi, alo); \
      err1 = x - (ahi * ahi); \
      err3 = err1 - ((ahi + ahi) * alo); \
      y = (alo * alo) - err3
    
    #define Square(a, x, y) \
      x = (REAL) (a * a); \
      Square_Tail(a, x, y)
    
    /* Macros for summing expansions of various fixed lengths.  These are all    */
    /*   unrolled versions of Expansion_Sum().                                   */
    
    #define Two_One_Sum(a1, a0, b, x2, x1, x0) \
      Two_Sum(a0, b , _i, x0); \
      Two_Sum(a1, _i, x2, x1)
    
    #define Two_One_Diff(a1, a0, b, x2, x1, x0) \
      Two_Diff(a0, b , _i, x0); \
      Two_Sum( a1, _i, x2, x1)
    
    #define Two_Two_Sum(a1, a0, b1, b0, x3, x2, x1, x0) \
      Two_One_Sum(a1, a0, b0, _j, _0, x0); \
      Two_One_Sum(_j, _0, b1, x3, x2, x1)
    
    #define Two_Two_Diff(a1, a0, b1, b0, x3, x2, x1, x0) \
      Two_One_Diff(a1, a0, b0, _j, _0, x0); \
      Two_One_Diff(_j, _0, b1, x3, x2, x1)
    
    /*****************************************************************************/
    /*                                                                           */
    /*  exactinit()   Initialize the variables used for exact arithmetic.        */
    /*                                                                           */
    /*  `epsilon' is the largest power of two such that 1.0 + epsilon = 1.0 in   */
    /*  floating-point arithmetic.  `epsilon' bounds the relative roundoff       */
    /*  error.  It is used for floating-point error analysis.                    */
    /*                                                                           */
    /*  `splitter' is used to split floating-point numbers into two half-        */
    /*  length significands for exact multiplication.                            */
    /*                                                                           */
    /*  I imagine that a highly optimizing compiler might be too smart for its   */
    /*  own good, and somehow cause this routine to fail, if it pretends that    */
    /*  floating-point arithmetic is too much like real arithmetic.              */
    /*                                                                           */
    /*  Don't change this routine unless you fully understand it.                */
    /*                                                                           */
    /*****************************************************************************/
    
    void exactinit()
    {
      REAL half;
      REAL check, lastcheck;
      int every_other;
    
      every_other = 1;
      half = 0.5;
      epsilon = 1.0;
      splitter = 1.0;
      check = 1.0;
      /* Repeatedly divide `epsilon' by two until it is too small to add to      */
      /*   one without causing roundoff.  (Also check if the sum is equal to     */
      /*   the previous sum, for machines that round up instead of using exact   */
      /*   rounding.  Not that these routines will work on such machines anyway. */
      do {
        lastcheck = check;
        epsilon *= half;
        if (every_other) {
          splitter *= 2.0;
        }
        every_other = !every_other;
        check = 1.0 + epsilon;
      } while ((check != 1.0) && (check != lastcheck));
      splitter += 1.0;
      if (verbose > 1) {
        printf("Floating point roundoff is of magnitude %.17g\n", epsilon);
        printf("Floating point splitter is %.17g\n", splitter);
      }
      /* Error bounds for orientation and incircle tests. */
      resulterrbound = (3.0 + 8.0 * epsilon) * epsilon;
      ccwerrboundA = (3.0 + 16.0 * epsilon) * epsilon;
      ccwerrboundB = (2.0 + 12.0 * epsilon) * epsilon;
      ccwerrboundC = (9.0 + 64.0 * epsilon) * epsilon * epsilon;
      iccerrboundA = (10.0 + 96.0 * epsilon) * epsilon;
      iccerrboundB = (4.0 + 48.0 * epsilon) * epsilon;
      iccerrboundC = (44.0 + 576.0 * epsilon) * epsilon * epsilon;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  fast_expansion_sum_zeroelim()   Sum two expansions, eliminating zero     */
    /*                                  components from the output expansion.    */
    /*                                                                           */
    /*  Sets h = e + f.  See my Robust Predicates paper for details.             */
    /*                                                                           */
    /*  If round-to-even is used (as with IEEE 754), maintains the strongly      */
    /*  nonoverlapping property.  (That is, if e is strongly nonoverlapping, h   */
    /*  will be also.)  Does NOT maintain the nonoverlapping or nonadjacent      */
    /*  properties.                                                              */
    /*                                                                           */
    /*****************************************************************************/
    
    int fast_expansion_sum_zeroelim(elen, e, flen, f, h)  /* h cannot be e or f. */
    int elen;
    REAL *e;
    int flen;
    REAL *f;
    REAL *h;
    {
      REAL Q;
      INEXACT REAL Qnew;
      INEXACT REAL hh;
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      int eindex, findex, hindex;
      REAL enow, fnow;
    
      enow = e[0];
      fnow = f[0];
      eindex = findex = 0;
      if ((fnow > enow) == (fnow > -enow)) {
        Q = enow;
        enow = e[++eindex];
      } else {
        Q = fnow;
        fnow = f[++findex];
      }
      hindex = 0;
      if ((eindex < elen) && (findex < flen)) {
        if ((fnow > enow) == (fnow > -enow)) {
          Fast_Two_Sum(enow, Q, Qnew, hh);
          enow = e[++eindex];
        } else {
          Fast_Two_Sum(fnow, Q, Qnew, hh);
          fnow = f[++findex];
        }
        Q = Qnew;
        if (hh != 0.0) {
          h[hindex++] = hh;
        }
        while ((eindex < elen) && (findex < flen)) {
          if ((fnow > enow) == (fnow > -enow)) {
            Two_Sum(Q, enow, Qnew, hh);
            enow = e[++eindex];
          } else {
            Two_Sum(Q, fnow, Qnew, hh);
            fnow = f[++findex];
          }
          Q = Qnew;
          if (hh != 0.0) {
            h[hindex++] = hh;
          }
        }
      }
      while (eindex < elen) {
        Two_Sum(Q, enow, Qnew, hh);
        enow = e[++eindex];
        Q = Qnew;
        if (hh != 0.0) {
          h[hindex++] = hh;
        }
      }
      while (findex < flen) {
        Two_Sum(Q, fnow, Qnew, hh);
        fnow = f[++findex];
        Q = Qnew;
        if (hh != 0.0) {
          h[hindex++] = hh;
        }
      }
      if ((Q != 0.0) || (hindex == 0)) {
        h[hindex++] = Q;
      }
      return hindex;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  scale_expansion_zeroelim()   Multiply an expansion by a scalar,          */
    /*                               eliminating zero components from the        */
    /*                               output expansion.                           */
    /*                                                                           */
    /*  Sets h = be.  See my Robust Predicates paper for details.                */
    /*                                                                           */
    /*  Maintains the nonoverlapping property.  If round-to-even is used (as     */
    /*  with IEEE 754), maintains the strongly nonoverlapping and nonadjacent    */
    /*  properties as well.  (That is, if e has one of these properties, so      */
    /*  will h.)                                                                 */
    /*                                                                           */
    /*****************************************************************************/
    
    int scale_expansion_zeroelim(elen, e, b, h)   /* e and h cannot be the same. */
    int elen;
    REAL *e;
    REAL b;
    REAL *h;
    {
      INEXACT REAL Q, sum;
      REAL hh;
      INEXACT REAL product1;
      REAL product0;
      int eindex, hindex;
      REAL enow;
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      INEXACT REAL c;
      INEXACT REAL abig;
      REAL ahi, alo, bhi, blo;
      REAL err1, err2, err3;
    
      Split(b, bhi, blo);
      Two_Product_Presplit(e[0], b, bhi, blo, Q, hh);
      hindex = 0;
      if (hh != 0) {
        h[hindex++] = hh;
      }
      for (eindex = 1; eindex < elen; eindex++) {
        enow = e[eindex];
        Two_Product_Presplit(enow, b, bhi, blo, product1, product0);
        Two_Sum(Q, product0, sum, hh);
        if (hh != 0) {
          h[hindex++] = hh;
        }
        Fast_Two_Sum(product1, sum, Q, hh);
        if (hh != 0) {
          h[hindex++] = hh;
        }
      }
      if ((Q != 0.0) || (hindex == 0)) {
        h[hindex++] = Q;
      }
      return hindex;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  estimate()   Produce a one-word estimate of an expansion's value.        */
    /*                                                                           */
    /*  See my Robust Predicates paper for details.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    REAL estimate(elen, e)
    int elen;
    REAL *e;
    {
      REAL Q;
      int eindex;
    
      Q = e[0];
      for (eindex = 1; eindex < elen; eindex++) {
        Q += e[eindex];
      }
      return Q;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  counterclockwise()   Return a positive value if the points pa, pb, and   */
    /*                       pc occur in counterclockwise order; a negative      */
    /*                       value if they occur in clockwise order; and zero    */
    /*                       if they are collinear.  The result is also a rough  */
    /*                       approximation of twice the signed area of the       */
    /*                       triangle defined by the three points.               */
    /*                                                                           */
    /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
    /*  result returned is the determinant of a matrix.  This determinant is     */
    /*  computed adaptively, in the sense that exact arithmetic is used only to  */
    /*  the degree it is needed to ensure that the returned value has the        */
    /*  correct sign.  Hence, this function is usually quite fast, but will run  */
    /*  more slowly when the input points are collinear or nearly so.            */
    /*                                                                           */
    /*  See my Robust Predicates paper for details.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    REAL counterclockwiseadapt(pa, pb, pc, detsum)
    point pa;
    point pb;
    point pc;
    REAL detsum;
    {
      INEXACT REAL acx, acy, bcx, bcy;
      REAL acxtail, acytail, bcxtail, bcytail;
      INEXACT REAL detleft, detright;
      REAL detlefttail, detrighttail;
      REAL det, errbound;
      REAL B[4], C1[8], C2[12], D[16];
      INEXACT REAL B3;
      int C1length, C2length, Dlength;
      REAL u[4];
      INEXACT REAL u3;
      INEXACT REAL s1, t1;
      REAL s0, t0;
    
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      INEXACT REAL c;
      INEXACT REAL abig;
      REAL ahi, alo, bhi, blo;
      REAL err1, err2, err3;
      INEXACT REAL _i, _j;
      REAL _0;
    
      acx = (REAL) (pa[0] - pc[0]);
      bcx = (REAL) (pb[0] - pc[0]);
      acy = (REAL) (pa[1] - pc[1]);
      bcy = (REAL) (pb[1] - pc[1]);
    
      Two_Product(acx, bcy, detleft, detlefttail);
      Two_Product(acy, bcx, detright, detrighttail);
    
      Two_Two_Diff(detleft, detlefttail, detright, detrighttail,
                   B3, B[2], B[1], B[0]);
      B[3] = B3;
    
      det = estimate(4, B);
      errbound = ccwerrboundB * detsum;
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      Two_Diff_Tail(pa[0], pc[0], acx, acxtail);
      Two_Diff_Tail(pb[0], pc[0], bcx, bcxtail);
      Two_Diff_Tail(pa[1], pc[1], acy, acytail);
      Two_Diff_Tail(pb[1], pc[1], bcy, bcytail);
    
      if ((acxtail == 0.0) && (acytail == 0.0)
          && (bcxtail == 0.0) && (bcytail == 0.0)) {
        return det;
      }
    
      errbound = ccwerrboundC * detsum + resulterrbound * Absolute(det);
      det += (acx * bcytail + bcy * acxtail)
           - (acy * bcxtail + bcx * acytail);
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      Two_Product(acxtail, bcy, s1, s0);
      Two_Product(acytail, bcx, t1, t0);
      Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      C1length = fast_expansion_sum_zeroelim(4, B, 4, u, C1);
    
      Two_Product(acx, bcytail, s1, s0);
      Two_Product(acy, bcxtail, t1, t0);
      Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      C2length = fast_expansion_sum_zeroelim(C1length, C1, 4, u, C2);
    
      Two_Product(acxtail, bcytail, s1, s0);
      Two_Product(acytail, bcxtail, t1, t0);
      Two_Two_Diff(s1, s0, t1, t0, u3, u[2], u[1], u[0]);
      u[3] = u3;
      Dlength = fast_expansion_sum_zeroelim(C2length, C2, 4, u, D);
    
      return(D[Dlength - 1]);
    }
    
    REAL counterclockwise(pa, pb, pc)
    point pa;
    point pb;
    point pc;
    {
      REAL detleft, detright, det;
      REAL detsum, errbound;
    
      counterclockcount++;
    
      detleft = (pa[0] - pc[0]) * (pb[1] - pc[1]);
      detright = (pa[1] - pc[1]) * (pb[0] - pc[0]);
      det = detleft - detright;
    
      if (noexact) {
        return det;
      }
    
      if (detleft > 0.0) {
        if (detright <= 0.0) {
          return det;
        } else {
          detsum = detleft + detright;
        }
      } else if (detleft < 0.0) {
        if (detright >= 0.0) {
          return det;
        } else {
          detsum = -detleft - detright;
        }
      } else {
        return det;
      }
    
      errbound = ccwerrboundA * detsum;
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      return counterclockwiseadapt(pa, pb, pc, detsum);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  incircle()   Return a positive value if the point pd lies inside the     */
    /*               circle passing through pa, pb, and pc; a negative value if  */
    /*               it lies outside; and zero if the four points are cocircular.*/
    /*               The points pa, pb, and pc must be in counterclockwise       */
    /*               order, or the sign of the result will be reversed.          */
    /*                                                                           */
    /*  Uses exact arithmetic if necessary to ensure a correct answer.  The      */
    /*  result returned is the determinant of a matrix.  This determinant is     */
    /*  computed adaptively, in the sense that exact arithmetic is used only to  */
    /*  the degree it is needed to ensure that the returned value has the        */
    /*  correct sign.  Hence, this function is usually quite fast, but will run  */
    /*  more slowly when the input points are cocircular or nearly so.           */
    /*                                                                           */
    /*  See my Robust Predicates paper for details.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    REAL incircleadapt(pa, pb, pc, pd, permanent)
    point pa;
    point pb;
    point pc;
    point pd;
    REAL permanent;
    {
      INEXACT REAL adx, bdx, cdx, ady, bdy, cdy;
      REAL det, errbound;
    
      INEXACT REAL bdxcdy1, cdxbdy1, cdxady1, adxcdy1, adxbdy1, bdxady1;
      REAL bdxcdy0, cdxbdy0, cdxady0, adxcdy0, adxbdy0, bdxady0;
      REAL bc[4], ca[4], ab[4];
      INEXACT REAL bc3, ca3, ab3;
      REAL axbc[8], axxbc[16], aybc[8], ayybc[16], adet[32];
      int axbclen, axxbclen, aybclen, ayybclen, alen;
      REAL bxca[8], bxxca[16], byca[8], byyca[16], bdet[32];
      int bxcalen, bxxcalen, bycalen, byycalen, blen;
      REAL cxab[8], cxxab[16], cyab[8], cyyab[16], cdet[32];
      int cxablen, cxxablen, cyablen, cyyablen, clen;
      REAL abdet[64];
      int ablen;
      REAL fin1[1152], fin2[1152];
      REAL *finnow, *finother, *finswap;
      int finlength;
    
      REAL adxtail, bdxtail, cdxtail, adytail, bdytail, cdytail;
      INEXACT REAL adxadx1, adyady1, bdxbdx1, bdybdy1, cdxcdx1, cdycdy1;
      REAL adxadx0, adyady0, bdxbdx0, bdybdy0, cdxcdx0, cdycdy0;
      REAL aa[4], bb[4], cc[4];
      INEXACT REAL aa3, bb3, cc3;
      INEXACT REAL ti1, tj1;
      REAL ti0, tj0;
      REAL u[4], v[4];
      INEXACT REAL u3, v3;
      REAL temp8[8], temp16a[16], temp16b[16], temp16c[16];
      REAL temp32a[32], temp32b[32], temp48[48], temp64[64];
      int temp8len, temp16alen, temp16blen, temp16clen;
      int temp32alen, temp32blen, temp48len, temp64len;
      REAL axtbb[8], axtcc[8], aytbb[8], aytcc[8];
      int axtbblen, axtcclen, aytbblen, aytcclen;
      REAL bxtaa[8], bxtcc[8], bytaa[8], bytcc[8];
      int bxtaalen, bxtcclen, bytaalen, bytcclen;
      REAL cxtaa[8], cxtbb[8], cytaa[8], cytbb[8];
      int cxtaalen, cxtbblen, cytaalen, cytbblen;
      REAL axtbc[8], aytbc[8], bxtca[8], bytca[8], cxtab[8], cytab[8];
      int axtbclen, aytbclen, bxtcalen, bytcalen, cxtablen, cytablen;
      REAL axtbct[16], aytbct[16], bxtcat[16], bytcat[16], cxtabt[16], cytabt[16];
      int axtbctlen, aytbctlen, bxtcatlen, bytcatlen, cxtabtlen, cytabtlen;
      REAL axtbctt[8], aytbctt[8], bxtcatt[8];
      REAL bytcatt[8], cxtabtt[8], cytabtt[8];
      int axtbcttlen, aytbcttlen, bxtcattlen, bytcattlen, cxtabttlen, cytabttlen;
      REAL abt[8], bct[8], cat[8];
      int abtlen, bctlen, catlen;
      REAL abtt[4], bctt[4], catt[4];
      int abttlen, bcttlen, cattlen;
      INEXACT REAL abtt3, bctt3, catt3;
      REAL negate;
    
      INEXACT REAL bvirt;
      REAL avirt, bround, around;
      INEXACT REAL c;
      INEXACT REAL abig;
      REAL ahi, alo, bhi, blo;
      REAL err1, err2, err3;
      INEXACT REAL _i, _j;
      REAL _0;
    
      adx = (REAL) (pa[0] - pd[0]);
      bdx = (REAL) (pb[0] - pd[0]);
      cdx = (REAL) (pc[0] - pd[0]);
      ady = (REAL) (pa[1] - pd[1]);
      bdy = (REAL) (pb[1] - pd[1]);
      cdy = (REAL) (pc[1] - pd[1]);
    
      Two_Product(bdx, cdy, bdxcdy1, bdxcdy0);
      Two_Product(cdx, bdy, cdxbdy1, cdxbdy0);
      Two_Two_Diff(bdxcdy1, bdxcdy0, cdxbdy1, cdxbdy0, bc3, bc[2], bc[1], bc[0]);
      bc[3] = bc3;
      axbclen = scale_expansion_zeroelim(4, bc, adx, axbc);
      axxbclen = scale_expansion_zeroelim(axbclen, axbc, adx, axxbc);
      aybclen = scale_expansion_zeroelim(4, bc, ady, aybc);
      ayybclen = scale_expansion_zeroelim(aybclen, aybc, ady, ayybc);
      alen = fast_expansion_sum_zeroelim(axxbclen, axxbc, ayybclen, ayybc, adet);
    
      Two_Product(cdx, ady, cdxady1, cdxady0);
      Two_Product(adx, cdy, adxcdy1, adxcdy0);
      Two_Two_Diff(cdxady1, cdxady0, adxcdy1, adxcdy0, ca3, ca[2], ca[1], ca[0]);
      ca[3] = ca3;
      bxcalen = scale_expansion_zeroelim(4, ca, bdx, bxca);
      bxxcalen = scale_expansion_zeroelim(bxcalen, bxca, bdx, bxxca);
      bycalen = scale_expansion_zeroelim(4, ca, bdy, byca);
      byycalen = scale_expansion_zeroelim(bycalen, byca, bdy, byyca);
      blen = fast_expansion_sum_zeroelim(bxxcalen, bxxca, byycalen, byyca, bdet);
    
      Two_Product(adx, bdy, adxbdy1, adxbdy0);
      Two_Product(bdx, ady, bdxady1, bdxady0);
      Two_Two_Diff(adxbdy1, adxbdy0, bdxady1, bdxady0, ab3, ab[2], ab[1], ab[0]);
      ab[3] = ab3;
      cxablen = scale_expansion_zeroelim(4, ab, cdx, cxab);
      cxxablen = scale_expansion_zeroelim(cxablen, cxab, cdx, cxxab);
      cyablen = scale_expansion_zeroelim(4, ab, cdy, cyab);
      cyyablen = scale_expansion_zeroelim(cyablen, cyab, cdy, cyyab);
      clen = fast_expansion_sum_zeroelim(cxxablen, cxxab, cyyablen, cyyab, cdet);
    
      ablen = fast_expansion_sum_zeroelim(alen, adet, blen, bdet, abdet);
      finlength = fast_expansion_sum_zeroelim(ablen, abdet, clen, cdet, fin1);
    
      det = estimate(finlength, fin1);
      errbound = iccerrboundB * permanent;
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      Two_Diff_Tail(pa[0], pd[0], adx, adxtail);
      Two_Diff_Tail(pa[1], pd[1], ady, adytail);
      Two_Diff_Tail(pb[0], pd[0], bdx, bdxtail);
      Two_Diff_Tail(pb[1], pd[1], bdy, bdytail);
      Two_Diff_Tail(pc[0], pd[0], cdx, cdxtail);
      Two_Diff_Tail(pc[1], pd[1], cdy, cdytail);
      if ((adxtail == 0.0) && (bdxtail == 0.0) && (cdxtail == 0.0)
          && (adytail == 0.0) && (bdytail == 0.0) && (cdytail == 0.0)) {
        return det;
      }
    
      errbound = iccerrboundC * permanent + resulterrbound * Absolute(det);
      det += ((adx * adx + ady * ady) * ((bdx * cdytail + cdy * bdxtail)
                                         - (bdy * cdxtail + cdx * bdytail))
              + 2.0 * (adx * adxtail + ady * adytail) * (bdx * cdy - bdy * cdx))
           + ((bdx * bdx + bdy * bdy) * ((cdx * adytail + ady * cdxtail)
                                         - (cdy * adxtail + adx * cdytail))
              + 2.0 * (bdx * bdxtail + bdy * bdytail) * (cdx * ady - cdy * adx))
           + ((cdx * cdx + cdy * cdy) * ((adx * bdytail + bdy * adxtail)
                                         - (ady * bdxtail + bdx * adytail))
              + 2.0 * (cdx * cdxtail + cdy * cdytail) * (adx * bdy - ady * bdx));
      if ((det >= errbound) || (-det >= errbound)) {
        return det;
      }
    
      finnow = fin1;
      finother = fin2;
    
      if ((bdxtail != 0.0) || (bdytail != 0.0)
          || (cdxtail != 0.0) || (cdytail != 0.0)) {
        Square(adx, adxadx1, adxadx0);
        Square(ady, adyady1, adyady0);
        Two_Two_Sum(adxadx1, adxadx0, adyady1, adyady0, aa3, aa[2], aa[1], aa[0]);
        aa[3] = aa3;
      }
      if ((cdxtail != 0.0) || (cdytail != 0.0)
          || (adxtail != 0.0) || (adytail != 0.0)) {
        Square(bdx, bdxbdx1, bdxbdx0);
        Square(bdy, bdybdy1, bdybdy0);
        Two_Two_Sum(bdxbdx1, bdxbdx0, bdybdy1, bdybdy0, bb3, bb[2], bb[1], bb[0]);
        bb[3] = bb3;
      }
      if ((adxtail != 0.0) || (adytail != 0.0)
          || (bdxtail != 0.0) || (bdytail != 0.0)) {
        Square(cdx, cdxcdx1, cdxcdx0);
        Square(cdy, cdycdy1, cdycdy0);
        Two_Two_Sum(cdxcdx1, cdxcdx0, cdycdy1, cdycdy0, cc3, cc[2], cc[1], cc[0]);
        cc[3] = cc3;
      }
    
      if (adxtail != 0.0) {
        axtbclen = scale_expansion_zeroelim(4, bc, adxtail, axtbc);
        temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, 2.0 * adx,
                                              temp16a);
    
        axtcclen = scale_expansion_zeroelim(4, cc, adxtail, axtcc);
        temp16blen = scale_expansion_zeroelim(axtcclen, axtcc, bdy, temp16b);
    
        axtbblen = scale_expansion_zeroelim(4, bb, adxtail, axtbb);
        temp16clen = scale_expansion_zeroelim(axtbblen, axtbb, -cdy, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (adytail != 0.0) {
        aytbclen = scale_expansion_zeroelim(4, bc, adytail, aytbc);
        temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, 2.0 * ady,
                                              temp16a);
    
        aytbblen = scale_expansion_zeroelim(4, bb, adytail, aytbb);
        temp16blen = scale_expansion_zeroelim(aytbblen, aytbb, cdx, temp16b);
    
        aytcclen = scale_expansion_zeroelim(4, cc, adytail, aytcc);
        temp16clen = scale_expansion_zeroelim(aytcclen, aytcc, -bdx, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (bdxtail != 0.0) {
        bxtcalen = scale_expansion_zeroelim(4, ca, bdxtail, bxtca);
        temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, 2.0 * bdx,
                                              temp16a);
    
        bxtaalen = scale_expansion_zeroelim(4, aa, bdxtail, bxtaa);
        temp16blen = scale_expansion_zeroelim(bxtaalen, bxtaa, cdy, temp16b);
    
        bxtcclen = scale_expansion_zeroelim(4, cc, bdxtail, bxtcc);
        temp16clen = scale_expansion_zeroelim(bxtcclen, bxtcc, -ady, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (bdytail != 0.0) {
        bytcalen = scale_expansion_zeroelim(4, ca, bdytail, bytca);
        temp16alen = scale_expansion_zeroelim(bytcalen, bytca, 2.0 * bdy,
                                              temp16a);
    
        bytcclen = scale_expansion_zeroelim(4, cc, bdytail, bytcc);
        temp16blen = scale_expansion_zeroelim(bytcclen, bytcc, adx, temp16b);
    
        bytaalen = scale_expansion_zeroelim(4, aa, bdytail, bytaa);
        temp16clen = scale_expansion_zeroelim(bytaalen, bytaa, -cdx, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (cdxtail != 0.0) {
        cxtablen = scale_expansion_zeroelim(4, ab, cdxtail, cxtab);
        temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, 2.0 * cdx,
                                              temp16a);
    
        cxtbblen = scale_expansion_zeroelim(4, bb, cdxtail, cxtbb);
        temp16blen = scale_expansion_zeroelim(cxtbblen, cxtbb, ady, temp16b);
    
        cxtaalen = scale_expansion_zeroelim(4, aa, cdxtail, cxtaa);
        temp16clen = scale_expansion_zeroelim(cxtaalen, cxtaa, -bdy, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
      if (cdytail != 0.0) {
        cytablen = scale_expansion_zeroelim(4, ab, cdytail, cytab);
        temp16alen = scale_expansion_zeroelim(cytablen, cytab, 2.0 * cdy,
                                              temp16a);
    
        cytaalen = scale_expansion_zeroelim(4, aa, cdytail, cytaa);
        temp16blen = scale_expansion_zeroelim(cytaalen, cytaa, bdx, temp16b);
    
        cytbblen = scale_expansion_zeroelim(4, bb, cdytail, cytbb);
        temp16clen = scale_expansion_zeroelim(cytbblen, cytbb, -adx, temp16c);
    
        temp32alen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                temp16blen, temp16b, temp32a);
        temp48len = fast_expansion_sum_zeroelim(temp16clen, temp16c,
                                                temp32alen, temp32a, temp48);
        finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                temp48, finother);
        finswap = finnow; finnow = finother; finother = finswap;
      }
    
      if ((adxtail != 0.0) || (adytail != 0.0)) {
        if ((bdxtail != 0.0) || (bdytail != 0.0)
            || (cdxtail != 0.0) || (cdytail != 0.0)) {
          Two_Product(bdxtail, cdy, ti1, ti0);
          Two_Product(bdx, cdytail, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
          u[3] = u3;
          negate = -bdy;
          Two_Product(cdxtail, negate, ti1, ti0);
          negate = -bdytail;
          Two_Product(cdx, negate, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
          v[3] = v3;
          bctlen = fast_expansion_sum_zeroelim(4, u, 4, v, bct);
    
          Two_Product(bdxtail, cdytail, ti1, ti0);
          Two_Product(cdxtail, bdytail, tj1, tj0);
          Two_Two_Diff(ti1, ti0, tj1, tj0, bctt3, bctt[2], bctt[1], bctt[0]);
          bctt[3] = bctt3;
          bcttlen = 4;
        } else {
          bct[0] = 0.0;
          bctlen = 1;
          bctt[0] = 0.0;
          bcttlen = 1;
        }
    
        if (adxtail != 0.0) {
          temp16alen = scale_expansion_zeroelim(axtbclen, axtbc, adxtail, temp16a);
          axtbctlen = scale_expansion_zeroelim(bctlen, bct, adxtail, axtbct);
          temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, 2.0 * adx,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (bdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, cc, adxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
          if (cdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, bb, -adxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
    
          temp32alen = scale_expansion_zeroelim(axtbctlen, axtbct, adxtail,
                                                temp32a);
          axtbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adxtail, axtbctt);
          temp16alen = scale_expansion_zeroelim(axtbcttlen, axtbctt, 2.0 * adx,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(axtbcttlen, axtbctt, adxtail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
        if (adytail != 0.0) {
          temp16alen = scale_expansion_zeroelim(aytbclen, aytbc, adytail, temp16a);
          aytbctlen = scale_expansion_zeroelim(bctlen, bct, adytail, aytbct);
          temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, 2.0 * ady,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
    
    
          temp32alen = scale_expansion_zeroelim(aytbctlen, aytbct, adytail,
                                                temp32a);
          aytbcttlen = scale_expansion_zeroelim(bcttlen, bctt, adytail, aytbctt);
          temp16alen = scale_expansion_zeroelim(aytbcttlen, aytbctt, 2.0 * ady,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(aytbcttlen, aytbctt, adytail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
      }
      if ((bdxtail != 0.0) || (bdytail != 0.0)) {
        if ((cdxtail != 0.0) || (cdytail != 0.0)
            || (adxtail != 0.0) || (adytail != 0.0)) {
          Two_Product(cdxtail, ady, ti1, ti0);
          Two_Product(cdx, adytail, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
          u[3] = u3;
          negate = -cdy;
          Two_Product(adxtail, negate, ti1, ti0);
          negate = -cdytail;
          Two_Product(adx, negate, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
          v[3] = v3;
          catlen = fast_expansion_sum_zeroelim(4, u, 4, v, cat);
    
          Two_Product(cdxtail, adytail, ti1, ti0);
          Two_Product(adxtail, cdytail, tj1, tj0);
          Two_Two_Diff(ti1, ti0, tj1, tj0, catt3, catt[2], catt[1], catt[0]);
          catt[3] = catt3;
          cattlen = 4;
        } else {
          cat[0] = 0.0;
          catlen = 1;
          catt[0] = 0.0;
          cattlen = 1;
        }
    
        if (bdxtail != 0.0) {
          temp16alen = scale_expansion_zeroelim(bxtcalen, bxtca, bdxtail, temp16a);
          bxtcatlen = scale_expansion_zeroelim(catlen, cat, bdxtail, bxtcat);
          temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, 2.0 * bdx,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (cdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, aa, bdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, cdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
          if (adytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, cc, -bdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
    
          temp32alen = scale_expansion_zeroelim(bxtcatlen, bxtcat, bdxtail,
                                                temp32a);
          bxtcattlen = scale_expansion_zeroelim(cattlen, catt, bdxtail, bxtcatt);
          temp16alen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, 2.0 * bdx,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(bxtcattlen, bxtcatt, bdxtail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
        if (bdytail != 0.0) {
          temp16alen = scale_expansion_zeroelim(bytcalen, bytca, bdytail, temp16a);
          bytcatlen = scale_expansion_zeroelim(catlen, cat, bdytail, bytcat);
          temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, 2.0 * bdy,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
    
    
          temp32alen = scale_expansion_zeroelim(bytcatlen, bytcat, bdytail,
                                                temp32a);
          bytcattlen = scale_expansion_zeroelim(cattlen, catt, bdytail, bytcatt);
          temp16alen = scale_expansion_zeroelim(bytcattlen, bytcatt, 2.0 * bdy,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(bytcattlen, bytcatt, bdytail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
      }
      if ((cdxtail != 0.0) || (cdytail != 0.0)) {
        if ((adxtail != 0.0) || (adytail != 0.0)
            || (bdxtail != 0.0) || (bdytail != 0.0)) {
          Two_Product(adxtail, bdy, ti1, ti0);
          Two_Product(adx, bdytail, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, u3, u[2], u[1], u[0]);
          u[3] = u3;
          negate = -ady;
          Two_Product(bdxtail, negate, ti1, ti0);
          negate = -adytail;
          Two_Product(bdx, negate, tj1, tj0);
          Two_Two_Sum(ti1, ti0, tj1, tj0, v3, v[2], v[1], v[0]);
          v[3] = v3;
          abtlen = fast_expansion_sum_zeroelim(4, u, 4, v, abt);
    
          Two_Product(adxtail, bdytail, ti1, ti0);
          Two_Product(bdxtail, adytail, tj1, tj0);
          Two_Two_Diff(ti1, ti0, tj1, tj0, abtt3, abtt[2], abtt[1], abtt[0]);
          abtt[3] = abtt3;
          abttlen = 4;
        } else {
          abt[0] = 0.0;
          abtlen = 1;
          abtt[0] = 0.0;
          abttlen = 1;
        }
    
        if (cdxtail != 0.0) {
          temp16alen = scale_expansion_zeroelim(cxtablen, cxtab, cdxtail, temp16a);
          cxtabtlen = scale_expansion_zeroelim(abtlen, abt, cdxtail, cxtabt);
          temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, 2.0 * cdx,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
          if (adytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, bb, cdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, adytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
          if (bdytail != 0.0) {
            temp8len = scale_expansion_zeroelim(4, aa, -cdxtail, temp8);
            temp16alen = scale_expansion_zeroelim(temp8len, temp8, bdytail,
                                                  temp16a);
            finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp16alen,
                                                    temp16a, finother);
            finswap = finnow; finnow = finother; finother = finswap;
          }
    
          temp32alen = scale_expansion_zeroelim(cxtabtlen, cxtabt, cdxtail,
                                                temp32a);
          cxtabttlen = scale_expansion_zeroelim(abttlen, abtt, cdxtail, cxtabtt);
          temp16alen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, 2.0 * cdx,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(cxtabttlen, cxtabtt, cdxtail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
        if (cdytail != 0.0) {
          temp16alen = scale_expansion_zeroelim(cytablen, cytab, cdytail, temp16a);
          cytabtlen = scale_expansion_zeroelim(abtlen, abt, cdytail, cytabt);
          temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, 2.0 * cdy,
                                                temp32a);
          temp48len = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp32alen, temp32a, temp48);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp48len,
                                                  temp48, finother);
          finswap = finnow; finnow = finother; finother = finswap;
    
    
          temp32alen = scale_expansion_zeroelim(cytabtlen, cytabt, cdytail,
                                                temp32a);
          cytabttlen = scale_expansion_zeroelim(abttlen, abtt, cdytail, cytabtt);
          temp16alen = scale_expansion_zeroelim(cytabttlen, cytabtt, 2.0 * cdy,
                                                temp16a);
          temp16blen = scale_expansion_zeroelim(cytabttlen, cytabtt, cdytail,
                                                temp16b);
          temp32blen = fast_expansion_sum_zeroelim(temp16alen, temp16a,
                                                  temp16blen, temp16b, temp32b);
          temp64len = fast_expansion_sum_zeroelim(temp32alen, temp32a,
                                                  temp32blen, temp32b, temp64);
          finlength = fast_expansion_sum_zeroelim(finlength, finnow, temp64len,
                                                  temp64, finother);
          finswap = finnow; finnow = finother; finother = finswap;
        }
      }
    
      return finnow[finlength - 1];
    }
    
    REAL incircle(pa, pb, pc, pd)
    point pa;
    point pb;
    point pc;
    point pd;
    {
      REAL adx, bdx, cdx, ady, bdy, cdy;
      REAL bdxcdy, cdxbdy, cdxady, adxcdy, adxbdy, bdxady;
      REAL alift, blift, clift;
      REAL det;
      REAL permanent, errbound;
    
      incirclecount++;
    
      adx = pa[0] - pd[0];
      bdx = pb[0] - pd[0];
      cdx = pc[0] - pd[0];
      ady = pa[1] - pd[1];
      bdy = pb[1] - pd[1];
      cdy = pc[1] - pd[1];
    
      bdxcdy = bdx * cdy;
      cdxbdy = cdx * bdy;
      alift = adx * adx + ady * ady;
    
      cdxady = cdx * ady;
      adxcdy = adx * cdy;
      blift = bdx * bdx + bdy * bdy;
    
      adxbdy = adx * bdy;
      bdxady = bdx * ady;
      clift = cdx * cdx + cdy * cdy;
    
      det = alift * (bdxcdy - cdxbdy)
          + blift * (cdxady - adxcdy)
          + clift * (adxbdy - bdxady);
    
      if (noexact) {
        return det;
      }
    
      permanent = (Absolute(bdxcdy) + Absolute(cdxbdy)) * alift
                + (Absolute(cdxady) + Absolute(adxcdy)) * blift
                + (Absolute(adxbdy) + Absolute(bdxady)) * clift;
      errbound = iccerrboundA * permanent;
      if ((det > errbound) || (-det > errbound)) {
        return det;
      }
    
      return incircleadapt(pa, pb, pc, pd, permanent);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Determinant evaluation routines end here                  *********/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangleinit()   Initialize some variables.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    void triangleinit()
    {
      points.maxitems = triangles.maxitems = shelles.maxitems = viri.maxitems =
        badsegments.maxitems = badtriangles.maxitems = splaynodes.maxitems = 0l;
      points.itembytes = triangles.itembytes = shelles.itembytes = viri.itembytes =
        badsegments.itembytes = badtriangles.itembytes = splaynodes.itembytes = 0;
      recenttri.tri = (triangle *) NULL;    /* No triangle has been visited yet. */
      samples = 1;            /* Point location should take at least one sample. */
      checksegments = 0;      /* There are no segments in the triangulation yet. */
      incirclecount = counterclockcount = hyperbolacount = 0;
      circumcentercount = circletopcount = 0;
      randomseed = 1;
    
      exactinit();                     /* Initialize exact arithmetic constants. */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  randomnation()   Generate a random number between 0 and `choices' - 1.   */
    /*                                                                           */
    /*  This is a simple linear congruential random number generator.  Hence, it */
    /*  is a bad random number generator, but good enough for most randomized    */
    /*  geometric algorithms.                                                    */
    /*                                                                           */
    /*****************************************************************************/
    
    unsigned long randomnation(choices)
    unsigned int choices;
    {
      randomseed = (randomseed * 1366l + 150889l) % 714025l;
      return randomseed / (714025l / choices + 1);
    }
    
    /********* Mesh quality testing routines begin here                  *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  checkmesh()   Test the mesh for topological consistency.                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    void checkmesh()
    {
      struct triedge triangleloop;
      struct triedge oppotri, oppooppotri;
      point triorg, tridest, triapex;
      point oppoorg, oppodest;
      int horrors;
      int saveexact;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      /* Temporarily turn on exact arithmetic if it's off. */
      saveexact = noexact;
      noexact = 0;
      if (!quiet) {
        printf("  Checking consistency of mesh...\n");
      }
      horrors = 0;
      /* Run through the list of triangles, checking each one. */
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      while (triangleloop.tri != (triangle *) NULL) {
        /* Check all three edges of the triangle. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          org(triangleloop, triorg);
          dest(triangleloop, tridest);
          if (triangleloop.orient == 0) {       /* Only test for inversion once. */
            /* Test if the triangle is flat or inverted. */
            apex(triangleloop, triapex);
            if (counterclockwise(triorg, tridest, triapex) <= 0.0) {
              printf("  !! !! Inverted ");
              printtriangle(&triangleloop);
              horrors++;
            }
          }
          /* Find the neighboring triangle on this edge. */
          sym(triangleloop, oppotri);
          if (oppotri.tri != dummytri) {
            /* Check that the triangle's neighbor knows it's a neighbor. */
            sym(oppotri, oppooppotri);
            if ((triangleloop.tri != oppooppotri.tri)
                || (triangleloop.orient != oppooppotri.orient)) {
              printf("  !! !! Asymmetric triangle-triangle bond:\n");
              if (triangleloop.tri == oppooppotri.tri) {
                printf("   (Right triangle, wrong orientation)\n");
              }
              printf("    First ");
              printtriangle(&triangleloop);
              printf("    Second (nonreciprocating) ");
              printtriangle(&oppotri);
              horrors++;
            }
            /* Check that both triangles agree on the identities */
            /*   of their shared vertices.                       */
            org(oppotri, oppoorg);
            dest(oppotri, oppodest);
            if ((triorg != oppodest) || (tridest != oppoorg)) {
              printf("  !! !! Mismatched edge coordinates between two triangles:\n"
                     );
              printf("    First mismatched ");
              printtriangle(&triangleloop);
              printf("    Second mismatched ");
              printtriangle(&oppotri);
              horrors++;
            }
          }
        }
        triangleloop.tri = triangletraverse();
      }
      if (horrors == 0) {
        if (!quiet) {
          printf("  In my studied opinion, the mesh appears to be consistent.\n");
        }
      } else if (horrors == 1) {
        printf("  !! !! !! !! Precisely one festering wound discovered.\n");
      } else {
        printf("  !! !! !! !! %d abominations witnessed.\n", horrors);
      }
      /* Restore the status of exact arithmetic. */
      noexact = saveexact;
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  checkdelaunay()   Ensure that the mesh is (constrained) Delaunay.        */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    void checkdelaunay()
    {
      struct triedge triangleloop;
      struct triedge oppotri;
      struct edge opposhelle;
      point triorg, tridest, triapex;
      point oppoapex;
      int shouldbedelaunay;
      int horrors;
      int saveexact;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      /* Temporarily turn on exact arithmetic if it's off. */
      saveexact = noexact;
      noexact = 0;
      if (!quiet) {
        printf("  Checking Delaunay property of mesh...\n");
      }
      horrors = 0;
      /* Run through the list of triangles, checking each one. */
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      while (triangleloop.tri != (triangle *) NULL) {
        /* Check all three edges of the triangle. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          org(triangleloop, triorg);
          dest(triangleloop, tridest);
          apex(triangleloop, triapex);
          sym(triangleloop, oppotri);
          apex(oppotri, oppoapex);
          /* Only test that the edge is locally Delaunay if there is an   */
          /*   adjoining triangle whose pointer is larger (to ensure that */
          /*   each pair isn't tested twice).                             */
          shouldbedelaunay = (oppotri.tri != dummytri)
                && (triapex != (point) NULL) && (oppoapex != (point) NULL)
                && (triangleloop.tri < oppotri.tri);
          if (checksegments && shouldbedelaunay) {
            /* If a shell edge separates the triangles, then the edge is */
            /*   constrained, so no local Delaunay test should be done.  */
            tspivot(triangleloop, opposhelle);
            if (opposhelle.sh != dummysh){
              shouldbedelaunay = 0;
            }
          }
          if (shouldbedelaunay) {
            if (incircle(triorg, tridest, triapex, oppoapex) > 0.0) {
              printf("  !! !! Non-Delaunay pair of triangles:\n");
              printf("    First non-Delaunay ");
              printtriangle(&triangleloop);
              printf("    Second non-Delaunay ");
              printtriangle(&oppotri);
              horrors++;
            }
          }
        }
        triangleloop.tri = triangletraverse();
      }
      if (horrors == 0) {
        if (!quiet) {
          printf(
      "  By virtue of my perceptive intelligence, I declare the mesh Delaunay.\n");
        }
      } else if (horrors == 1) {
        printf(
             "  !! !! !! !! Precisely one terrifying transgression identified.\n");
      } else {
        printf("  !! !! !! !! %d obscenities viewed with horror.\n", horrors);
      }
      /* Restore the status of exact arithmetic. */
      noexact = saveexact;
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  enqueuebadtri()   Add a bad triangle to the end of a queue.              */
    /*                                                                           */
    /*  The queue is actually a set of 64 queues.  I use multiple queues to give */
    /*  priority to smaller angles.  I originally implemented a heap, but the    */
    /*  queues are (to my surprise) much faster.                                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void enqueuebadtri(instri, angle, insapex, insorg, insdest)
    struct triedge *instri;
    REAL angle;
    point insapex;
    point insorg;
    point insdest;
    {
      struct badface *newface;
      int queuenumber;
    
      if (verbose > 2) {
        printf("  Queueing bad triangle:\n");
        printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", insorg[0],
               insorg[1], insdest[0], insdest[1], insapex[0], insapex[1]);
      }
      /* Allocate space for the bad triangle. */
      newface = (struct badface *) poolalloc(&badtriangles);
      triedgecopy(*instri, newface->badfacetri);
      newface->key = angle;
      newface->faceapex = insapex;
      newface->faceorg = insorg;
      newface->facedest = insdest;
      newface->nextface = (struct badface *) NULL;
      /* Determine the appropriate queue to put the bad triangle into. */
      if (angle > 0.6) {
        queuenumber = (int) (160.0 * (angle - 0.6));
        if (queuenumber > 63) {
          queuenumber = 63;
        }
      } else {
        /* It's not a bad angle; put the triangle in the lowest-priority queue. */
        queuenumber = 0;
      }
      /* Add the triangle to the end of a queue. */
      *queuetail[queuenumber] = newface;
      /* Maintain a pointer to the NULL pointer at the end of the queue. */
      queuetail[queuenumber] = &newface->nextface;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  dequeuebadtri()   Remove a triangle from the front of the queue.         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    struct badface *dequeuebadtri()
    {
      struct badface *result;
      int queuenumber;
    
      /* Look for a nonempty queue. */
      for (queuenumber = 63; queuenumber >= 0; queuenumber--) {
        result = queuefront[queuenumber];
        if (result != (struct badface *) NULL) {
          /* Remove the triangle from the queue. */
          queuefront[queuenumber] = result->nextface;
          /* Maintain a pointer to the NULL pointer at the end of the queue. */
          if (queuefront[queuenumber] == (struct badface *) NULL) {
            queuetail[queuenumber] = &queuefront[queuenumber];
          }
          return result;
        }
      }
      return (struct badface *) NULL;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  checkedge4encroach()   Check a segment to see if it is encroached; add   */
    /*                         it to the list if it is.                          */
    /*                                                                           */
    /*  An encroached segment is an unflippable edge that has a point in its     */
    /*  diametral circle (that is, it faces an angle greater than 90 degrees).   */
    /*  This definition is due to Ruppert.                                       */
    /*                                                                           */
    /*  Returns a nonzero value if the edge is encroached.                       */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    int checkedge4encroach(testedge)
    struct edge *testedge;
    {
      struct triedge neighbortri;
      struct edge testsym;
      struct edge *badedge;
      int addtolist;
      int sides;
      point eorg, edest, eapex;
      triangle ptr;                     /* Temporary variable used by stpivot(). */
    
      addtolist = 0;
      sides = 0;
    
      sorg(*testedge, eorg);
      sdest(*testedge, edest);
      /* Check one neighbor of the shell edge. */
      stpivot(*testedge, neighbortri);
      /* Does the neighbor exist, or is this a boundary edge? */
      if (neighbortri.tri != dummytri) {
        sides++;
        /* Find a vertex opposite this edge. */
        apex(neighbortri, eapex);
        /* Check whether the vertex is inside the diametral circle of the  */
        /*   shell edge.  Pythagoras' Theorem is used to check whether the */
        /*   angle at the vertex is greater than 90 degrees.               */
        if (eapex[0] * (eorg[0] + edest[0]) + eapex[1] * (eorg[1] + edest[1]) >
            eapex[0] * eapex[0] + eorg[0] * edest[0] +
            eapex[1] * eapex[1] + eorg[1] * edest[1]) {
          addtolist = 1;
        }
      }
      /* Check the other neighbor of the shell edge. */
      ssym(*testedge, testsym);
      stpivot(testsym, neighbortri);
      /* Does the neighbor exist, or is this a boundary edge? */
      if (neighbortri.tri != dummytri) {
        sides++;
        /* Find the other vertex opposite this edge. */
        apex(neighbortri, eapex);
        /* Check whether the vertex is inside the diametral circle of the  */
        /*   shell edge.  Pythagoras' Theorem is used to check whether the */
        /*   angle at the vertex is greater than 90 degrees.               */
        if (eapex[0] * (eorg[0] + edest[0]) +
            eapex[1] * (eorg[1] + edest[1]) >
            eapex[0] * eapex[0] + eorg[0] * edest[0] +
            eapex[1] * eapex[1] + eorg[1] * edest[1]) {
          addtolist += 2;
        }
      }
    
      if (addtolist && (!nobisect || ((nobisect == 1) && (sides == 2)))) {
        if (verbose > 2) {
          printf("  Queueing encroached segment (%.12g, %.12g) (%.12g, %.12g).\n",
                 eorg[0], eorg[1], edest[0], edest[1]);
        }
        /* Add the shell edge to the list of encroached segments. */
        /*   Be sure to get the orientation right.                */
        badedge = (struct edge *) poolalloc(&badsegments);
        if (addtolist == 1) {
          shellecopy(*testedge, *badedge);
        } else {
          shellecopy(testsym, *badedge);
        }
      }
      return addtolist;
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  testtriangle()   Test a face for quality measures.                       */
    /*                                                                           */
    /*  Tests a triangle to see if it satisfies the minimum angle condition and  */
    /*  the maximum area condition.  Triangles that aren't up to spec are added  */
    /*  to the bad triangle queue.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void testtriangle(testtri)
    struct triedge *testtri;
    {
      struct triedge sametesttri;
      struct edge edge1, edge2;
      point torg, tdest, tapex;
      point anglevertex;
      REAL dxod, dyod, dxda, dyda, dxao, dyao;
      REAL dxod2, dyod2, dxda2, dyda2, dxao2, dyao2;
      REAL apexlen, orglen, destlen;
      REAL angle;
      REAL area;
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      org(*testtri, torg);
      dest(*testtri, tdest);
      apex(*testtri, tapex);
      dxod = torg[0] - tdest[0];
      dyod = torg[1] - tdest[1];
      dxda = tdest[0] - tapex[0];
      dyda = tdest[1] - tapex[1];
      dxao = tapex[0] - torg[0];
      dyao = tapex[1] - torg[1];
      dxod2 = dxod * dxod;
      dyod2 = dyod * dyod;
      dxda2 = dxda * dxda;
      dyda2 = dyda * dyda;
      dxao2 = dxao * dxao;
      dyao2 = dyao * dyao;
      /* Find the lengths of the triangle's three edges. */
      apexlen = dxod2 + dyod2;
      orglen = dxda2 + dyda2;
      destlen = dxao2 + dyao2;
      if ((apexlen < orglen) && (apexlen < destlen)) {
        /* The edge opposite the apex is shortest. */
        /* Find the square of the cosine of the angle at the apex. */
        angle = dxda * dxao + dyda * dyao;
        angle = angle * angle / (orglen * destlen);
        anglevertex = tapex;
        lnext(*testtri, sametesttri);
        tspivot(sametesttri, edge1);
        lnextself(sametesttri);
        tspivot(sametesttri, edge2);
      } else if (orglen < destlen) {
        /* The edge opposite the origin is shortest. */
        /* Find the square of the cosine of the angle at the origin. */
        angle = dxod * dxao + dyod * dyao;
        angle = angle * angle / (apexlen * destlen);
        anglevertex = torg;
        tspivot(*testtri, edge1);
        lprev(*testtri, sametesttri);
        tspivot(sametesttri, edge2);
      } else {
        /* The edge opposite the destination is shortest. */
        /* Find the square of the cosine of the angle at the destination. */
        angle = dxod * dxda + dyod * dyda;
        angle = angle * angle / (apexlen * orglen);
        anglevertex = tdest;
        tspivot(*testtri, edge1);
        lnext(*testtri, sametesttri);
        tspivot(sametesttri, edge2);
      }
      /* Check if both edges that form the angle are segments. */
      if ((edge1.sh != dummysh) && (edge2.sh != dummysh)) {
        /* The angle is a segment intersection. */
        if ((angle > 0.9924) && !quiet) {                  /* Roughly 5 degrees. */
          if (angle > 1.0) {
            /* Beware of a floating exception in acos(). */
            angle = 1.0;
          }
          /* Find the actual angle in degrees, for printing. */
          angle = acos(sqrt(angle)) * (180.0 / PI);
          printf(
          "Warning:  Small angle (%.4g degrees) between segments at point\n",
                 angle);
          printf("  (%.12g, %.12g)\n", anglevertex[0], anglevertex[1]);
        }
        /* Don't add this bad triangle to the list; there's nothing that */
        /*   can be done about a small angle between two segments.       */
        angle = 0.0;
      }
      /* Check whether the angle is smaller than permitted. */
      if (angle > goodangle) {
        /* Add this triangle to the list of bad triangles. */
        enqueuebadtri(testtri, angle, tapex, torg, tdest);
        return;
      }
      if (vararea || fixedarea) {
        /* Check whether the area is larger than permitted. */
        area = 0.5 * (dxod * dyda - dyod * dxda);
        if (fixedarea && (area > maxarea)) {
          /* Add this triangle to the list of bad triangles. */
          enqueuebadtri(testtri, angle, tapex, torg, tdest);
        } else if (vararea) {
          /* Nonpositive area constraints are treated as unconstrained. */
          if ((area > areabound(*testtri)) && (areabound(*testtri) > 0.0)) {
            /* Add this triangle to the list of bad triangles. */
            enqueuebadtri(testtri, angle, tapex, torg, tdest);
          }
        }
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh quality testing routines end here                    *********/
    
    /********* Point location routines begin here                        *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  makepointmap()   Construct a mapping from points to triangles to improve  */
    /*                  the speed of point location for segment insertion.       */
    /*                                                                           */
    /*  Traverses all the triangles, and provides each corner of each triangle   */
    /*  with a pointer to that triangle.  Of course, pointers will be            */
    /*  overwritten by other pointers because (almost) each point is a corner    */
    /*  of several triangles, but in the end every point will point to some      */
    /*  triangle that contains it.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    void makepointmap()
    {
      struct triedge triangleloop;
      point triorg;
    
      if (verbose) {
        printf("    Constructing mapping from points to triangles.\n");
      }
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      while (triangleloop.tri != (triangle *) NULL) {
        /* Check all three points of the triangle. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          org(triangleloop, triorg);
          setpoint2tri(triorg, encode(triangleloop));
        }
        triangleloop.tri = triangletraverse();
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  preciselocate()   Find a triangle or edge containing a given point.      */
    /*                                                                           */
    /*  Begins its search from `searchtri'.  It is important that `searchtri'    */
    /*  be a handle with the property that `searchpoint' is strictly to the left */
    /*  of the edge denoted by `searchtri', or is collinear with that edge and   */
    /*  does not intersect that edge.  (In particular, `searchpoint' should not  */
    /*  be the origin or destination of that edge.)                              */
    /*                                                                           */
    /*  These conditions are imposed because preciselocate() is normally used in */
    /*  one of two situations:                                                   */
    /*                                                                           */
    /*  (1)  To try to find the location to insert a new point.  Normally, we    */
    /*       know an edge that the point is strictly to the left of.  In the     */
    /*       incremental Delaunay algorithm, that edge is a bounding box edge.   */
    /*       In Ruppert's Delaunay refinement algorithm for quality meshing,     */
    /*       that edge is the shortest edge of the triangle whose circumcenter   */
    /*       is being inserted.                                                  */
    /*                                                                           */
    /*  (2)  To try to find an existing point.  In this case, any edge on the    */
    /*       convex hull is a good starting edge.  The possibility that the      */
    /*       vertex one seeks is an endpoint of the starting edge must be        */
    /*       screened out before preciselocate() is called.                      */
    /*                                                                           */
    /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
    /*                                                                           */
    /*  This implementation differs from that given by Guibas and Stolfi.  It    */
    /*  walks from triangle to triangle, crossing an edge only if `searchpoint'  */
    /*  is on the other side of the line containing that edge.  After entering   */
    /*  a triangle, there are two edges by which one can leave that triangle.    */
    /*  If both edges are valid (`searchpoint' is on the other side of both      */
    /*  edges), one of the two is chosen by drawing a line perpendicular to      */
    /*  the entry edge (whose endpoints are `forg' and `fdest') passing through  */
    /*  `fapex'.  Depending on which side of this perpendicular `searchpoint'    */
    /*  falls on, an exit edge is chosen.                                        */
    /*                                                                           */
    /*  This implementation is empirically faster than the Guibas and Stolfi     */
    /*  point location routine (which I originally used), which tends to spiral  */
    /*  in toward its target.                                                    */
    /*                                                                           */
    /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
    /*  is a handle whose origin is the existing vertex.                         */
    /*                                                                           */
    /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
    /*  handle whose primary edge is the edge on which the point lies.           */
    /*                                                                           */
    /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
    /*  `searchtri' is a handle on the triangle that contains the point.         */
    /*                                                                           */
    /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
    /*  handle whose primary edge the point is to the right of.  This might      */
    /*  occur when the circumcenter of a triangle falls just slightly outside    */
    /*  the mesh due to floating-point roundoff error.  It also occurs when      */
    /*  seeking a hole or region point that a foolish user has placed outside    */
    /*  the mesh.                                                                */
    /*                                                                           */
    /*  WARNING:  This routine is designed for convex triangulations, and will   */
    /*  not generally work after the holes and concavities have been carved.     */
    /*  However, it can still be used to find the circumcenter of a triangle, as */
    /*  long as the search is begun from the triangle in question.               */
    /*                                                                           */
    /*****************************************************************************/
    
    enum locateresult preciselocate(searchpoint, searchtri)
    point searchpoint;
    struct triedge *searchtri;
    {
      struct triedge backtracktri;
      point forg, fdest, fapex;
      point swappoint;
      REAL orgorient, destorient;
      int moveleft;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (verbose > 2) {
        printf("  Searching for point (%.12g, %.12g).\n",
               searchpoint[0], searchpoint[1]);
      }
      /* Where are we? */
      org(*searchtri, forg);
      dest(*searchtri, fdest);
      apex(*searchtri, fapex);
      while (1) {
        if (verbose > 2) {
          printf("    At (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                 forg[0], forg[1], fdest[0], fdest[1], fapex[0], fapex[1]);
        }
        /* Check whether the apex is the point we seek. */
        if ((fapex[0] == searchpoint[0]) && (fapex[1] == searchpoint[1])) {
          lprevself(*searchtri);
          return ONVERTEX;
        }
        /* Does the point lie on the other side of the line defined by the */
        /*   triangle edge opposite the triangle's destination?            */
        destorient = counterclockwise(forg, fapex, searchpoint);
        /* Does the point lie on the other side of the line defined by the */
        /*   triangle edge opposite the triangle's origin?                 */
        orgorient = counterclockwise(fapex, fdest, searchpoint);
        if (destorient > 0.0) {
          if (orgorient > 0.0) {
            /* Move left if the inner product of (fapex - searchpoint) and  */
            /*   (fdest - forg) is positive.  This is equivalent to drawing */
            /*   a line perpendicular to the line (forg, fdest) passing     */
            /*   through `fapex', and determining which side of this line   */
            /*   `searchpoint' falls on.                                    */
            moveleft = (fapex[0] - searchpoint[0]) * (fdest[0] - forg[0]) +
                       (fapex[1] - searchpoint[1]) * (fdest[1] - forg[1]) > 0.0;
          } else {
            moveleft = 1;
          }
        } else {
          if (orgorient > 0.0) {
            moveleft = 0;
          } else {
            /* The point we seek must be on the boundary of or inside this */
            /*   triangle.                                                 */
            if (destorient == 0.0) {
              lprevself(*searchtri);
              return ONEDGE;
            }
            if (orgorient == 0.0) {
              lnextself(*searchtri);
              return ONEDGE;
            }
            return INTRIANGLE;
          }
        }
    
        /* Move to another triangle.  Leave a trace `backtracktri' in case */
        /*   floating-point roundoff or some such bogey causes us to walk  */
        /*   off a boundary of the triangulation.  We can just bounce off  */
        /*   the boundary as if it were an elastic band.                   */
        if (moveleft) {
          lprev(*searchtri, backtracktri);
          fdest = fapex;
        } else {
          lnext(*searchtri, backtracktri);
          forg = fapex;
        }
        sym(backtracktri, *searchtri);
    
        /* Check for walking off the edge. */
        if (searchtri->tri == dummytri) {
          /* Turn around. */
          triedgecopy(backtracktri, *searchtri);
          swappoint = forg;
          forg = fdest;
          fdest = swappoint;
          apex(*searchtri, fapex);
          /* Check if the point really is beyond the triangulation boundary. */
          destorient = counterclockwise(forg, fapex, searchpoint);
          orgorient = counterclockwise(fapex, fdest, searchpoint);
          if ((orgorient < 0.0) && (destorient < 0.0)) {
            return OUTSIDE;
          }
        } else {
          apex(*searchtri, fapex);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  locate()   Find a triangle or edge containing a given point.             */
    /*                                                                           */
    /*  Searching begins from one of:  the input `searchtri', a recently         */
    /*  encountered triangle `recenttri', or from a triangle chosen from a       */
    /*  random sample.  The choice is made by determining which triangle's       */
    /*  origin is closest to the point we are searcing for.  Normally,           */
    /*  `searchtri' should be a handle on the convex hull of the triangulation.  */
    /*                                                                           */
    /*  Details on the random sampling method can be found in the Mucke, Saias,  */
    /*  and Zhu paper cited in the header of this code.                          */
    /*                                                                           */
    /*  On completion, `searchtri' is a triangle that contains `searchpoint'.    */
    /*                                                                           */
    /*  Returns ONVERTEX if the point lies on an existing vertex.  `searchtri'   */
    /*  is a handle whose origin is the existing vertex.                         */
    /*                                                                           */
    /*  Returns ONEDGE if the point lies on a mesh edge.  `searchtri' is a       */
    /*  handle whose primary edge is the edge on which the point lies.           */
    /*                                                                           */
    /*  Returns INTRIANGLE if the point lies strictly within a triangle.         */
    /*  `searchtri' is a handle on the triangle that contains the point.         */
    /*                                                                           */
    /*  Returns OUTSIDE if the point lies outside the mesh.  `searchtri' is a    */
    /*  handle whose primary edge the point is to the right of.  This might      */
    /*  occur when the circumcenter of a triangle falls just slightly outside    */
    /*  the mesh due to floating-point roundoff error.  It also occurs when      */
    /*  seeking a hole or region point that a foolish user has placed outside    */
    /*  the mesh.                                                                */
    /*                                                                           */
    /*  WARNING:  This routine is designed for convex triangulations, and will   */
    /*  not generally work after the holes and concavities have been carved.     */
    /*                                                                           */
    /*****************************************************************************/
    
    enum locateresult locate(searchpoint, searchtri)
    point searchpoint;
    struct triedge *searchtri;
    {
      VOID **sampleblock;
      triangle *firsttri;
      struct triedge sampletri;
      point torg, tdest;
      unsigned long alignptr;
      REAL searchdist, dist;
      REAL ahead;
      long sampleblocks, samplesperblock, samplenum;
      long triblocks;
      long i, j;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (verbose > 2) {
        printf("  Randomly sampling for a triangle near point (%.12g, %.12g).\n",
               searchpoint[0], searchpoint[1]);
      }
      /* Record the distance from the suggested starting triangle to the */
      /*   point we seek.                                                */
      org(*searchtri, torg);
      searchdist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
                 + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
      if (verbose > 2) {
        printf("    Boundary triangle has origin (%.12g, %.12g).\n",
               torg[0], torg[1]);
      }
    
      /* If a recently encountered triangle has been recorded and has not been */
      /*   deallocated, test it as a good starting point.                      */
      if (recenttri.tri != (triangle *) NULL) {
        if (recenttri.tri[3] != (triangle) NULL) {
          org(recenttri, torg);
          if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
            triedgecopy(recenttri, *searchtri);
            return ONVERTEX;
          }
          dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
               + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
          if (dist < searchdist) {
            triedgecopy(recenttri, *searchtri);
            searchdist = dist;
            if (verbose > 2) {
              printf("    Choosing recent triangle with origin (%.12g, %.12g).\n",
                     torg[0], torg[1]);
            }
          }
        }
      }
    
      /* The number of random samples taken is proportional to the cube root of */
      /*   the number of triangles in the mesh.  The next bit of code assumes   */
      /*   that the number of triangles increases monotonically.                */
      while (SAMPLEFACTOR * samples * samples * samples < triangles.items) {
        samples++;
      }
      triblocks = (triangles.maxitems + TRIPERBLOCK - 1) / TRIPERBLOCK;
      samplesperblock = 1 + (samples / triblocks);
      sampleblocks = samples / samplesperblock;
      sampleblock = triangles.firstblock;
      sampletri.orient = 0;
      for (i = 0; i < sampleblocks; i++) {
        alignptr = (unsigned long) (sampleblock + 1);
        firsttri = (triangle *) (alignptr + (unsigned long) triangles.alignbytes
                              - (alignptr % (unsigned long) triangles.alignbytes));
        for (j = 0; j < samplesperblock; j++) {
          if (i == triblocks - 1) {
            samplenum = randomnation((int)
                                     (triangles.maxitems - (i * TRIPERBLOCK)));
          } else {
            samplenum = randomnation(TRIPERBLOCK);
          }
          sampletri.tri = (triangle *)
                          (firsttri + (samplenum * triangles.itemwords));
          if (sampletri.tri[3] != (triangle) NULL) {
            org(sampletri, torg);
            dist = (searchpoint[0] - torg[0]) * (searchpoint[0] - torg[0])
                 + (searchpoint[1] - torg[1]) * (searchpoint[1] - torg[1]);
            if (dist < searchdist) {
              triedgecopy(sampletri, *searchtri);
              searchdist = dist;
              if (verbose > 2) {
                printf("    Choosing triangle with origin (%.12g, %.12g).\n",
                       torg[0], torg[1]);
              }
            }
          }
        }
        sampleblock = (VOID **) *sampleblock;
      }
      /* Where are we? */
      org(*searchtri, torg);
      dest(*searchtri, tdest);
      /* Check the starting triangle's vertices. */
      if ((torg[0] == searchpoint[0]) && (torg[1] == searchpoint[1])) {
        return ONVERTEX;
      }
      if ((tdest[0] == searchpoint[0]) && (tdest[1] == searchpoint[1])) {
        lnextself(*searchtri);
        return ONVERTEX;
      }
      /* Orient `searchtri' to fit the preconditions of calling preciselocate(). */
      ahead = counterclockwise(torg, tdest, searchpoint);
      if (ahead < 0.0) {
        /* Turn around so that `searchpoint' is to the left of the */
        /*   edge specified by `searchtri'.                        */
        symself(*searchtri);
      } else if (ahead == 0.0) {
        /* Check if `searchpoint' is between `torg' and `tdest'. */
        if (((torg[0] < searchpoint[0]) == (searchpoint[0] < tdest[0]))
            && ((torg[1] < searchpoint[1]) == (searchpoint[1] < tdest[1]))) {
          return ONEDGE;
        }
      }
      return preciselocate(searchpoint, searchtri);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Point location routines end here                          *********/
    
    /********* Mesh transformation routines begin here                   *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  insertshelle()   Create a new shell edge and insert it between two       */
    /*                   triangles.                                              */
    /*                                                                           */
    /*  The new shell edge is inserted at the edge described by the handle       */
    /*  `tri'.  Its vertices are properly initialized.  The marker `shellemark'  */
    /*  is applied to the shell edge and, if appropriate, its vertices.          */
    /*                                                                           */
    /*****************************************************************************/
    
    void insertshelle(tri, shellemark)
    struct triedge *tri;          /* Edge at which to insert the new shell edge. */
    int shellemark;                            /* Marker for the new shell edge. */
    {
      struct triedge oppotri;
      struct edge newshelle;
      point triorg, tridest;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      /* Mark points if possible. */
      org(*tri, triorg);
      dest(*tri, tridest);
      if (pointmark(triorg) == 0) {
        setpointmark(triorg, shellemark);
      }
      if (pointmark(tridest) == 0) {
        setpointmark(tridest, shellemark);
      }
      /* Check if there's already a shell edge here. */
      tspivot(*tri, newshelle);
      if (newshelle.sh == dummysh) {
        /* Make new shell edge and initialize its vertices. */
        makeshelle(&newshelle);
        setsorg(newshelle, tridest);
        setsdest(newshelle, triorg);
        /* Bond new shell edge to the two triangles it is sandwiched between. */
        /*   Note that the facing triangle `oppotri' might be equal to        */
        /*   `dummytri' (outer space), but the new shell edge is bonded to it */
        /*   all the same.                                                    */
        tsbond(*tri, newshelle);
        sym(*tri, oppotri);
        ssymself(newshelle);
        tsbond(oppotri, newshelle);
        setmark(newshelle, shellemark);
        if (verbose > 2) {
          printf("  Inserting new ");
          printshelle(&newshelle);
        }
      } else {
        if (mark(newshelle) == 0) {
          setmark(newshelle, shellemark);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  Terminology                                                              */
    /*                                                                           */
    /*  A "local transformation" replaces a small set of triangles with another  */
    /*  set of triangles.  This may or may not involve inserting or deleting a   */
    /*  point.                                                                   */
    /*                                                                           */
    /*  The term "casing" is used to describe the set of triangles that are      */
    /*  attached to the triangles being transformed, but are not transformed     */
    /*  themselves.  Think of the casing as a fixed hollow structure inside      */
    /*  which all the action happens.  A "casing" is only defined relative to    */
    /*  a single transformation; each occurrence of a transformation will        */
    /*  involve a different casing.                                              */
    /*                                                                           */
    /*  A "shell" is similar to a "casing".  The term "shell" describes the set  */
    /*  of shell edges (if any) that are attached to the triangles being         */
    /*  transformed.  However, I sometimes use "shell" to refer to a single      */
    /*  shell edge, so don't get confused.                                       */
    /*                                                                           */
    /*****************************************************************************/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  flip()   Transform two triangles to two different triangles by flipping  */
    /*           an edge within a quadrilateral.                                 */
    /*                                                                           */
    /*  Imagine the original triangles, abc and bad, oriented so that the        */
    /*  shared edge ab lies in a horizontal plane, with the point b on the left  */
    /*  and the point a on the right.  The point c lies below the edge, and the  */
    /*  point d lies above the edge.  The `flipedge' handle holds the edge ab    */
    /*  of triangle abc, and is directed left, from vertex a to vertex b.        */
    /*                                                                           */
    /*  The triangles abc and bad are deleted and replaced by the triangles cdb  */
    /*  and dca.  The triangles that represent abc and bad are NOT deallocated;  */
    /*  they are reused for dca and cdb, respectively.  Hence, any handles that  */
    /*  may have held the original triangles are still valid, although not       */
    /*  directed as they were before.                                            */
    /*                                                                           */
    /*  Upon completion of this routine, the `flipedge' handle holds the edge    */
    /*  dc of triangle dca, and is directed down, from vertex d to vertex c.     */
    /*  (Hence, the two triangles have rotated counterclockwise.)                */
    /*                                                                           */
    /*  WARNING:  This transformation is geometrically valid only if the         */
    /*  quadrilateral adbc is convex.  Furthermore, this transformation is       */
    /*  valid only if there is not a shell edge between the triangles abc and    */
    /*  bad.  This routine does not check either of these preconditions, and     */
    /*  it is the responsibility of the calling routine to ensure that they are  */
    /*  met.  If they are not, the streets shall be filled with wailing and      */
    /*  gnashing of teeth.                                                       */
    /*                                                                           */
    /*****************************************************************************/
    
    void flip(flipedge)
    struct triedge *flipedge;                    /* Handle for the triangle abc. */
    {
      struct triedge botleft, botright;
      struct triedge topleft, topright;
      struct triedge top;
      struct triedge botlcasing, botrcasing;
      struct triedge toplcasing, toprcasing;
      struct edge botlshelle, botrshelle;
      struct edge toplshelle, toprshelle;
      point leftpoint, rightpoint, botpoint;
      point farpoint;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      /* Identify the vertices of the quadrilateral. */
      org(*flipedge, rightpoint);
      dest(*flipedge, leftpoint);
      apex(*flipedge, botpoint);
      sym(*flipedge, top);
    #ifdef SELF_CHECK
      if (top.tri == dummytri) {
        printf("Internal error in flip():  Attempt to flip on boundary.\n");
        lnextself(*flipedge);
        return;
      }
      if (checksegments) {
        tspivot(*flipedge, toplshelle);
        if (toplshelle.sh != dummysh) {
          printf("Internal error in flip():  Attempt to flip a segment.\n");
          lnextself(*flipedge);
          return;
        }
      }
    #endif /* SELF_CHECK */
      apex(top, farpoint);
    
      /* Identify the casing of the quadrilateral. */
      lprev(top, topleft);
      sym(topleft, toplcasing);
      lnext(top, topright);
      sym(topright, toprcasing);
      lnext(*flipedge, botleft);
      sym(botleft, botlcasing);
      lprev(*flipedge, botright);
      sym(botright, botrcasing);
      /* Rotate the quadrilateral one-quarter turn counterclockwise. */
      bond(topleft, botlcasing);
      bond(botleft, botrcasing);
      bond(botright, toprcasing);
      bond(topright, toplcasing);
    
      if (checksegments) {
        /* Check for shell edges and rebond them to the quadrilateral. */
        tspivot(topleft, toplshelle);
        tspivot(botleft, botlshelle);
        tspivot(botright, botrshelle);
        tspivot(topright, toprshelle);
        if (toplshelle.sh == dummysh) {
          tsdissolve(topright);
        } else {
          tsbond(topright, toplshelle);
        }
        if (botlshelle.sh == dummysh) {
          tsdissolve(topleft);
        } else {
          tsbond(topleft, botlshelle);
        }
        if (botrshelle.sh == dummysh) {
          tsdissolve(botleft);
        } else {
          tsbond(botleft, botrshelle);
        }
        if (toprshelle.sh == dummysh) {
          tsdissolve(botright);
        } else {
          tsbond(botright, toprshelle);
        }
      }
    
      /* New point assignments for the rotated quadrilateral. */
      setorg(*flipedge, farpoint);
      setdest(*flipedge, botpoint);
      setapex(*flipedge, rightpoint);
      setorg(top, botpoint);
      setdest(top, farpoint);
      setapex(top, leftpoint);
      if (verbose > 2) {
        printf("  Edge flip results in left ");
        lnextself(topleft);
        printtriangle(&topleft);
        printf("  and right ");
        printtriangle(flipedge);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  insertsite()   Insert a vertex into a Delaunay triangulation,            */
    /*                 performing flips as necessary to maintain the Delaunay    */
    /*                 property.                                                 */
    /*                                                                           */
    /*  The point `insertpoint' is located.  If `searchtri.tri' is not NULL,     */
    /*  the search for the containing triangle begins from `searchtri'.  If      */
    /*  `searchtri.tri' is NULL, a full point location procedure is called.      */
    /*  If `insertpoint' is found inside a triangle, the triangle is split into  */
    /*  three; if `insertpoint' lies on an edge, the edge is split in two,       */
    /*  thereby splitting the two adjacent triangles into four.  Edge flips are  */
    /*  used to restore the Delaunay property.  If `insertpoint' lies on an      */
    /*  existing vertex, no action is taken, and the value DUPLICATEPOINT is     */
    /*  returned.  On return, `searchtri' is set to a handle whose origin is the */
    /*  existing vertex.                                                         */
    /*                                                                           */
    /*  Normally, the parameter `splitedge' is set to NULL, implying that no     */
    /*  segment should be split.  In this case, if `insertpoint' is found to     */
    /*  lie on a segment, no action is taken, and the value VIOLATINGPOINT is    */
    /*  returned.  On return, `searchtri' is set to a handle whose primary edge  */
    /*  is the violated segment.                                                 */
    /*                                                                           */
    /*  If the calling routine wishes to split a segment by inserting a point in */
    /*  it, the parameter `splitedge' should be that segment.  In this case,     */
    /*  `searchtri' MUST be the triangle handle reached by pivoting from that    */
    /*  segment; no point location is done.                                      */
    /*                                                                           */
    /*  `segmentflaws' and `triflaws' are flags that indicate whether or not     */
    /*  there should be checks for the creation of encroached segments or bad    */
    /*  quality faces.  If a newly inserted point encroaches upon segments,      */
    /*  these segments are added to the list of segments to be split if          */
    /*  `segmentflaws' is set.  If bad triangles are created, these are added    */
    /*  to the queue if `triflaws' is set.                                       */
    /*                                                                           */
    /*  If a duplicate point or violated segment does not prevent the point      */
    /*  from being inserted, the return value will be ENCROACHINGPOINT if the    */
    /*  point encroaches upon a segment (and checking is enabled), or            */
    /*  SUCCESSFULPOINT otherwise.  In either case, `searchtri' is set to a      */
    /*  handle whose origin is the newly inserted vertex.                        */
    /*                                                                           */
    /*  insertsite() does not use flip() for reasons of speed; some              */
    /*  information can be reused from edge flip to edge flip, like the          */
    /*  locations of shell edges.                                                */
    /*                                                                           */
    /*****************************************************************************/
    
    enum insertsiteresult insertsite(insertpoint, searchtri, splitedge,
                                     segmentflaws, triflaws)
    point insertpoint;
    struct triedge *searchtri;
    struct edge *splitedge;
    int segmentflaws;
    int triflaws;
    {
      struct triedge horiz;
      struct triedge top;
      struct triedge botleft, botright;
      struct triedge topleft, topright;
      struct triedge newbotleft, newbotright;
      struct triedge newtopright;
      struct triedge botlcasing, botrcasing;
      struct triedge toplcasing, toprcasing;
      struct triedge testtri;
      struct edge botlshelle, botrshelle;
      struct edge toplshelle, toprshelle;
      struct edge brokenshelle;
      struct edge checkshelle;
      struct edge rightedge;
      struct edge newedge;
      struct edge *encroached;
      point first;
      point leftpoint, rightpoint, botpoint, toppoint, farpoint;
      REAL attrib;
      REAL area;
      enum insertsiteresult success;
      enum locateresult intersect;
      int doflip;
      int mirrorflag;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;         /* Temporary variable used by spivot() and tspivot(). */
    
      if (verbose > 1) {
        printf("  Inserting (%.12g, %.12g).\n", insertpoint[0], insertpoint[1]);
      }
      if (splitedge == (struct edge *) NULL) {
        /* Find the location of the point to be inserted.  Check if a good */
        /*   starting triangle has already been provided by the caller.    */
        if (searchtri->tri == (triangle *) NULL) {
          /* Find a boundary triangle. */
          horiz.tri = dummytri;
          horiz.orient = 0;
          symself(horiz);
          /* Search for a triangle containing `insertpoint'. */
          intersect = locate(insertpoint, &horiz);
        } else {
          /* Start searching from the triangle provided by the caller. */
          triedgecopy(*searchtri, horiz);
          intersect = preciselocate(insertpoint, &horiz);
        }
      } else {
        /* The calling routine provides the edge in which the point is inserted. */
        triedgecopy(*searchtri, horiz);
        intersect = ONEDGE;
      }
      if (intersect == ONVERTEX) {
        /* There's already a vertex there.  Return in `searchtri' a triangle */
        /*   whose origin is the existing vertex.                            */
        triedgecopy(horiz, *searchtri);
        triedgecopy(horiz, recenttri);
        return DUPLICATEPOINT;
      }
      if ((intersect == ONEDGE) || (intersect == OUTSIDE)) {
        /* The vertex falls on an edge or boundary. */
        if (checksegments && (splitedge == (struct edge *) NULL)) {
          /* Check whether the vertex falls on a shell edge. */
          tspivot(horiz, brokenshelle);
          if (brokenshelle.sh != dummysh) {
            /* The vertex falls on a shell edge. */
            if (segmentflaws) {
              if (nobisect == 0) {
                /* Add the shell edge to the list of encroached segments. */
                encroached = (struct edge *) poolalloc(&badsegments);
                shellecopy(brokenshelle, *encroached);
              } else if ((nobisect == 1) && (intersect == ONEDGE)) {
                /* This segment may be split only if it is an internal boundary. */
                sym(horiz, testtri);
                if (testtri.tri != dummytri) {
                  /* Add the shell edge to the list of encroached segments. */
                  encroached = (struct edge *) poolalloc(&badsegments);
                  shellecopy(brokenshelle, *encroached);
                }
              }
            }
            /* Return a handle whose primary edge contains the point, */
            /*   which has not been inserted.                         */
            triedgecopy(horiz, *searchtri);
            triedgecopy(horiz, recenttri);
            return VIOLATINGPOINT;
          }
        }
        /* Insert the point on an edge, dividing one triangle into two (if */
        /*   the edge lies on a boundary) or two triangles into four.      */
        lprev(horiz, botright);
        sym(botright, botrcasing);
        sym(horiz, topright);
        /* Is there a second triangle?  (Or does this edge lie on a boundary?) */
        mirrorflag = topright.tri != dummytri;
        if (mirrorflag) {
          lnextself(topright);
          sym(topright, toprcasing);
          maketriangle(&newtopright);
        } else {
          /* Splitting the boundary edge increases the number of boundary edges. */
          hullsize++;
        }
        maketriangle(&newbotright);
    
        /* Set the vertices of changed and new triangles. */
        org(horiz, rightpoint);
        dest(horiz, leftpoint);
        apex(horiz, botpoint);
        setorg(newbotright, botpoint);
        setdest(newbotright, rightpoint);
        setapex(newbotright, insertpoint);
        setorg(horiz, insertpoint);
        for (i = 0; i < eextras; i++) {
          /* Set the element attributes of a new triangle. */
          setelemattribute(newbotright, i, elemattribute(botright, i));
        }
        if (vararea) {
          /* Set the area constraint of a new triangle. */
          setareabound(newbotright, areabound(botright));
        }
        if (mirrorflag) {
          dest(topright, toppoint);
          setorg(newtopright, rightpoint);
          setdest(newtopright, toppoint);
          setapex(newtopright, insertpoint);
          setorg(topright, insertpoint);
          for (i = 0; i < eextras; i++) {
            /* Set the element attributes of another new triangle. */
            setelemattribute(newtopright, i, elemattribute(topright, i));
          }
          if (vararea) {
            /* Set the area constraint of another new triangle. */
            setareabound(newtopright, areabound(topright));
          }
        }
    
        /* There may be shell edges that need to be bonded */
        /*   to the new triangle(s).                       */
        if (checksegments) {
          tspivot(botright, botrshelle);
          if (botrshelle.sh != dummysh) {
            tsdissolve(botright);
            tsbond(newbotright, botrshelle);
          }
          if (mirrorflag) {
            tspivot(topright, toprshelle);
            if (toprshelle.sh != dummysh) {
              tsdissolve(topright);
              tsbond(newtopright, toprshelle);
            }
          }
        }
    
        /* Bond the new triangle(s) to the surrounding triangles. */
        bond(newbotright, botrcasing);
        lprevself(newbotright);
        bond(newbotright, botright);
        lprevself(newbotright);
        if (mirrorflag) {
          bond(newtopright, toprcasing);
          lnextself(newtopright);
          bond(newtopright, topright);
          lnextself(newtopright);
          bond(newtopright, newbotright);
        }
    
        if (splitedge != (struct edge *) NULL) {
          /* Split the shell edge into two. */
          setsdest(*splitedge, insertpoint);
          ssymself(*splitedge);
          spivot(*splitedge, rightedge);
          insertshelle(&newbotright, mark(*splitedge));
          tspivot(newbotright, newedge);
          sbond(*splitedge, newedge);
          ssymself(newedge);
          sbond(newedge, rightedge);
          ssymself(*splitedge);
        }
    
    #ifdef SELF_CHECK
        if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
          printf("Internal error in insertsite():\n");
          printf("  Clockwise triangle prior to edge point insertion (bottom).\n");
        }
        if (mirrorflag) {
          if (counterclockwise(leftpoint, rightpoint, toppoint) < 0.0) {
            printf("Internal error in insertsite():\n");
            printf("  Clockwise triangle prior to edge point insertion (top).\n");
          }
          if (counterclockwise(rightpoint, toppoint, insertpoint) < 0.0) {
            printf("Internal error in insertsite():\n");
            printf("  Clockwise triangle after edge point insertion (top right).\n"
                   );
          }
          if (counterclockwise(toppoint, leftpoint, insertpoint) < 0.0) {
            printf("Internal error in insertsite():\n");
            printf("  Clockwise triangle after edge point insertion (top left).\n"
                   );
          }
        }
        if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
          printf("Internal error in insertsite():\n");
          printf("  Clockwise triangle after edge point insertion (bottom left).\n"
                 );
        }
        if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
          printf("Internal error in insertsite():\n");
          printf(
            "  Clockwise triangle after edge point insertion (bottom right).\n");
        }
    #endif /* SELF_CHECK */
        if (verbose > 2) {
          printf("  Updating bottom left ");
          printtriangle(&botright);
          if (mirrorflag) {
            printf("  Updating top left ");
            printtriangle(&topright);
            printf("  Creating top right ");
            printtriangle(&newtopright);
          }
          printf("  Creating bottom right ");
          printtriangle(&newbotright);
        }
    
        /* Position `horiz' on the first edge to check for */
        /*   the Delaunay property.                        */
        lnextself(horiz);
      } else {
        /* Insert the point in a triangle, splitting it into three. */
        lnext(horiz, botleft);
        lprev(horiz, botright);
        sym(botleft, botlcasing);
        sym(botright, botrcasing);
        maketriangle(&newbotleft);
        maketriangle(&newbotright);
    
        /* Set the vertices of changed and new triangles. */
        org(horiz, rightpoint);
        dest(horiz, leftpoint);
        apex(horiz, botpoint);
        setorg(newbotleft, leftpoint);
        setdest(newbotleft, botpoint);
        setapex(newbotleft, insertpoint);
        setorg(newbotright, botpoint);
        setdest(newbotright, rightpoint);
        setapex(newbotright, insertpoint);
        setapex(horiz, insertpoint);
        for (i = 0; i < eextras; i++) {
          /* Set the element attributes of the new triangles. */
          attrib = elemattribute(horiz, i);
          setelemattribute(newbotleft, i, attrib);
          setelemattribute(newbotright, i, attrib);
        }
        if (vararea) {
          /* Set the area constraint of the new triangles. */
          area = areabound(horiz);
          setareabound(newbotleft, area);
          setareabound(newbotright, area);
        }
    
        /* There may be shell edges that need to be bonded */
        /*   to the new triangles.                         */
        if (checksegments) {
          tspivot(botleft, botlshelle);
          if (botlshelle.sh != dummysh) {
            tsdissolve(botleft);
            tsbond(newbotleft, botlshelle);
          }
          tspivot(botright, botrshelle);
          if (botrshelle.sh != dummysh) {
            tsdissolve(botright);
            tsbond(newbotright, botrshelle);
          }
        }
    
        /* Bond the new triangles to the surrounding triangles. */
        bond(newbotleft, botlcasing);
        bond(newbotright, botrcasing);
        lnextself(newbotleft);
        lprevself(newbotright);
        bond(newbotleft, newbotright);
        lnextself(newbotleft);
        bond(botleft, newbotleft);
        lprevself(newbotright);
        bond(botright, newbotright);
    
    #ifdef SELF_CHECK
        if (counterclockwise(rightpoint, leftpoint, botpoint) < 0.0) {
          printf("Internal error in insertsite():\n");
          printf("  Clockwise triangle prior to point insertion.\n");
        }
        if (counterclockwise(rightpoint, leftpoint, insertpoint) < 0.0) {
          printf("Internal error in insertsite():\n");
          printf("  Clockwise triangle after point insertion (top).\n");
        }
        if (counterclockwise(leftpoint, botpoint, insertpoint) < 0.0) {
          printf("Internal error in insertsite():\n");
          printf("  Clockwise triangle after point insertion (left).\n");
        }
        if (counterclockwise(botpoint, rightpoint, insertpoint) < 0.0) {
          printf("Internal error in insertsite():\n");
          printf("  Clockwise triangle after point insertion (right).\n");
        }
    #endif /* SELF_CHECK */
        if (verbose > 2) {
          printf("  Updating top ");
          printtriangle(&horiz);
          printf("  Creating left ");
          printtriangle(&newbotleft);
          printf("  Creating right ");
          printtriangle(&newbotright);
        }
      }
    
      /* The insertion is successful by default, unless an encroached */
      /*   edge is found.                                             */
      success = SUCCESSFULPOINT;
      /* Circle around the newly inserted vertex, checking each edge opposite */
      /*   it for the Delaunay property.  Non-Delaunay edges are flipped.     */
      /*   `horiz' is always the edge being checked.  `first' marks where to  */
      /*   stop circling.                                                     */
      org(horiz, first);
      rightpoint = first;
      dest(horiz, leftpoint);
      /* Circle until finished. */
      while (1) {
        /* By default, the edge will be flipped. */
        doflip = 1;
        if (checksegments) {
          /* Check for a segment, which cannot be flipped. */
          tspivot(horiz, checkshelle);
          if (checkshelle.sh != dummysh) {
            /* The edge is a segment and cannot be flipped. */
            doflip = 0;
    #ifndef CDT_ONLY
            if (segmentflaws) {
              /* Does the new point encroach upon this segment? */
              if (checkedge4encroach(&checkshelle)) {
                success = ENCROACHINGPOINT;
              }
            }
    #endif /* not CDT_ONLY */
          }
        }
        if (doflip) {
          /* Check if the edge is a boundary edge. */
          sym(horiz, top);
          if (top.tri == dummytri) {
            /* The edge is a boundary edge and cannot be flipped. */
            doflip = 0;
          } else {
            /* Find the point on the other side of the edge. */
            apex(top, farpoint);
            /* In the incremental Delaunay triangulation algorithm, any of    */
            /*   `leftpoint', `rightpoint', and `farpoint' could be vertices  */
            /*   of the triangular bounding box.  These vertices must be      */
            /*   treated as if they are infinitely distant, even though their */
            /*   "coordinates" are not.                                       */
            if ((leftpoint == infpoint1) || (leftpoint == infpoint2)
                       || (leftpoint == infpoint3)) {
              /* `leftpoint' is infinitely distant.  Check the convexity of */
              /*   the boundary of the triangulation.  'farpoint' might be  */
              /*   infinite as well, but trust me, this same condition      */
              /*   should be applied.                                       */
              doflip = counterclockwise(insertpoint, rightpoint, farpoint) > 0.0;
            } else if ((rightpoint == infpoint1) || (rightpoint == infpoint2)
                       || (rightpoint == infpoint3)) {
              /* `rightpoint' is infinitely distant.  Check the convexity of */
              /*   the boundary of the triangulation.  'farpoint' might be  */
              /*   infinite as well, but trust me, this same condition      */
              /*   should be applied.                                       */
              doflip = counterclockwise(farpoint, leftpoint, insertpoint) > 0.0;
            } else if ((farpoint == infpoint1) || (farpoint == infpoint2)
                || (farpoint == infpoint3)) {
              /* `farpoint' is infinitely distant and cannot be inside */
              /*   the circumcircle of the triangle `horiz'.           */
              doflip = 0;
            } else {
              /* Test whether the edge is locally Delaunay. */
              doflip = incircle(leftpoint, insertpoint, rightpoint, farpoint)
                       > 0.0;
            }
            if (doflip) {
              /* We made it!  Flip the edge `horiz' by rotating its containing */
              /*   quadrilateral (the two triangles adjacent to `horiz').      */
              /* Identify the casing of the quadrilateral. */
              lprev(top, topleft);
              sym(topleft, toplcasing);
              lnext(top, topright);
              sym(topright, toprcasing);
              lnext(horiz, botleft);
              sym(botleft, botlcasing);
              lprev(horiz, botright);
              sym(botright, botrcasing);
              /* Rotate the quadrilateral one-quarter turn counterclockwise. */
              bond(topleft, botlcasing);
              bond(botleft, botrcasing);
              bond(botright, toprcasing);
              bond(topright, toplcasing);
              if (checksegments) {
                /* Check for shell edges and rebond them to the quadrilateral. */
                tspivot(topleft, toplshelle);
                tspivot(botleft, botlshelle);
                tspivot(botright, botrshelle);
                tspivot(topright, toprshelle);
                if (toplshelle.sh == dummysh) {
                  tsdissolve(topright);
                } else {
                  tsbond(topright, toplshelle);
                }
                if (botlshelle.sh == dummysh) {
                  tsdissolve(topleft);
                } else {
                  tsbond(topleft, botlshelle);
                }
                if (botrshelle.sh == dummysh) {
                  tsdissolve(botleft);
                } else {
                  tsbond(botleft, botrshelle);
                }
                if (toprshelle.sh == dummysh) {
                  tsdissolve(botright);
                } else {
                  tsbond(botright, toprshelle);
                }
              }
              /* New point assignments for the rotated quadrilateral. */
              setorg(horiz, farpoint);
              setdest(horiz, insertpoint);
              setapex(horiz, rightpoint);
              setorg(top, insertpoint);
              setdest(top, farpoint);
              setapex(top, leftpoint);
              for (i = 0; i < eextras; i++) {
                /* Take the average of the two triangles' attributes. */
                attrib = 0.5 * (elemattribute(top, i) + elemattribute(horiz, i));
                setelemattribute(top, i, attrib);
                setelemattribute(horiz, i, attrib);
              }
              if (vararea) {
                if ((areabound(top) <= 0.0) || (areabound(horiz) <= 0.0)) {
                  area = -1.0;
                } else {
                  /* Take the average of the two triangles' area constraints.    */
                  /*   This prevents small area constraints from migrating a     */
                  /*   long, long way from their original location due to flips. */
                  area = 0.5 * (areabound(top) + areabound(horiz));
                }
                setareabound(top, area);
                setareabound(horiz, area);
              }
    #ifdef SELF_CHECK
              if (insertpoint != (point) NULL) {
                if (counterclockwise(leftpoint, insertpoint, rightpoint) < 0.0) {
                  printf("Internal error in insertsite():\n");
                  printf("  Clockwise triangle prior to edge flip (bottom).\n");
                }
                /* The following test has been removed because constrainededge() */
                /*   sometimes generates inverted triangles that insertsite()    */
                /*   removes.                                                    */
    /*
                if (counterclockwise(rightpoint, farpoint, leftpoint) < 0.0) {
                  printf("Internal error in insertsite():\n");
                  printf("  Clockwise triangle prior to edge flip (top).\n");
                }
    */
                if (counterclockwise(farpoint, leftpoint, insertpoint) < 0.0) {
                  printf("Internal error in insertsite():\n");
                  printf("  Clockwise triangle after edge flip (left).\n");
                }
                if (counterclockwise(insertpoint, rightpoint, farpoint) < 0.0) {
                  printf("Internal error in insertsite():\n");
                  printf("  Clockwise triangle after edge flip (right).\n");
                }
              }
    #endif /* SELF_CHECK */
              if (verbose > 2) {
                printf("  Edge flip results in left ");
                lnextself(topleft);
                printtriangle(&topleft);
                printf("  and right ");
                printtriangle(&horiz);
              }
              /* On the next iterations, consider the two edges that were  */
              /*   exposed (this is, are now visible to the newly inserted */
              /*   point) by the edge flip.                                */
              lprevself(horiz);
              leftpoint = farpoint;
            }
          }
        }
        if (!doflip) {
          /* The handle `horiz' is accepted as locally Delaunay. */
    #ifndef CDT_ONLY
          if (triflaws) {
            /* Check the triangle `horiz' for quality. */
            testtriangle(&horiz);
          }
    #endif /* not CDT_ONLY */
          /* Look for the next edge around the newly inserted point. */
          lnextself(horiz);
          sym(horiz, testtri);
          /* Check for finishing a complete revolution about the new point, or */
          /*   falling off the edge of the triangulation.  The latter will     */
          /*   happen when a point is inserted at a boundary.                  */
          if ((leftpoint == first) || (testtri.tri == dummytri)) {
            /* We're done.  Return a triangle whose origin is the new point. */
            lnext(horiz, *searchtri);
            lnext(horiz, recenttri);
            return success;
          }
          /* Finish finding the next edge around the newly inserted point. */
          lnext(testtri, horiz);
          rightpoint = leftpoint;
          dest(horiz, leftpoint);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  triangulatepolygon()   Find the Delaunay triangulation of a polygon that */
    /*                         has a certain "nice" shape.  This includes the    */
    /*                         polygons that result from deletion of a point or  */
    /*                         insertion of a segment.                           */
    /*                                                                           */
    /*  This is a conceptually difficult routine.  The starting assumption is    */
    /*  that we have a polygon with n sides.  n - 1 of these sides are currently */
    /*  represented as edges in the mesh.  One side, called the "base", need not */
    /*  be.                                                                      */
    /*                                                                           */
    /*  Inside the polygon is a structure I call a "fan", consisting of n - 1    */
    /*  triangles that share a common origin.  For each of these triangles, the  */
    /*  edge opposite the origin is one of the sides of the polygon.  The        */
    /*  primary edge of each triangle is the edge directed from the origin to    */
    /*  the destination; note that this is not the same edge that is a side of   */
    /*  the polygon.  `firstedge' is the primary edge of the first triangle.     */
    /*  From there, the triangles follow in counterclockwise order about the     */
    /*  polygon, until `lastedge', the primary edge of the last triangle.        */
    /*  `firstedge' and `lastedge' are probably connected to other triangles     */
    /*  beyond the extremes of the fan, but their identity is not important, as  */
    /*  long as the fan remains connected to them.                               */
    /*                                                                           */
    /*  Imagine the polygon oriented so that its base is at the bottom.  This    */
    /*  puts `firstedge' on the far right, and `lastedge' on the far left.       */
    /*  The right vertex of the base is the destination of `firstedge', and the  */
    /*  left vertex of the base is the apex of `lastedge'.                       */
    /*                                                                           */
    /*  The challenge now is to find the right sequence of edge flips to         */
    /*  transform the fan into a Delaunay triangulation of the polygon.  Each    */
    /*  edge flip effectively removes one triangle from the fan, committing it   */
    /*  to the polygon.  The resulting polygon has one fewer edge.  If `doflip'  */
    /*  is set, the final flip will be performed, resulting in a fan of one      */
    /*  (useless?) triangle.  If `doflip' is not set, the final flip is not      */
    /*  performed, resulting in a fan of two triangles, and an unfinished        */
    /*  triangular polygon that is not yet filled out with a single triangle.    */
    /*  On completion of the routine, `lastedge' is the last remaining triangle, */
    /*  or the leftmost of the last two.                                         */
    /*                                                                           */
    /*  Although the flips are performed in the order described above, the       */
    /*  decisions about what flips to perform are made in precisely the reverse  */
    /*  order.  The recursive triangulatepolygon() procedure makes a decision,   */
    /*  uses up to two recursive calls to triangulate the "subproblems"          */
    /*  (polygons with fewer edges), and then performs an edge flip.             */
    /*                                                                           */
    /*  The "decision" it makes is which vertex of the polygon should be         */
    /*  connected to the base.  This decision is made by testing every possible  */
    /*  vertex.  Once the best vertex is found, the two edges that connect this  */
    /*  vertex to the base become the bases for two smaller polygons.  These     */
    /*  are triangulated recursively.  Unfortunately, this approach can take     */
    /*  O(n^2) time not only in the worst case, but in many common cases.  It's  */
    /*  rarely a big deal for point deletion, where n is rarely larger than ten, */
    /*  but it could be a big deal for segment insertion, especially if there's  */
    /*  a lot of long segments that each cut many triangles.  I ought to code    */
    /*  a faster algorithm some time.                                            */
    /*                                                                           */
    /*  The `edgecount' parameter is the number of sides of the polygon,         */
    /*  including its base.  `triflaws' is a flag that determines whether the    */
    /*  new triangles should be tested for quality, and enqueued if they are     */
    /*  bad.                                                                     */
    /*                                                                           */
    /*****************************************************************************/
    
    void triangulatepolygon(firstedge, lastedge, edgecount, doflip, triflaws)
    struct triedge *firstedge;
    struct triedge *lastedge;
    int edgecount;
    int doflip;
    int triflaws;
    {
      struct triedge testtri;
      struct triedge besttri;
      struct triedge tempedge;
      point leftbasepoint, rightbasepoint;
      point testpoint;
      point bestpoint;
      int bestnumber;
      int i;
      triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
    
      /* Identify the base vertices. */
      apex(*lastedge, leftbasepoint);
      dest(*firstedge, rightbasepoint);
      if (verbose > 2) {
        printf("  Triangulating interior polygon at edge\n");
        printf("    (%.12g, %.12g) (%.12g, %.12g)\n", leftbasepoint[0],
               leftbasepoint[1], rightbasepoint[0], rightbasepoint[1]);
      }
      /* Find the best vertex to connect the base to. */
      onext(*firstedge, besttri);
      dest(besttri, bestpoint);
      triedgecopy(besttri, testtri);
      bestnumber = 1;
      for (i = 2; i <= edgecount - 2; i++) {
        onextself(testtri);
        dest(testtri, testpoint);
        /* Is this a better vertex? */
        if (incircle(leftbasepoint, rightbasepoint, bestpoint, testpoint) > 0.0) {
          triedgecopy(testtri, besttri);
          bestpoint = testpoint;
          bestnumber = i;
        }
      }
      if (verbose > 2) {
        printf("    Connecting edge to (%.12g, %.12g)\n", bestpoint[0],
               bestpoint[1]);
      }
      if (bestnumber > 1) {
        /* Recursively triangulate the smaller polygon on the right. */
        oprev(besttri, tempedge);
        triangulatepolygon(firstedge, &tempedge, bestnumber + 1, 1, triflaws);
      }
      if (bestnumber < edgecount - 2) {
        /* Recursively triangulate the smaller polygon on the left. */
        sym(besttri, tempedge);
        triangulatepolygon(&besttri, lastedge, edgecount - bestnumber, 1,
                           triflaws);
        /* Find `besttri' again; it may have been lost to edge flips. */
        sym(tempedge, besttri);
      }
      if (doflip) {
        /* Do one final edge flip. */
        flip(&besttri);
    #ifndef CDT_ONLY
        if (triflaws) {
          /* Check the quality of the newly committed triangle. */
          sym(besttri, testtri);
          testtriangle(&testtri);
        }
    #endif /* not CDT_ONLY */
      }
      /* Return the base triangle. */
      triedgecopy(besttri, *lastedge);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  deletesite()   Delete a vertex from a Delaunay triangulation, ensuring   */
    /*                 that the triangulation remains Delaunay.                  */
    /*                                                                           */
    /*  The origin of `deltri' is deleted.  The union of the triangles adjacent  */
    /*  to this point is a polygon, for which the Delaunay triangulation is      */
    /*  found.  Two triangles are removed from the mesh.                         */
    /*                                                                           */
    /*  Only interior points that do not lie on segments (shell edges) or        */
    /*  boundaries may be deleted.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void deletesite(deltri)
    struct triedge *deltri;
    {
      struct triedge countingtri;
      struct triedge firstedge, lastedge;
      struct triedge deltriright;
      struct triedge lefttri, righttri;
      struct triedge leftcasing, rightcasing;
      struct edge leftshelle, rightshelle;
      point delpoint;
      point neworg;
      int edgecount;
      triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      org(*deltri, delpoint);
      if (verbose > 1) {
        printf("  Deleting (%.12g, %.12g).\n", delpoint[0], delpoint[1]);
      }
      pointdealloc(delpoint);
    
      /* Count the degree of the point being deleted. */
      onext(*deltri, countingtri);
      edgecount = 1;
      while (!triedgeequal(*deltri, countingtri)) {
    #ifdef SELF_CHECK
        if (countingtri.tri == dummytri) {
          printf("Internal error in deletesite():\n");
          printf("  Attempt to delete boundary point.\n");
          internalerror();
        }
    #endif /* SELF_CHECK */
        edgecount++;
        onextself(countingtri);
      }
    
    #ifdef SELF_CHECK
      if (edgecount < 3) {
        printf("Internal error in deletesite():\n  Point has degree %d.\n",
               edgecount);
        internalerror();
      }
    #endif /* SELF_CHECK */
      if (edgecount > 3) {
        /* Triangulate the polygon defined by the union of all triangles */
        /*   adjacent to the point being deleted.  Check the quality of  */
        /*   the resulting triangles.                                    */
        onext(*deltri, firstedge);
        oprev(*deltri, lastedge);
        triangulatepolygon(&firstedge, &lastedge, edgecount, 0, !nobisect);
      }
      /* Splice out two triangles. */
      lprev(*deltri, deltriright);
      dnext(*deltri, lefttri);
      sym(lefttri, leftcasing);
      oprev(deltriright, righttri);
      sym(righttri, rightcasing);
      bond(*deltri, leftcasing);
      bond(deltriright, rightcasing);
      tspivot(lefttri, leftshelle);
      if (leftshelle.sh != dummysh) {
        tsbond(*deltri, leftshelle);
      }
      tspivot(righttri, rightshelle);
      if (rightshelle.sh != dummysh) {
        tsbond(deltriright, rightshelle);
      }
    
      /* Set the new origin of `deltri' and check its quality. */
      org(lefttri, neworg);
      setorg(*deltri, neworg);
      if (!nobisect) {
        testtriangle(deltri);
      }
    
      /* Delete the two spliced-out triangles. */
      triangledealloc(lefttri.tri);
      triangledealloc(righttri.tri);
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh transformation routines end here                     *********/
    
    /********* Divide-and-conquer Delaunay triangulation begins here     *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  The divide-and-conquer bounding box                                      */
    /*                                                                           */
    /*  I originally implemented the divide-and-conquer and incremental Delaunay */
    /*  triangulations using the edge-based data structure presented by Guibas   */
    /*  and Stolfi.  Switching to a triangle-based data structure doubled the    */
    /*  speed.  However, I had to think of a few extra tricks to maintain the    */
    /*  elegance of the original algorithms.                                     */
    /*                                                                           */
    /*  The "bounding box" used by my variant of the divide-and-conquer          */
    /*  algorithm uses one triangle for each edge of the convex hull of the      */
    /*  triangulation.  These bounding triangles all share a common apical       */
    /*  vertex, which is represented by NULL and which represents nothing.       */
    /*  The bounding triangles are linked in a circular fan about this NULL      */
    /*  vertex, and the edges on the convex hull of the triangulation appear     */
    /*  opposite the NULL vertex.  You might find it easiest to imagine that     */
    /*  the NULL vertex is a point in 3D space behind the center of the          */
    /*  triangulation, and that the bounding triangles form a sort of cone.      */
    /*                                                                           */
    /*  This bounding box makes it easy to represent degenerate cases.  For      */
    /*  instance, the triangulation of two vertices is a single edge.  This edge */
    /*  is represented by two bounding box triangles, one on each "side" of the  */
    /*  edge.  These triangles are also linked together in a fan about the NULL  */
    /*  vertex.                                                                  */
    /*                                                                           */
    /*  The bounding box also makes it easy to traverse the convex hull, as the  */
    /*  divide-and-conquer algorithm needs to do.                                */
    /*                                                                           */
    /*****************************************************************************/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pointsort()   Sort an array of points by x-coordinate, using the         */
    /*                y-coordinate as a secondary key.                           */
    /*                                                                           */
    /*  Uses quicksort.  Randomized O(n log n) time.  No, I did not make any of  */
    /*  the usual quicksort mistakes.                                            */
    /*                                                                           */
    /*****************************************************************************/
    
    void pointsort(sortarray, arraysize)
    point *sortarray;
    int arraysize;
    {
      int left, right;
      int pivot;
      REAL pivotx, pivoty;
      point temp;
    
      if (arraysize == 2) {
        /* Recursive base case. */
        if ((sortarray[0][0] > sortarray[1][0]) ||
            ((sortarray[0][0] == sortarray[1][0]) &&
             (sortarray[0][1] > sortarray[1][1]))) {
          temp = sortarray[1];
          sortarray[1] = sortarray[0];
          sortarray[0] = temp;
        }
        return;
      }
      /* Choose a random pivot to split the array. */
      pivot = (int) randomnation(arraysize);
      pivotx = sortarray[pivot][0];
      pivoty = sortarray[pivot][1];
      /* Split the array. */
      left = -1;
      right = arraysize;
      while (left < right) {
        /* Search for a point whose x-coordinate is too large for the left. */
        do {
          left++;
        } while ((left <= right) && ((sortarray[left][0] < pivotx) ||
                                     ((sortarray[left][0] == pivotx) &&
                                      (sortarray[left][1] < pivoty))));
        /* Search for a point whose x-coordinate is too small for the right. */
        do {
          right--;
        } while ((left <= right) && ((sortarray[right][0] > pivotx) ||
                                     ((sortarray[right][0] == pivotx) &&
                                      (sortarray[right][1] > pivoty))));
        if (left < right) {
          /* Swap the left and right points. */
          temp = sortarray[left];
          sortarray[left] = sortarray[right];
          sortarray[right] = temp;
        }
      }
      if (left > 1) {
        /* Recursively sort the left subset. */
        pointsort(sortarray, left);
      }
      if (right < arraysize - 2) {
        /* Recursively sort the right subset. */
        pointsort(&sortarray[right + 1], arraysize - right - 1);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  pointmedian()   An order statistic algorithm, almost.  Shuffles an array */
    /*                  of points so that the first `median' points occur        */
    /*                  lexicographically before the remaining points.           */
    /*                                                                           */
    /*  Uses the x-coordinate as the primary key if axis == 0; the y-coordinate  */
    /*  if axis == 1.  Very similar to the pointsort() procedure, but runs in    */
    /*  randomized linear time.                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    void pointmedian(sortarray, arraysize, median, axis)
    point *sortarray;
    int arraysize;
    int median;
    int axis;
    {
      int left, right;
      int pivot;
      REAL pivot1, pivot2;
      point temp;
    
      if (arraysize == 2) {
        /* Recursive base case. */
        if ((sortarray[0][axis] > sortarray[1][axis]) ||
            ((sortarray[0][axis] == sortarray[1][axis]) &&
             (sortarray[0][1 - axis] > sortarray[1][1 - axis]))) {
          temp = sortarray[1];
          sortarray[1] = sortarray[0];
          sortarray[0] = temp;
        }
        return;
      }
      /* Choose a random pivot to split the array. */
      pivot = (int) randomnation(arraysize);
      pivot1 = sortarray[pivot][axis];
      pivot2 = sortarray[pivot][1 - axis];
      /* Split the array. */
      left = -1;
      right = arraysize;
      while (left < right) {
        /* Search for a point whose x-coordinate is too large for the left. */
        do {
          left++;
        } while ((left <= right) && ((sortarray[left][axis] < pivot1) ||
                                     ((sortarray[left][axis] == pivot1) &&
                                      (sortarray[left][1 - axis] < pivot2))));
        /* Search for a point whose x-coordinate is too small for the right. */
        do {
          right--;
        } while ((left <= right) && ((sortarray[right][axis] > pivot1) ||
                                     ((sortarray[right][axis] == pivot1) &&
                                      (sortarray[right][1 - axis] > pivot2))));
        if (left < right) {
          /* Swap the left and right points. */
          temp = sortarray[left];
          sortarray[left] = sortarray[right];
          sortarray[right] = temp;
        }
      }
      /* Unlike in pointsort(), at most one of the following */
      /*   conditionals is true.                             */
      if (left > median) {
        /* Recursively shuffle the left subset. */
        pointmedian(sortarray, left, median, axis);
      }
      if (right < median - 1) {
        /* Recursively shuffle the right subset. */
        pointmedian(&sortarray[right + 1], arraysize - right - 1,
                    median - right - 1, axis);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  alternateaxes()   Sorts the points as appropriate for the divide-and-    */
    /*                    conquer algorithm with alternating cuts.               */
    /*                                                                           */
    /*  Partitions by x-coordinate if axis == 0; by y-coordinate if axis == 1.   */
    /*  For the base case, subsets containing only two or three points are       */
    /*  always sorted by x-coordinate.                                           */
    /*                                                                           */
    /*****************************************************************************/
    
    void alternateaxes(sortarray, arraysize, axis)
    point *sortarray;
    int arraysize;
    int axis;
    {
      int divider;
    
      divider = arraysize >> 1;
      if (arraysize <= 3) {
        /* Recursive base case:  subsets of two or three points will be      */
        /*   handled specially, and should always be sorted by x-coordinate. */
        axis = 0;
      }
      /* Partition with a horizontal or vertical cut. */
      pointmedian(sortarray, arraysize, divider, axis);
      /* Recursively partition the subsets with a cross cut. */
      if (arraysize - divider >= 2) {
        if (divider >= 2) {
          alternateaxes(sortarray, divider, 1 - axis);
        }
        alternateaxes(&sortarray[divider], arraysize - divider, 1 - axis);
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  mergehulls()   Merge two adjacent Delaunay triangulations into a         */
    /*                 single Delaunay triangulation.                            */
    /*                                                                           */
    /*  This is similar to the algorithm given by Guibas and Stolfi, but uses    */
    /*  a triangle-based, rather than edge-based, data structure.                */
    /*                                                                           */
    /*  The algorithm walks up the gap between the two triangulations, knitting  */
    /*  them together.  As they are merged, some of their bounding triangles     */
    /*  are converted into real triangles of the triangulation.  The procedure   */
    /*  pulls each hull's bounding triangles apart, then knits them together     */
    /*  like the teeth of two gears.  The Delaunay property determines, at each  */
    /*  step, whether the next "tooth" is a bounding triangle of the left hull   */
    /*  or the right.  When a bounding triangle becomes real, its apex is        */
    /*  changed from NULL to a real point.                                       */
    /*                                                                           */
    /*  Only two new triangles need to be allocated.  These become new bounding  */
    /*  triangles at the top and bottom of the seam.  They are used to connect   */
    /*  the remaining bounding triangles (those that have not been converted     */
    /*  into real triangles) into a single fan.                                  */
    /*                                                                           */
    /*  On entry, `farleft' and `innerleft' are bounding triangles of the left   */
    /*  triangulation.  The origin of `farleft' is the leftmost vertex, and      */
    /*  the destination of `innerleft' is the rightmost vertex of the            */
    /*  triangulation.  Similarly, `innerright' and `farright' are bounding      */
    /*  triangles of the right triangulation.  The origin of `innerright' and    */
    /*  destination of `farright' are the leftmost and rightmost vertices.       */
    /*                                                                           */
    /*  On completion, the origin of `farleft' is the leftmost vertex of the     */
    /*  merged triangulation, and the destination of `farright' is the rightmost */
    /*  vertex.                                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    void mergehulls(farleft, innerleft, innerright, farright, axis)
    struct triedge *farleft;
    struct triedge *innerleft;
    struct triedge *innerright;
    struct triedge *farright;
    int axis;
    {
      struct triedge leftcand, rightcand;
      struct triedge baseedge;
      struct triedge nextedge;
      struct triedge sidecasing, topcasing, outercasing;
      struct triedge checkedge;
      point innerleftdest;
      point innerrightorg;
      point innerleftapex, innerrightapex;
      point farleftpt, farrightpt;
      point farleftapex, farrightapex;
      point lowerleft, lowerright;
      point upperleft, upperright;
      point nextapex;
      point checkvertex;
      int changemade;
      int badedge;
      int leftfinished, rightfinished;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      dest(*innerleft, innerleftdest);
      apex(*innerleft, innerleftapex);
      org(*innerright, innerrightorg);
      apex(*innerright, innerrightapex);
      /* Special treatment for horizontal cuts. */
      if (dwyer && (axis == 1)) {
        org(*farleft, farleftpt);
        apex(*farleft, farleftapex);
        dest(*farright, farrightpt);
        apex(*farright, farrightapex);
        /* The pointers to the extremal points are shifted to point to the */
        /*   topmost and bottommost point of each hull, rather than the    */
        /*   leftmost and rightmost points.                                */
        while (farleftapex[1] < farleftpt[1]) {
          lnextself(*farleft);
          symself(*farleft);
          farleftpt = farleftapex;
          apex(*farleft, farleftapex);
        }
        sym(*innerleft, checkedge);
        apex(checkedge, checkvertex);
        while (checkvertex[1] > innerleftdest[1]) {
          lnext(checkedge, *innerleft);
          innerleftapex = innerleftdest;
          innerleftdest = checkvertex;
          sym(*innerleft, checkedge);
          apex(checkedge, checkvertex);
        }
        while (innerrightapex[1] < innerrightorg[1]) {
          lnextself(*innerright);
          symself(*innerright);
          innerrightorg = innerrightapex;
          apex(*innerright, innerrightapex);
        }
        sym(*farright, checkedge);
        apex(checkedge, checkvertex);
        while (checkvertex[1] > farrightpt[1]) {
          lnext(checkedge, *farright);
          farrightapex = farrightpt;
          farrightpt = checkvertex;
          sym(*farright, checkedge);
          apex(checkedge, checkvertex);
        }
      }
      /* Find a line tangent to and below both hulls. */
      do {
        changemade = 0;
        /* Make innerleftdest the "bottommost" point of the left hull. */
        if (counterclockwise(innerleftdest, innerleftapex, innerrightorg) > 0.0) {
          lprevself(*innerleft);
          symself(*innerleft);
          innerleftdest = innerleftapex;
          apex(*innerleft, innerleftapex);
          changemade = 1;
        }
        /* Make innerrightorg the "bottommost" point of the right hull. */
        if (counterclockwise(innerrightapex, innerrightorg, innerleftdest) > 0.0) {
          lnextself(*innerright);
          symself(*innerright);
          innerrightorg = innerrightapex;
          apex(*innerright, innerrightapex);
          changemade = 1;
        }
      } while (changemade);
      /* Find the two candidates to be the next "gear tooth". */
      sym(*innerleft, leftcand);
      sym(*innerright, rightcand);
      /* Create the bottom new bounding triangle. */
      maketriangle(&baseedge);
      /* Connect it to the bounding boxes of the left and right triangulations. */
      bond(baseedge, *innerleft);
      lnextself(baseedge);
      bond(baseedge, *innerright);
      lnextself(baseedge);
      setorg(baseedge, innerrightorg);
      setdest(baseedge, innerleftdest);
      /* Apex is intentionally left NULL. */
      if (verbose > 2) {
        printf("  Creating base bounding ");
        printtriangle(&baseedge);
      }
      /* Fix the extreme triangles if necessary. */
      org(*farleft, farleftpt);
      if (innerleftdest == farleftpt) {
        lnext(baseedge, *farleft);
      }
      dest(*farright, farrightpt);
      if (innerrightorg == farrightpt) {
        lprev(baseedge, *farright);
      }
      /* The vertices of the current knitting edge. */
      lowerleft = innerleftdest;
      lowerright = innerrightorg;
      /* The candidate vertices for knitting. */
      apex(leftcand, upperleft);
      apex(rightcand, upperright);
      /* Walk up the gap between the two triangulations, knitting them together. */
      while (1) {
        /* Have we reached the top?  (This isn't quite the right question,       */
        /*   because even though the left triangulation might seem finished now, */
        /*   moving up on the right triangulation might reveal a new point of    */
        /*   the left triangulation.  And vice-versa.)                           */
        leftfinished = counterclockwise(upperleft, lowerleft, lowerright) <= 0.0;
        rightfinished = counterclockwise(upperright, lowerleft, lowerright) <= 0.0;
        if (leftfinished && rightfinished) {
          /* Create the top new bounding triangle. */
          maketriangle(&nextedge);
          setorg(nextedge, lowerleft);
          setdest(nextedge, lowerright);
          /* Apex is intentionally left NULL. */
          /* Connect it to the bounding boxes of the two triangulations. */
          bond(nextedge, baseedge);
          lnextself(nextedge);
          bond(nextedge, rightcand);
          lnextself(nextedge);
          bond(nextedge, leftcand);
          if (verbose > 2) {
            printf("  Creating top bounding ");
            printtriangle(&baseedge);
          }
          /* Special treatment for horizontal cuts. */
          if (dwyer && (axis == 1)) {
            org(*farleft, farleftpt);
            apex(*farleft, farleftapex);
            dest(*farright, farrightpt);
            apex(*farright, farrightapex);
            sym(*farleft, checkedge);
            apex(checkedge, checkvertex);
            /* The pointers to the extremal points are restored to the leftmost */
            /*   and rightmost points (rather than topmost and bottommost).     */
            while (checkvertex[0] < farleftpt[0]) {
              lprev(checkedge, *farleft);
              farleftapex = farleftpt;
              farleftpt = checkvertex;
              sym(*farleft, checkedge);
              apex(checkedge, checkvertex);
            }
            while (farrightapex[0] > farrightpt[0]) {
              lprevself(*farright);
              symself(*farright);
              farrightpt = farrightapex;
              apex(*farright, farrightapex);
            }
          }
          return;
        }
        /* Consider eliminating edges from the left triangulation. */
        if (!leftfinished) {
          /* What vertex would be exposed if an edge were deleted? */
          lprev(leftcand, nextedge);
          symself(nextedge);
          apex(nextedge, nextapex);
          /* If nextapex is NULL, then no vertex would be exposed; the */
          /*   triangulation would have been eaten right through.      */
          if (nextapex != (point) NULL) {
            /* Check whether the edge is Delaunay. */
            badedge = incircle(lowerleft, lowerright, upperleft, nextapex) > 0.0;
            while (badedge) {
              /* Eliminate the edge with an edge flip.  As a result, the    */
              /*   left triangulation will have one more boundary triangle. */
              lnextself(nextedge);
              sym(nextedge, topcasing);
              lnextself(nextedge);
              sym(nextedge, sidecasing);
              bond(nextedge, topcasing);
              bond(leftcand, sidecasing);
              lnextself(leftcand);
              sym(leftcand, outercasing);
              lprevself(nextedge);
              bond(nextedge, outercasing);
              /* Correct the vertices to reflect the edge flip. */
              setorg(leftcand, lowerleft);
              setdest(leftcand, NULL);
              setapex(leftcand, nextapex);
              setorg(nextedge, NULL);
              setdest(nextedge, upperleft);
              setapex(nextedge, nextapex);
              /* Consider the newly exposed vertex. */
              upperleft = nextapex;
              /* What vertex would be exposed if another edge were deleted? */
              triedgecopy(sidecasing, nextedge);
              apex(nextedge, nextapex);
              if (nextapex != (point) NULL) {
                /* Check whether the edge is Delaunay. */
                badedge = incircle(lowerleft, lowerright, upperleft, nextapex)
                          > 0.0;
              } else {
                /* Avoid eating right through the triangulation. */
                badedge = 0;
              }
            }
          }
        }
        /* Consider eliminating edges from the right triangulation. */
        if (!rightfinished) {
          /* What vertex would be exposed if an edge were deleted? */
          lnext(rightcand, nextedge);
          symself(nextedge);
          apex(nextedge, nextapex);
          /* If nextapex is NULL, then no vertex would be exposed; the */
          /*   triangulation would have been eaten right through.      */
          if (nextapex != (point) NULL) {
            /* Check whether the edge is Delaunay. */
            badedge = incircle(lowerleft, lowerright, upperright, nextapex) > 0.0;
            while (badedge) {
              /* Eliminate the edge with an edge flip.  As a result, the     */
              /*   right triangulation will have one more boundary triangle. */
              lprevself(nextedge);
              sym(nextedge, topcasing);
              lprevself(nextedge);
              sym(nextedge, sidecasing);
              bond(nextedge, topcasing);
              bond(rightcand, sidecasing);
              lprevself(rightcand);
              sym(rightcand, outercasing);
              lnextself(nextedge);
              bond(nextedge, outercasing);
              /* Correct the vertices to reflect the edge flip. */
              setorg(rightcand, NULL);
              setdest(rightcand, lowerright);
              setapex(rightcand, nextapex);
              setorg(nextedge, upperright);
              setdest(nextedge, NULL);
              setapex(nextedge, nextapex);
              /* Consider the newly exposed vertex. */
              upperright = nextapex;
              /* What vertex would be exposed if another edge were deleted? */
              triedgecopy(sidecasing, nextedge);
              apex(nextedge, nextapex);
              if (nextapex != (point) NULL) {
                /* Check whether the edge is Delaunay. */
                badedge = incircle(lowerleft, lowerright, upperright, nextapex)
                          > 0.0;
              } else {
                /* Avoid eating right through the triangulation. */
                badedge = 0;
              }
            }
          }
        }
        if (leftfinished || (!rightfinished &&
               (incircle(upperleft, lowerleft, lowerright, upperright) > 0.0))) {
          /* Knit the triangulations, adding an edge from `lowerleft' */
          /*   to `upperright'.                                       */
          bond(baseedge, rightcand);
          lprev(rightcand, baseedge);
          setdest(baseedge, lowerleft);
          lowerright = upperright;
          sym(baseedge, rightcand);
          apex(rightcand, upperright);
        } else {
          /* Knit the triangulations, adding an edge from `upperleft' */
          /*   to `lowerright'.                                       */
          bond(baseedge, leftcand);
          lnext(leftcand, baseedge);
          setorg(baseedge, lowerright);
          lowerleft = upperleft;
          sym(baseedge, leftcand);
          apex(leftcand, upperleft);
        }
        if (verbose > 2) {
          printf("  Connecting ");
          printtriangle(&baseedge);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  divconqrecurse()   Recursively form a Delaunay triangulation by the      */
    /*                     divide-and-conquer method.                            */
    /*                                                                           */
    /*  Recursively breaks down the problem into smaller pieces, which are       */
    /*  knitted together by mergehulls().  The base cases (problems of two or    */
    /*  three points) are handled specially here.                                */
    /*                                                                           */
    /*  On completion, `farleft' and `farright' are bounding triangles such that */
    /*  the origin of `farleft' is the leftmost vertex (breaking ties by         */
    /*  choosing the highest leftmost vertex), and the destination of            */
    /*  `farright' is the rightmost vertex (breaking ties by choosing the        */
    /*  lowest rightmost vertex).                                                */
    /*                                                                           */
    /*****************************************************************************/
    
    void divconqrecurse(sortarray, vertices, axis, farleft, farright)
    point *sortarray;
    int vertices;
    int axis;
    struct triedge *farleft;
    struct triedge *farright;
    {
      struct triedge midtri, tri1, tri2, tri3;
      struct triedge innerleft, innerright;
      REAL area;
      int divider;
    
      if (verbose > 2) {
        printf("  Triangulating %d points.\n", vertices);
      }
      if (vertices == 2) {
        /* The triangulation of two vertices is an edge.  An edge is */
        /*   represented by two bounding triangles.                  */
        maketriangle(farleft);
        setorg(*farleft, sortarray[0]);
        setdest(*farleft, sortarray[1]);
        /* The apex is intentionally left NULL. */
        maketriangle(farright);
        setorg(*farright, sortarray[1]);
        setdest(*farright, sortarray[0]);
        /* The apex is intentionally left NULL. */
        bond(*farleft, *farright);
        lprevself(*farleft);
        lnextself(*farright);
        bond(*farleft, *farright);
        lprevself(*farleft);
        lnextself(*farright);
        bond(*farleft, *farright);
        if (verbose > 2) {
          printf("  Creating ");
          printtriangle(farleft);
          printf("  Creating ");
          printtriangle(farright);
        }
        /* Ensure that the origin of `farleft' is sortarray[0]. */
        lprev(*farright, *farleft);
        return;
      } else if (vertices == 3) {
        /* The triangulation of three vertices is either a triangle (with */
        /*   three bounding triangles) or two edges (with four bounding   */
        /*   triangles).  In either case, four triangles are created.     */
        maketriangle(&midtri);
        maketriangle(&tri1);
        maketriangle(&tri2);
        maketriangle(&tri3);
        area = counterclockwise(sortarray[0], sortarray[1], sortarray[2]);
        if (area == 0.0) {
          /* Three collinear points; the triangulation is two edges. */
          setorg(midtri, sortarray[0]);
          setdest(midtri, sortarray[1]);
          setorg(tri1, sortarray[1]);
          setdest(tri1, sortarray[0]);
          setorg(tri2, sortarray[2]);
          setdest(tri2, sortarray[1]);
          setorg(tri3, sortarray[1]);
          setdest(tri3, sortarray[2]);
          /* All apices are intentionally left NULL. */
          bond(midtri, tri1);
          bond(tri2, tri3);
          lnextself(midtri);
          lprevself(tri1);
          lnextself(tri2);
          lprevself(tri3);
          bond(midtri, tri3);
          bond(tri1, tri2);
          lnextself(midtri);
          lprevself(tri1);
          lnextself(tri2);
          lprevself(tri3);
          bond(midtri, tri1);
          bond(tri2, tri3);
          /* Ensure that the origin of `farleft' is sortarray[0]. */
          triedgecopy(tri1, *farleft);
          /* Ensure that the destination of `farright' is sortarray[2]. */
          triedgecopy(tri2, *farright);
        } else {
          /* The three points are not collinear; the triangulation is one */
          /*   triangle, namely `midtri'.                                 */
          setorg(midtri, sortarray[0]);
          setdest(tri1, sortarray[0]);
          setorg(tri3, sortarray[0]);
          /* Apices of tri1, tri2, and tri3 are left NULL. */
          if (area > 0.0) {
            /* The vertices are in counterclockwise order. */
            setdest(midtri, sortarray[1]);
            setorg(tri1, sortarray[1]);
            setdest(tri2, sortarray[1]);
            setapex(midtri, sortarray[2]);
            setorg(tri2, sortarray[2]);
            setdest(tri3, sortarray[2]);
          } else {
            /* The vertices are in clockwise order. */
            setdest(midtri, sortarray[2]);
            setorg(tri1, sortarray[2]);
            setdest(tri2, sortarray[2]);
            setapex(midtri, sortarray[1]);
            setorg(tri2, sortarray[1]);
            setdest(tri3, sortarray[1]);
          }
          /* The topology does not depend on how the vertices are ordered. */
          bond(midtri, tri1);
          lnextself(midtri);
          bond(midtri, tri2);
          lnextself(midtri);
          bond(midtri, tri3);
          lprevself(tri1);
          lnextself(tri2);
          bond(tri1, tri2);
          lprevself(tri1);
          lprevself(tri3);
          bond(tri1, tri3);
          lnextself(tri2);
          lprevself(tri3);
          bond(tri2, tri3);
          /* Ensure that the origin of `farleft' is sortarray[0]. */
          triedgecopy(tri1, *farleft);
          /* Ensure that the destination of `farright' is sortarray[2]. */
          if (area > 0.0) {
            triedgecopy(tri2, *farright);
          } else {
            lnext(*farleft, *farright);
          }
        }
        if (verbose > 2) {
          printf("  Creating ");
          printtriangle(&midtri);
          printf("  Creating ");
          printtriangle(&tri1);
          printf("  Creating ");
          printtriangle(&tri2);
          printf("  Creating ");
          printtriangle(&tri3);
        }
        return;
      } else {
        /* Split the vertices in half. */
        divider = vertices >> 1;
        /* Recursively triangulate each half. */
        divconqrecurse(sortarray, divider, 1 - axis, farleft, &innerleft);
        divconqrecurse(&sortarray[divider], vertices - divider, 1 - axis,
                       &innerright, farright);
        if (verbose > 1) {
          printf("  Joining triangulations with %d and %d vertices.\n", divider,
                 vertices - divider);
        }
        /* Merge the two triangulations into one. */
        mergehulls(farleft, &innerleft, &innerright, farright, axis);
      }
    }
    
    long removeghosts(startghost)
    struct triedge *startghost;
    {
      struct triedge searchedge;
      struct triedge dissolveedge;
      struct triedge deadtri;
      point markorg;
      long hullsize;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (verbose) {
        printf("  Removing ghost triangles.\n");
      }
      /* Find an edge on the convex hull to start point location from. */
      lprev(*startghost, searchedge);
      symself(searchedge);
      dummytri[0] = encode(searchedge);
      /* Remove the bounding box and count the convex hull edges. */
      triedgecopy(*startghost, dissolveedge);
      hullsize = 0;
      do {
        hullsize++;
        lnext(dissolveedge, deadtri);
        lprevself(dissolveedge);
        symself(dissolveedge);
        /* If no PSLG is involved, set the boundary markers of all the points */
        /*   on the convex hull.  If a PSLG is used, this step is done later. */
        if (!poly) {
          /* Watch out for the case where all the input points are collinear. */
          if (dissolveedge.tri != dummytri) {
            org(dissolveedge, markorg);
            if (pointmark(markorg) == 0) {
              setpointmark(markorg, 1);
            }
          }
        }
        /* Remove a bounding triangle from a convex hull triangle. */
        dissolve(dissolveedge);
        /* Find the next bounding triangle. */
        sym(deadtri, dissolveedge);
        /* Delete the bounding triangle. */
        triangledealloc(deadtri.tri);
      } while (!triedgeequal(dissolveedge, *startghost));
      return hullsize;
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  divconqdelaunay()   Form a Delaunay triangulation by the divide-and-     */
    /*                      conquer method.                                      */
    /*                                                                           */
    /*  Sorts the points, calls a recursive procedure to triangulate them, and   */
    /*  removes the bounding box, setting boundary markers as appropriate.       */
    /*                                                                           */
    /*****************************************************************************/
    
    long divconqdelaunay()
    {
      point *sortarray;
      struct triedge hullleft, hullright;
      int divider;
      int i, j;
    
      /* Allocate an array of pointers to points for sorting. */
      sortarray = (point *) malloc(inpoints * sizeof(point));
      if (sortarray == (point *) NULL) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      traversalinit(&points);
      for (i = 0; i < inpoints; i++) {
        sortarray[i] = pointtraverse();
      }
      if (verbose) {
        printf("  Sorting points.\n");
      }
      /* Sort the points. */
      pointsort(sortarray, inpoints);
      /* Discard duplicate points, which can really mess up the algorithm. */
      i = 0;
      for (j = 1; j < inpoints; j++) {
        if ((sortarray[i][0] == sortarray[j][0])
            && (sortarray[i][1] == sortarray[j][1])) {
          if (!quiet) {
            printf(
    "Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
                   sortarray[j][0], sortarray[j][1]);
          }
    /*  Commented out - would eliminate point from output .node file, but causes
        a failure if some segment has this point as an endpoint.
          setpointmark(sortarray[j], DEADPOINT);
    */
        } else {
          i++;
          sortarray[i] = sortarray[j];
        }
      }
      i++;
      if (dwyer) {
        /* Re-sort the array of points to accommodate alternating cuts. */
        divider = i >> 1;
        if (i - divider >= 2) {
          if (divider >= 2) {
            alternateaxes(sortarray, divider, 1);
          }
          alternateaxes(&sortarray[divider], i - divider, 1);
        }
      }
      if (verbose) {
        printf("  Forming triangulation.\n");
      }
      /* Form the Delaunay triangulation. */
      divconqrecurse(sortarray, i, 0, &hullleft, &hullright);
      free(sortarray);
    
      return removeghosts(&hullleft);
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Divide-and-conquer Delaunay triangulation ends here       *********/
    
    /********* Incremental Delaunay triangulation begins here            *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  boundingbox()   Form an "infinite" bounding triangle to insert points    */
    /*                  into.                                                    */
    /*                                                                           */
    /*  The points at "infinity" are assigned finite coordinates, which are used */
    /*  by the point location routines, but (mostly) ignored by the Delaunay     */
    /*  edge flip routines.                                                      */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    void boundingbox()
    {
      struct triedge inftri;          /* Handle for the triangular bounding box. */
      REAL width;
    
      if (verbose) {
        printf("  Creating triangular bounding box.\n");
      }
      /* Find the width (or height, whichever is larger) of the triangulation. */
      width = xmax - xmin;
      if (ymax - ymin > width) {
        width = ymax - ymin;
      }
      if (width == 0.0) {
        width = 1.0;
      }
      /* Create the vertices of the bounding box. */
      infpoint1 = (point) malloc(points.itembytes);
      infpoint2 = (point) malloc(points.itembytes);
      infpoint3 = (point) malloc(points.itembytes);
      if ((infpoint1 == (point) NULL) || (infpoint2 == (point) NULL)
          || (infpoint3 == (point) NULL)) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      infpoint1[0] = xmin - 50.0 * width;
      infpoint1[1] = ymin - 40.0 * width;
      infpoint2[0] = xmax + 50.0 * width;
      infpoint2[1] = ymin - 40.0 * width;
      infpoint3[0] = 0.5 * (xmin + xmax);
      infpoint3[1] = ymax + 60.0 * width;
    
      /* Create the bounding box. */
      maketriangle(&inftri);
      setorg(inftri, infpoint1);
      setdest(inftri, infpoint2);
      setapex(inftri, infpoint3);
      /* Link dummytri to the bounding box so we can always find an */
      /*   edge to begin searching (point location) from.           */
      dummytri[0] = (triangle) inftri.tri;
      if (verbose > 2) {
        printf("  Creating ");
        printtriangle(&inftri);
      }
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  removebox()   Remove the "infinite" bounding triangle, setting boundary  */
    /*                markers as appropriate.                                    */
    /*                                                                           */
    /*  The triangular bounding box has three boundary triangles (one for each   */
    /*  side of the bounding box), and a bunch of triangles fanning out from     */
    /*  the three bounding box vertices (one triangle for each edge of the       */
    /*  convex hull of the inner mesh).  This routine removes these triangles.   */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    long removebox()
    {
      struct triedge deadtri;
      struct triedge searchedge;
      struct triedge checkedge;
      struct triedge nextedge, finaledge, dissolveedge;
      point markorg;
      long hullsize;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (verbose) {
        printf("  Removing triangular bounding box.\n");
      }
      /* Find a boundary triangle. */
      nextedge.tri = dummytri;
      nextedge.orient = 0;
      symself(nextedge);
      /* Mark a place to stop. */
      lprev(nextedge, finaledge);
      lnextself(nextedge);
      symself(nextedge);
      /* Find a triangle (on the boundary of the point set) that isn't */
      /*   a bounding box triangle.                                    */
      lprev(nextedge, searchedge);
      symself(searchedge);
      /* Check whether nextedge is another boundary triangle */
      /*   adjacent to the first one.                        */
      lnext(nextedge, checkedge);
      symself(checkedge);
      if (checkedge.tri == dummytri) {
        /* Go on to the next triangle.  There are only three boundary   */
        /*   triangles, and this next triangle cannot be the third one, */
        /*   so it's safe to stop here.                                 */
        lprevself(searchedge);
        symself(searchedge);
      }
      /* Find a new boundary edge to search from, as the current search */
      /*   edge lies on a bounding box triangle and will be deleted.    */
      dummytri[0] = encode(searchedge);
      hullsize = -2l;
      while (!triedgeequal(nextedge, finaledge)) {
        hullsize++;
        lprev(nextedge, dissolveedge);
        symself(dissolveedge);
        /* If not using a PSLG, the vertices should be marked now. */
        /*   (If using a PSLG, markhull() will do the job.)        */
        if (!poly) {
          /* Be careful!  One must check for the case where all the input   */
          /*   points are collinear, and thus all the triangles are part of */
          /*   the bounding box.  Otherwise, the setpointmark() call below  */
          /*   will cause a bad pointer reference.                          */
          if (dissolveedge.tri != dummytri) {
            org(dissolveedge, markorg);
            if (pointmark(markorg) == 0) {
              setpointmark(markorg, 1);
            }
          }
        }
        /* Disconnect the bounding box triangle from the mesh triangle. */
        dissolve(dissolveedge);
        lnext(nextedge, deadtri);
        sym(deadtri, nextedge);
        /* Get rid of the bounding box triangle. */
        triangledealloc(deadtri.tri);
        /* Do we need to turn the corner? */
        if (nextedge.tri == dummytri) {
          /* Turn the corner. */
          triedgecopy(dissolveedge, nextedge);
        }
      }
      triangledealloc(finaledge.tri);
    
      free(infpoint1);                  /* Deallocate the bounding box vertices. */
      free(infpoint2);
      free(infpoint3);
    
      return hullsize;
    }
    
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  incrementaldelaunay()   Form a Delaunay triangulation by incrementally   */
    /*                          adding vertices.                                 */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    
    long incrementaldelaunay()
    {
      struct triedge starttri;
      point pointloop;
      int i;
    
      /* Create a triangular bounding box. */
      boundingbox();
      if (verbose) {
        printf("  Incrementally inserting points.\n");
      }
      traversalinit(&points);
      pointloop = pointtraverse();
      i = 1;
      while (pointloop != (point) NULL) {
        /* Find a boundary triangle to search from. */
        starttri.tri = (triangle *) NULL;
        if (insertsite(pointloop, &starttri, (struct edge *) NULL, 0, 0) ==
            DUPLICATEPOINT) {
          if (!quiet) {
            printf(
    "Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
                   pointloop[0], pointloop[1]);
          }
    /*  Commented out - would eliminate point from output .node file.
          setpointmark(pointloop, DEADPOINT);
    */
        }
        pointloop = pointtraverse();
        i++;
      }
      /* Remove the bounding box. */
      return removebox();
    }
    
    #endif /* not REDUCED */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Incremental Delaunay triangulation ends here              *********/
    
    /********* Sweepline Delaunay triangulation begins here              *********/
    /**                                                                         **/
    /**                                                                         **/
    
    #ifndef REDUCED
    
    void eventheapinsert(heap, heapsize, newevent)
    struct event **heap;
    int heapsize;
    struct event *newevent;
    {
      REAL eventx, eventy;
      int eventnum;
      int parent;
      int notdone;
    
      eventx = newevent->xkey;
      eventy = newevent->ykey;
      eventnum = heapsize;
      notdone = eventnum > 0;
      while (notdone) {
        parent = (eventnum - 1) >> 1;
        if ((heap[parent]->ykey < eventy) ||
            ((heap[parent]->ykey == eventy)
             && (heap[parent]->xkey <= eventx))) {
          notdone = 0;
        } else {
          heap[eventnum] = heap[parent];
          heap[eventnum]->heapposition = eventnum;
    
          eventnum = parent;
          notdone = eventnum > 0;
        }
      }
      heap[eventnum] = newevent;
      newevent->heapposition = eventnum;
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    void eventheapify(heap, heapsize, eventnum)
    struct event **heap;
    int heapsize;
    int eventnum;
    {
      struct event *thisevent;
      REAL eventx, eventy;
      int leftchild, rightchild;
      int smallest;
      int notdone;
    
      thisevent = heap[eventnum];
      eventx = thisevent->xkey;
      eventy = thisevent->ykey;
      leftchild = 2 * eventnum + 1;
      notdone = leftchild < heapsize;
      while (notdone) {
        if ((heap[leftchild]->ykey < eventy) ||
            ((heap[leftchild]->ykey == eventy)
             && (heap[leftchild]->xkey < eventx))) {
          smallest = leftchild;
        } else {
          smallest = eventnum;
        }
        rightchild = leftchild + 1;
        if (rightchild < heapsize) {
          if ((heap[rightchild]->ykey < heap[smallest]->ykey) ||
              ((heap[rightchild]->ykey == heap[smallest]->ykey)
               && (heap[rightchild]->xkey < heap[smallest]->xkey))) {
            smallest = rightchild;
          }
        }
        if (smallest == eventnum) {
          notdone = 0;
        } else {
          heap[eventnum] = heap[smallest];
          heap[eventnum]->heapposition = eventnum;
          heap[smallest] = thisevent;
          thisevent->heapposition = smallest;
    
          eventnum = smallest;
          leftchild = 2 * eventnum + 1;
          notdone = leftchild < heapsize;
        }
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    void eventheapdelete(heap, heapsize, eventnum)
    struct event **heap;
    int heapsize;
    int eventnum;
    {
      struct event *moveevent;
      REAL eventx, eventy;
      int parent;
      int notdone;
    
      moveevent = heap[heapsize - 1];
      if (eventnum > 0) {
        eventx = moveevent->xkey;
        eventy = moveevent->ykey;
        do {
          parent = (eventnum - 1) >> 1;
          if ((heap[parent]->ykey < eventy) ||
              ((heap[parent]->ykey == eventy)
               && (heap[parent]->xkey <= eventx))) {
            notdone = 0;
          } else {
            heap[eventnum] = heap[parent];
            heap[eventnum]->heapposition = eventnum;
    
            eventnum = parent;
            notdone = eventnum > 0;
          }
        } while (notdone);
      }
      heap[eventnum] = moveevent;
      moveevent->heapposition = eventnum;
      eventheapify(heap, heapsize - 1, eventnum);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    void createeventheap(eventheap, events, freeevents)
    struct event ***eventheap;
    struct event **events;
    struct event **freeevents;
    {
      point thispoint;
      int maxevents;
      int i;
    
      maxevents = (3 * inpoints) / 2;
      *eventheap = (struct event **) malloc(maxevents * sizeof(struct event *));
      if (*eventheap == (struct event **) NULL) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      *events = (struct event *) malloc(maxevents * sizeof(struct event));
      if (*events == (struct event *) NULL) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      traversalinit(&points);
      for (i = 0; i < inpoints; i++) {
        thispoint = pointtraverse();
        (*events)[i].eventptr = (VOID *) thispoint;
        (*events)[i].xkey = thispoint[0];
        (*events)[i].ykey = thispoint[1];
        eventheapinsert(*eventheap, i, *events + i);
      }
      *freeevents = (struct event *) NULL;
      for (i = maxevents - 1; i >= inpoints; i--) {
        (*events)[i].eventptr = (VOID *) *freeevents;
        *freeevents = *events + i;
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    int rightofhyperbola(fronttri, newsite)
    struct triedge *fronttri;
    point newsite;
    {
      point leftpoint, rightpoint;
      REAL dxa, dya, dxb, dyb;
    
      hyperbolacount++;
    
      dest(*fronttri, leftpoint);
      apex(*fronttri, rightpoint);
      if ((leftpoint[1] < rightpoint[1])
          || ((leftpoint[1] == rightpoint[1]) && (leftpoint[0] < rightpoint[0]))) {
        if (newsite[0] >= rightpoint[0]) {
          return 1;
        }
      } else {
        if (newsite[0] <= leftpoint[0]) {
          return 0;
        }
      }
      dxa = leftpoint[0] - newsite[0];
      dya = leftpoint[1] - newsite[1];
      dxb = rightpoint[0] - newsite[0];
      dyb = rightpoint[1] - newsite[1];
      return dya * (dxb * dxb + dyb * dyb) > dyb * (dxa * dxa + dya * dya);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    REAL circletop(pa, pb, pc, ccwabc)
    point pa;
    point pb;
    point pc;
    REAL ccwabc;
    {
      REAL xac, yac, xbc, ybc, xab, yab;
      REAL aclen2, bclen2, ablen2;
    
      circletopcount++;
    
      xac = pa[0] - pc[0];
      yac = pa[1] - pc[1];
      xbc = pb[0] - pc[0];
      ybc = pb[1] - pc[1];
      xab = pa[0] - pb[0];
      yab = pa[1] - pb[1];
      aclen2 = xac * xac + yac * yac;
      bclen2 = xbc * xbc + ybc * ybc;
      ablen2 = xab * xab + yab * yab;
      return pc[1] + (xac * bclen2 - xbc * aclen2 + sqrt(aclen2 * bclen2 * ablen2))
                   / (2.0 * ccwabc);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    void check4deadevent(checktri, freeevents, eventheap, heapsize)
    struct triedge *checktri;
    struct event **freeevents;
    struct event **eventheap;
    int *heapsize;
    {
      struct event *deadevent;
      point eventpoint;
      int eventnum;
    
      org(*checktri, eventpoint);
      if (eventpoint != (point) NULL) {
        deadevent = (struct event *) eventpoint;
        eventnum = deadevent->heapposition;
        deadevent->eventptr = (VOID *) *freeevents;
        *freeevents = deadevent;
        eventheapdelete(eventheap, *heapsize, eventnum);
        (*heapsize)--;
        setorg(*checktri, NULL);
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    struct splaynode *splay(splaytree, searchpoint, searchtri)
    struct splaynode *splaytree;
    point searchpoint;
    struct triedge *searchtri;
    {
      struct splaynode *child, *grandchild;
      struct splaynode *lefttree, *righttree;
      struct splaynode *leftright;
      point checkpoint;
      int rightofroot, rightofchild;
    
      if (splaytree == (struct splaynode *) NULL) {
        return (struct splaynode *) NULL;
      }
      dest(splaytree->keyedge, checkpoint);
      if (checkpoint == splaytree->keydest) {
        rightofroot = rightofhyperbola(&splaytree->keyedge, searchpoint);
        if (rightofroot) {
          triedgecopy(splaytree->keyedge, *searchtri);
          child = splaytree->rchild;
        } else {
          child = splaytree->lchild;
        }
        if (child == (struct splaynode *) NULL) {
          return splaytree;
        }
        dest(child->keyedge, checkpoint);
        if (checkpoint != child->keydest) {
          child = splay(child, searchpoint, searchtri);
          if (child == (struct splaynode *) NULL) {
            if (rightofroot) {
              splaytree->rchild = (struct splaynode *) NULL;
            } else {
              splaytree->lchild = (struct splaynode *) NULL;
            }
            return splaytree;
          }
        }
        rightofchild = rightofhyperbola(&child->keyedge, searchpoint);
        if (rightofchild) {
          triedgecopy(child->keyedge, *searchtri);
          grandchild = splay(child->rchild, searchpoint, searchtri);
          child->rchild = grandchild;
        } else {
          grandchild = splay(child->lchild, searchpoint, searchtri);
          child->lchild = grandchild;
        }
        if (grandchild == (struct splaynode *) NULL) {
          if (rightofroot) {
            splaytree->rchild = child->lchild;
            child->lchild = splaytree;
          } else {
            splaytree->lchild = child->rchild;
            child->rchild = splaytree;
          }
          return child;
        }
        if (rightofchild) {
          if (rightofroot) {
            splaytree->rchild = child->lchild;
            child->lchild = splaytree;
          } else {
            splaytree->lchild = grandchild->rchild;
            grandchild->rchild = splaytree;
          }
          child->rchild = grandchild->lchild;
          grandchild->lchild = child;
        } else {
          if (rightofroot) {
            splaytree->rchild = grandchild->lchild;
            grandchild->lchild = splaytree;
          } else {
            splaytree->lchild = child->rchild;
            child->rchild = splaytree;
          }
          child->lchild = grandchild->rchild;
          grandchild->rchild = child;
        }
        return grandchild;
      } else {
        lefttree = splay(splaytree->lchild, searchpoint, searchtri);
        righttree = splay(splaytree->rchild, searchpoint, searchtri);
    
        pooldealloc(&splaynodes, (VOID *) splaytree);
        if (lefttree == (struct splaynode *) NULL) {
          return righttree;
        } else if (righttree == (struct splaynode *) NULL) {
          return lefttree;
        } else if (lefttree->rchild == (struct splaynode *) NULL) {
          lefttree->rchild = righttree->lchild;
          righttree->lchild = lefttree;
          return righttree;
        } else if (righttree->lchild == (struct splaynode *) NULL) {
          righttree->lchild = lefttree->rchild;
          lefttree->rchild = righttree;
          return lefttree;
        } else {
    /*      printf("Holy Toledo!!!\n"); */
          leftright = lefttree->rchild;
          while (leftright->rchild != (struct splaynode *) NULL) {
            leftright = leftright->rchild;
          }
          leftright->rchild = righttree;
          return lefttree;
        }
      }
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    struct splaynode *splayinsert(splayroot, newkey, searchpoint)
    struct splaynode *splayroot;
    struct triedge *newkey;
    point searchpoint;
    {
      struct splaynode *newsplaynode;
    
      newsplaynode = (struct splaynode *) poolalloc(&splaynodes);
      triedgecopy(*newkey, newsplaynode->keyedge);
      dest(*newkey, newsplaynode->keydest);
      if (splayroot == (struct splaynode *) NULL) {
        newsplaynode->lchild = (struct splaynode *) NULL;
        newsplaynode->rchild = (struct splaynode *) NULL;
      } else if (rightofhyperbola(&splayroot->keyedge, searchpoint)) {
        newsplaynode->lchild = splayroot;
        newsplaynode->rchild = splayroot->rchild;
        splayroot->rchild = (struct splaynode *) NULL;
      } else {
        newsplaynode->lchild = splayroot->lchild;
        newsplaynode->rchild = splayroot;
        splayroot->lchild = (struct splaynode *) NULL;
      }
      return newsplaynode;
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    struct splaynode *circletopinsert(splayroot, newkey, pa, pb, pc, topy)
    struct splaynode *splayroot;
    struct triedge *newkey;
    point pa;
    point pb;
    point pc;
    REAL topy;
    {
      REAL ccwabc;
      REAL xac, yac, xbc, ybc;
      REAL aclen2, bclen2;
      REAL searchpoint[2];
      struct triedge dummytri;
    
      ccwabc = counterclockwise(pa, pb, pc);
      xac = pa[0] - pc[0];
      yac = pa[1] - pc[1];
      xbc = pb[0] - pc[0];
      ybc = pb[1] - pc[1];
      aclen2 = xac * xac + yac * yac;
      bclen2 = xbc * xbc + ybc * ybc;
      searchpoint[0] = pc[0] - (yac * bclen2 - ybc * aclen2) / (2.0 * ccwabc);
      searchpoint[1] = topy;
      return splayinsert(splay(splayroot, (point) searchpoint, &dummytri), newkey,
                         (point) searchpoint);
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    struct splaynode *frontlocate(splayroot, bottommost, searchpoint, searchtri,
                                  farright)
    struct splaynode *splayroot;
    struct triedge *bottommost;
    point searchpoint;
    struct triedge *searchtri;
    int *farright;
    {
      int farrightflag;
      triangle ptr;                       /* Temporary variable used by onext(). */
    
      triedgecopy(*bottommost, *searchtri);
      splayroot = splay(splayroot, searchpoint, searchtri);
    
      farrightflag = 0;
      while (!farrightflag && rightofhyperbola(searchtri, searchpoint)) {
        onextself(*searchtri);
        farrightflag = triedgeequal(*searchtri, *bottommost);
      }
      *farright = farrightflag;
      return splayroot;
    }
    
    #endif /* not REDUCED */
    
    #ifndef REDUCED
    
    long sweeplinedelaunay()
    {
      struct event **eventheap;
      struct event *events;
      struct event *freeevents;
      struct event *nextevent;
      struct event *newevent;
      struct splaynode *splayroot;
      struct triedge bottommost;
      struct triedge searchtri;
      struct triedge fliptri;
      struct triedge lefttri, righttri, farlefttri, farrighttri;
      struct triedge inserttri;
      point firstpoint, secondpoint;
      point nextpoint, lastpoint;
      point connectpoint;
      point leftpoint, midpoint, rightpoint;
      REAL lefttest, righttest;
      int heapsize;
      int check4events, farrightflag;
      triangle ptr;   /* Temporary variable used by sym(), onext(), and oprev(). */
    
      poolinit(&splaynodes, sizeof(struct splaynode), SPLAYNODEPERBLOCK, POINTER,
               0);
      splayroot = (struct splaynode *) NULL;
    
      if (verbose) {
        printf("  Placing points in event heap.\n");
      }
      createeventheap(&eventheap, &events, &freeevents);
      heapsize = inpoints;
    
      if (verbose) {
        printf("  Forming triangulation.\n");
      }
      maketriangle(&lefttri);
      maketriangle(&righttri);
      bond(lefttri, righttri);
      lnextself(lefttri);
      lprevself(righttri);
      bond(lefttri, righttri);
      lnextself(lefttri);
      lprevself(righttri);
      bond(lefttri, righttri);
      firstpoint = (point) eventheap[0]->eventptr;
      eventheap[0]->eventptr = (VOID *) freeevents;
      freeevents = eventheap[0];
      eventheapdelete(eventheap, heapsize, 0);
      heapsize--;
      do {
        if (heapsize == 0) {
          printf("Error:  Input points are all identical.\n");
          exit(1);
        }
        secondpoint = (point) eventheap[0]->eventptr;
        eventheap[0]->eventptr = (VOID *) freeevents;
        freeevents = eventheap[0];
        eventheapdelete(eventheap, heapsize, 0);
        heapsize--;
        if ((firstpoint[0] == secondpoint[0])
            && (firstpoint[1] == secondpoint[1])) {
          printf(
    "Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
                 secondpoint[0], secondpoint[1]);
    /*  Commented out - would eliminate point from output .node file.
          setpointmark(secondpoint, DEADPOINT);
    */
        }
      } while ((firstpoint[0] == secondpoint[0])
               && (firstpoint[1] == secondpoint[1]));
      setorg(lefttri, firstpoint);
      setdest(lefttri, secondpoint);
      setorg(righttri, secondpoint);
      setdest(righttri, firstpoint);
      lprev(lefttri, bottommost);
      lastpoint = secondpoint;
      while (heapsize > 0) {
        nextevent = eventheap[0];
        eventheapdelete(eventheap, heapsize, 0);
        heapsize--;
        check4events = 1;
        if (nextevent->xkey < xmin) {
          decode(nextevent->eventptr, fliptri);
          oprev(fliptri, farlefttri);
          check4deadevent(&farlefttri, &freeevents, eventheap, &heapsize);
          onext(fliptri, farrighttri);
          check4deadevent(&farrighttri, &freeevents, eventheap, &heapsize);
    
          if (triedgeequal(farlefttri, bottommost)) {
            lprev(fliptri, bottommost);
          }
          flip(&fliptri);
          setapex(fliptri, NULL);
          lprev(fliptri, lefttri);
          lnext(fliptri, righttri);
          sym(lefttri, farlefttri);
    
          if (randomnation(SAMPLERATE) == 0) {
            symself(fliptri);
            dest(fliptri, leftpoint);
            apex(fliptri, midpoint);
            org(fliptri, rightpoint);
            splayroot = circletopinsert(splayroot, &lefttri, leftpoint, midpoint,
                                        rightpoint, nextevent->ykey);
          }
        } else {
          nextpoint = (point) nextevent->eventptr;
          if ((nextpoint[0] == lastpoint[0]) && (nextpoint[1] == lastpoint[1])) {
            printf(
    "Warning:  A duplicate point at (%.12g, %.12g) appeared and was ignored.\n",
                   nextpoint[0], nextpoint[1]);
    /*  Commented out - would eliminate point from output .node file.
            setpointmark(nextpoint, DEADPOINT);
    */
            check4events = 0;
          } else {
            lastpoint = nextpoint;
    
            splayroot = frontlocate(splayroot, &bottommost, nextpoint, &searchtri,
                                    &farrightflag);
    /*
            triedgecopy(bottommost, searchtri);
            farrightflag = 0;
            while (!farrightflag && rightofhyperbola(&searchtri, nextpoint)) {
              onextself(searchtri);
              farrightflag = triedgeequal(searchtri, bottommost);
            }
    */
    
            check4deadevent(&searchtri, &freeevents, eventheap, &heapsize);
    
            triedgecopy(searchtri, farrighttri);
            sym(searchtri, farlefttri);
            maketriangle(&lefttri);
            maketriangle(&righttri);
            dest(farrighttri, connectpoint);
            setorg(lefttri, connectpoint);
            setdest(lefttri, nextpoint);
            setorg(righttri, nextpoint);
            setdest(righttri, connectpoint);
            bond(lefttri, righttri);
            lnextself(lefttri);
            lprevself(righttri);
            bond(lefttri, righttri);
            lnextself(lefttri);
            lprevself(righttri);
            bond(lefttri, farlefttri);
            bond(righttri, farrighttri);
            if (!farrightflag && triedgeequal(farrighttri, bottommost)) {
              triedgecopy(lefttri, bottommost);
            }
    
            if (randomnation(SAMPLERATE) == 0) {
              splayroot = splayinsert(splayroot, &lefttri, nextpoint);
            } else if (randomnation(SAMPLERATE) == 0) {
              lnext(righttri, inserttri);
              splayroot = splayinsert(splayroot, &inserttri, nextpoint);
            }
          }
        }
        nextevent->eventptr = (VOID *) freeevents;
        freeevents = nextevent;
    
        if (check4events) {
          apex(farlefttri, leftpoint);
          dest(lefttri, midpoint);
          apex(lefttri, rightpoint);
          lefttest = counterclockwise(leftpoint, midpoint, rightpoint);
          if (lefttest > 0.0) {
            newevent = freeevents;
            freeevents = (struct event *) freeevents->eventptr;
            newevent->xkey = xminextreme;
            newevent->ykey = circletop(leftpoint, midpoint, rightpoint,
                                       lefttest);
            newevent->eventptr = (VOID *) encode(lefttri);
            eventheapinsert(eventheap, heapsize, newevent);
            heapsize++;
            setorg(lefttri, newevent);
          }
          apex(righttri, leftpoint);
          org(righttri, midpoint);
          apex(farrighttri, rightpoint);
          righttest = counterclockwise(leftpoint, midpoint, rightpoint);
          if (righttest > 0.0) {
            newevent = freeevents;
            freeevents = (struct event *) freeevents->eventptr;
            newevent->xkey = xminextreme;
            newevent->ykey = circletop(leftpoint, midpoint, rightpoint,
                                       righttest);
            newevent->eventptr = (VOID *) encode(farrighttri);
            eventheapinsert(eventheap, heapsize, newevent);
            heapsize++;
            setorg(farrighttri, newevent);
          }
        }
      }
    
      pooldeinit(&splaynodes);
      lprevself(bottommost);
      return removeghosts(&bottommost);
    }
    
    #endif /* not REDUCED */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Sweepline Delaunay triangulation ends here                *********/
    
    /********* General mesh construction routines begin here             *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  delaunay()   Form a Delaunay triangulation.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    long delaunay()
    {
      eextras = 0;
      initializetrisegpools();
    
    #ifdef REDUCED
      if (!quiet) {
        printf(
          "Constructing Delaunay triangulation by divide-and-conquer method.\n");
      }
      return divconqdelaunay();
    #else /* not REDUCED */
      if (!quiet) {
        printf("Constructing Delaunay triangulation ");
        if (incremental) {
          printf("by incremental method.\n");
        } else if (sweepline) {
          printf("by sweepline method.\n");
        } else {
          printf("by divide-and-conquer method.\n");
        }
      }
      if (incremental) {
        return incrementaldelaunay();
      } else if (sweepline) {
        return sweeplinedelaunay();
      } else {
        return divconqdelaunay();
      }
    #endif /* not REDUCED */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  reconstruct()   Reconstruct a triangulation from its .ele (and possibly  */
    /*                  .poly) file.  Used when the -r switch is used.           */
    /*                                                                           */
    /*  Reads an .ele file and reconstructs the original mesh.  If the -p switch */
    /*  is used, this procedure will also read a .poly file and reconstruct the  */
    /*  shell edges of the original mesh.  If the -a switch is used, this        */
    /*  procedure will also read an .area file and set a maximum area constraint */
    /*  on each triangle.                                                        */
    /*                                                                           */
    /*  Points that are not corners of triangles, such as nodes on edges of      */
    /*  subparametric elements, are discarded.                                   */
    /*                                                                           */
    /*  This routine finds the adjacencies between triangles (and shell edges)   */
    /*  by forming one stack of triangles for each vertex.  Each triangle is on  */
    /*  three different stacks simultaneously.  Each triangle's shell edge       */
    /*  pointers are used to link the items in each stack.  This memory-saving   */
    /*  feature makes the code harder to read.  The most important thing to keep */
    /*  in mind is that each triangle is removed from a stack precisely when     */
    /*  the corresponding pointer is adjusted to refer to a shell edge rather    */
    /*  than the next triangle of the stack.                                     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    #ifdef TRILIBRARY
    
    int reconstruct(trianglelist, triangleattriblist, trianglearealist, elements,
                    corners, attribs, segmentlist, segmentmarkerlist,
                    numberofsegments)
    int *trianglelist;
    REAL *triangleattriblist;
    REAL *trianglearealist;
    int elements;
    int corners;
    int attribs;
    int *segmentlist;
    int *segmentmarkerlist;
    int numberofsegments;
    
    #else /* not TRILIBRARY */
    
    long reconstruct(elefilename, areafilename, polyfilename, polyfile)
    char *elefilename;
    char *areafilename;
    char *polyfilename;
    FILE *polyfile;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int pointindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *elefile;
      FILE *areafile;
      char inputline[INPUTLINESIZE];
      char *stringptr;
      int areaelements;
    #endif /* not TRILIBRARY */
      struct triedge triangleloop;
      struct triedge triangleleft;
      struct triedge checktri;
      struct triedge checkleft;
      struct triedge checkneighbor;
      struct edge shelleloop;
      triangle *vertexarray;
      triangle *prevlink;
      triangle nexttri;
      point tdest, tapex;
      point checkdest, checkapex;
      point shorg;
      point killpoint;
      REAL area;
      int corner[3];
      int end[2];
      int killpointindex;
      int incorners;
      int segmentmarkers;
      int boundmarker;
      int aroundpoint;
      long hullsize;
      int notfound;
      int elementnumber, segmentnumber;
      int i, j;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
    #ifdef TRILIBRARY
      inelements = elements;
      incorners = corners;
      if (incorners < 3) {
        printf("Error:  Triangles must have at least 3 points.\n");
        exit(1);
      }
      eextras = attribs;
    #else /* not TRILIBRARY */
      /* Read the triangles from an .ele file. */
      if (!quiet) {
        printf("Opening %s.\n", elefilename);
      }
      elefile = fopen(elefilename, "r");
      if (elefile == (FILE *) NULL) {
        printf("  Error:  Cannot access file %s.\n", elefilename);
        exit(1);
      }
      /* Read number of triangles, number of points per triangle, and */
      /*   number of triangle attributes from .ele file.              */
      stringptr = readline(inputline, elefile, elefilename);
      inelements = (int) strtol (stringptr, &stringptr, 0);
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        incorners = 3;
      } else {
        incorners = (int) strtol (stringptr, &stringptr, 0);
        if (incorners < 3) {
          printf("Error:  Triangles in %s must have at least 3 points.\n",
                 elefilename);
          exit(1);
        }
      }
      stringptr = findfield(stringptr);
      if (*stringptr == '\0') {
        eextras = 0;
      } else {
        eextras = (int) strtol (stringptr, &stringptr, 0);
      }
    #endif /* not TRILIBRARY */
    
      initializetrisegpools();
    
      /* Create the triangles. */
      for (elementnumber = 1; elementnumber <= inelements; elementnumber++) {
        maketriangle(&triangleloop);
        /* Mark the triangle as living. */
        triangleloop.tri[3] = (triangle) triangleloop.tri;
      }
    
      if (poly) {
    #ifdef TRILIBRARY
        insegments = numberofsegments;
        segmentmarkers = segmentmarkerlist != (int *) NULL;
    #else /* not TRILIBRARY */
        /* Read number of segments and number of segment */
        /*   boundary markers from .poly file.           */
        stringptr = readline(inputline, polyfile, inpolyfilename);
        insegments = (int) strtol (stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          segmentmarkers = 0;
        } else {
          segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
        }
    #endif /* not TRILIBRARY */
    
        /* Create the shell edges. */
        for (segmentnumber = 1; segmentnumber <= insegments; segmentnumber++) {
          makeshelle(&shelleloop);
          /* Mark the shell edge as living. */
          shelleloop.sh[2] = (shelle) shelleloop.sh;
        }
      }
    
    #ifdef TRILIBRARY
      pointindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (vararea) {
        /* Open an .area file, check for consistency with the .ele file. */
        if (!quiet) {
          printf("Opening %s.\n", areafilename);
        }
        areafile = fopen(areafilename, "r");
        if (areafile == (FILE *) NULL) {
          printf("  Error:  Cannot access file %s.\n", areafilename);
          exit(1);
        }
        stringptr = readline(inputline, areafile, areafilename);
        areaelements = (int) strtol (stringptr, &stringptr, 0);
        if (areaelements != inelements) {
          printf("Error:  %s and %s disagree on number of triangles.\n",
                 elefilename, areafilename);
          exit(1);
        }
      }
    #endif /* not TRILIBRARY */
    
      if (!quiet) {
        printf("Reconstructing mesh.\n");
      }
      /* Allocate a temporary array that maps each point to some adjacent  */
      /*   triangle.  I took care to allocate all the permanent memory for */
      /*   triangles and shell edges first.                                */
      vertexarray = (triangle *) malloc(points.items * sizeof(triangle));
      if (vertexarray == (triangle *) NULL) {
        printf("Error:  Out of memory.\n");
        exit(1);
      }
      /* Each point is initially unrepresented. */
      for (i = 0; i < points.items; i++) {
        vertexarray[i] = (triangle) dummytri;
      }
    
      if (verbose) {
        printf("  Assembling triangles.\n");
      }
      /* Read the triangles from the .ele file, and link */
      /*   together those that share an edge.            */
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      elementnumber = firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
    #ifdef TRILIBRARY
        /* Copy the triangle's three corners. */
        for (j = 0; j < 3; j++) {
          corner[j] = trianglelist[pointindex++];
          if ((corner[j] < firstnumber) || (corner[j] >= firstnumber + inpoints)) {
            printf("Error:  Triangle %d has an invalid vertex index.\n",
                   elementnumber);
            exit(1);
          }
        }
    #else /* not TRILIBRARY */
        /* Read triangle number and the triangle's three corners. */
        stringptr = readline(inputline, elefile, elefilename);
        for (j = 0; j < 3; j++) {
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Triangle %d is missing point %d in %s.\n",
                   elementnumber, j + 1, elefilename);
            exit(1);
          } else {
            corner[j] = (int) strtol (stringptr, &stringptr, 0);
            if ((corner[j] < firstnumber) ||
                (corner[j] >= firstnumber + inpoints)) {
              printf("Error:  Triangle %d has an invalid vertex index.\n",
                     elementnumber);
              exit(1);
            }
          }
        }
    #endif /* not TRILIBRARY */
    
        /* Find out about (and throw away) extra nodes. */
        for (j = 3; j < incorners; j++) {
    #ifdef TRILIBRARY
          killpointindex = trianglelist[pointindex++];
    #else /* not TRILIBRARY */
          stringptr = findfield(stringptr);
          if (*stringptr != '\0') {
            killpointindex = (int) strtol (stringptr, &stringptr, 0);
    #endif /* not TRILIBRARY */
            if ((killpointindex >= firstnumber) &&
                (killpointindex < firstnumber + inpoints)) {
              /* Delete the non-corner point if it's not already deleted. */
              killpoint = getpoint(killpointindex);
              if (pointmark(killpoint) != DEADPOINT) {
                pointdealloc(killpoint);
              }
            }
    #ifndef TRILIBRARY
          }
    #endif /* not TRILIBRARY */
        }
    
        /* Read the triangle's attributes. */
        for (j = 0; j < eextras; j++) {
    #ifdef TRILIBRARY
          setelemattribute(triangleloop, j, triangleattriblist[attribindex++]);
    #else /* not TRILIBRARY */
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            setelemattribute(triangleloop, j, 0);
          } else {
            setelemattribute(triangleloop, j,
                             (REAL) strtod (stringptr, &stringptr));
          }
    #endif /* not TRILIBRARY */
        }
    
        if (vararea) {
    #ifdef TRILIBRARY
          area = trianglearealist[elementnumber - firstnumber];
    #else /* not TRILIBRARY */
          /* Read an area constraint from the .area file. */
          stringptr = readline(inputline, areafile, areafilename);
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            area = -1.0;                      /* No constraint on this triangle. */
          } else {
            area = (REAL) strtod(stringptr, &stringptr);
          }
    #endif /* not TRILIBRARY */
          setareabound(triangleloop, area);
        }
    
        /* Set the triangle's vertices. */
        triangleloop.orient = 0;
        setorg(triangleloop, getpoint(corner[0]));
        setdest(triangleloop, getpoint(corner[1]));
        setapex(triangleloop, getpoint(corner[2]));
        /* Try linking the triangle to others that share these vertices. */
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          /* Take the number for the origin of triangleloop. */
          aroundpoint = corner[triangleloop.orient];
          /* Look for other triangles having this vertex. */
          nexttri = vertexarray[aroundpoint - firstnumber];
          /* Link the current triangle to the next one in the stack. */
          triangleloop.tri[6 + triangleloop.orient] = nexttri;
          /* Push the current triangle onto the stack. */
          vertexarray[aroundpoint - firstnumber] = encode(triangleloop);
          decode(nexttri, checktri);
          if (checktri.tri != dummytri) {
            dest(triangleloop, tdest);
            apex(triangleloop, tapex);
            /* Look for other triangles that share an edge. */
            do {
              dest(checktri, checkdest);
              apex(checktri, checkapex);
              if (tapex == checkdest) {
                /* The two triangles share an edge; bond them together. */
                lprev(triangleloop, triangleleft);
                bond(triangleleft, checktri);
              }
              if (tdest == checkapex) {
                /* The two triangles share an edge; bond them together. */
                lprev(checktri, checkleft);
                bond(triangleloop, checkleft);
              }
              /* Find the next triangle in the stack. */
              nexttri = checktri.tri[6 + checktri.orient];
              decode(nexttri, checktri);
            } while (checktri.tri != dummytri);
          }
        }
        triangleloop.tri = triangletraverse();
        elementnumber++;
      }
    
    #ifdef TRILIBRARY
      pointindex = 0;
    #else /* not TRILIBRARY */
      fclose(elefile);
      if (vararea) {
        fclose(areafile);
      }
    #endif /* not TRILIBRARY */
    
      hullsize = 0;                      /* Prepare to count the boundary edges. */
      if (poly) {
        if (verbose) {
          printf("  Marking segments in triangulation.\n");
        }
        /* Read the segments from the .poly file, and link them */
        /*   to their neighboring triangles.                    */
        boundmarker = 0;
        traversalinit(&shelles);
        shelleloop.sh = shelletraverse();
        segmentnumber = firstnumber;
        while (shelleloop.sh != (shelle *) NULL) {
    #ifdef TRILIBRARY
          end[0] = segmentlist[pointindex++];
          end[1] = segmentlist[pointindex++];
          if (segmentmarkers) {
            boundmarker = segmentmarkerlist[segmentnumber - firstnumber];
          }
    #else /* not TRILIBRARY */
          /* Read the endpoints of each segment, and possibly a boundary marker. */
          stringptr = readline(inputline, polyfile, inpolyfilename);
          /* Skip the first (segment number) field. */
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %d has no endpoints in %s.\n", segmentnumber,
                   polyfilename);
            exit(1);
          } else {
            end[0] = (int) strtol (stringptr, &stringptr, 0);
          }
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %d is missing its second endpoint in %s.\n",
                   segmentnumber, polyfilename);
            exit(1);
          } else {
            end[1] = (int) strtol (stringptr, &stringptr, 0);
          }
          if (segmentmarkers) {
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              boundmarker = 0;
            } else {
              boundmarker = (int) strtol (stringptr, &stringptr, 0);
            }
          }
    #endif /* not TRILIBRARY */
          for (j = 0; j < 2; j++) {
            if ((end[j] < firstnumber) || (end[j] >= firstnumber + inpoints)) {
              printf("Error:  Segment %d has an invalid vertex index.\n", 
                     segmentnumber);
              exit(1);
            }
          }
    
          /* set the shell edge's vertices. */
          shelleloop.shorient = 0;
          setsorg(shelleloop, getpoint(end[0]));
          setsdest(shelleloop, getpoint(end[1]));
          setmark(shelleloop, boundmarker);
          /* Try linking the shell edge to triangles that share these vertices. */
          for (shelleloop.shorient = 0; shelleloop.shorient < 2;
               shelleloop.shorient++) {
            /* Take the number for the destination of shelleloop. */
            aroundpoint = end[1 - shelleloop.shorient];
            /* Look for triangles having this vertex. */
            prevlink = &vertexarray[aroundpoint - firstnumber];
            nexttri = vertexarray[aroundpoint - firstnumber];
            decode(nexttri, checktri);
            sorg(shelleloop, shorg);
            notfound = 1;
            /* Look for triangles having this edge.  Note that I'm only       */
            /*   comparing each triangle's destination with the shell edge;   */
            /*   each triangle's apex is handled through a different vertex.  */
            /*   Because each triangle appears on three vertices' lists, each */
            /*   occurrence of a triangle on a list can (and does) represent  */
            /*   an edge.  In this way, most edges are represented twice, and */
            /*   every triangle-segment bond is represented once.             */
            while (notfound && (checktri.tri != dummytri)) {
              dest(checktri, checkdest);
              if (shorg == checkdest) {
                /* We have a match.  Remove this triangle from the list. */
                *prevlink = checktri.tri[6 + checktri.orient];
                /* Bond the shell edge to the triangle. */
                tsbond(checktri, shelleloop);
                /* Check if this is a boundary edge. */
                sym(checktri, checkneighbor);
                if (checkneighbor.tri == dummytri) {
                  /* The next line doesn't insert a shell edge (because there's */
                  /*   already one there), but it sets the boundary markers of  */
                  /*   the existing shell edge and its vertices.                */
                  insertshelle(&checktri, 1);
                  hullsize++;
                }
                notfound = 0;
              }
              /* Find the next triangle in the stack. */
              prevlink = &checktri.tri[6 + checktri.orient];
              nexttri = checktri.tri[6 + checktri.orient];
              decode(nexttri, checktri);
            }
          }
          shelleloop.sh = shelletraverse();
          segmentnumber++;
        }
      }
    
      /* Mark the remaining edges as not being attached to any shell edge. */
      /* Also, count the (yet uncounted) boundary edges.                   */
      for (i = 0; i < points.items; i++) {
        /* Search the stack of triangles adjacent to a point. */
        nexttri = vertexarray[i];
        decode(nexttri, checktri);
        while (checktri.tri != dummytri) {
          /* Find the next triangle in the stack before this */
          /*   information gets overwritten.                 */
          nexttri = checktri.tri[6 + checktri.orient];
          /* No adjacent shell edge.  (This overwrites the stack info.) */
          tsdissolve(checktri);
          sym(checktri, checkneighbor);
          if (checkneighbor.tri == dummytri) {
            insertshelle(&checktri, 1);
            hullsize++;
          }
          decode(nexttri, checktri);
        }
      }
    
      free(vertexarray);
      return hullsize;
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* General mesh construction routines end here               *********/
    
    /********* Segment (shell edge) insertion begins here                *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  finddirection()   Find the first triangle on the path from one point     */
    /*                    to another.                                            */
    /*                                                                           */
    /*  Finds the triangle that intersects a line segment drawn from the         */
    /*  origin of `searchtri' to the point `endpoint', and returns the result    */
    /*  in `searchtri'.  The origin of `searchtri' does not change, even though  */
    /*  the triangle returned may differ from the one passed in.  This routine   */
    /*  is used to find the direction to move in to get from one point to        */
    /*  another.                                                                 */
    /*                                                                           */
    /*  The return value notes whether the destination or apex of the found      */
    /*  triangle is collinear with the two points in question.                   */
    /*                                                                           */
    /*****************************************************************************/
    
    enum finddirectionresult finddirection(searchtri, endpoint)
    struct triedge *searchtri;
    point endpoint;
    {
      struct triedge checktri;
      point startpoint;
      point leftpoint, rightpoint;
      REAL leftccw, rightccw;
      int leftflag, rightflag;
      triangle ptr;           /* Temporary variable used by onext() and oprev(). */
    
      org(*searchtri, startpoint);
      dest(*searchtri, rightpoint);
      apex(*searchtri, leftpoint);
      /* Is `endpoint' to the left? */
      leftccw = counterclockwise(endpoint, startpoint, leftpoint);
      leftflag = leftccw > 0.0;
      /* Is `endpoint' to the right? */
      rightccw = counterclockwise(startpoint, endpoint, rightpoint);
      rightflag = rightccw > 0.0;
      if (leftflag && rightflag) {
        /* `searchtri' faces directly away from `endpoint'.  We could go */
        /*   left or right.  Ask whether it's a triangle or a boundary   */
        /*   on the left.                                                */
        onext(*searchtri, checktri);
        if (checktri.tri == dummytri) {
          leftflag = 0;
        } else {
          rightflag = 0;
        }
      }
      while (leftflag) {
        /* Turn left until satisfied. */
        onextself(*searchtri);
        if (searchtri->tri == dummytri) {
          printf("Internal error in finddirection():  Unable to find a\n");
          printf("  triangle leading from (%.12g, %.12g) to", startpoint[0],
                 startpoint[1]);
          printf("  (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
          internalerror();
        }
        apex(*searchtri, leftpoint);
        rightccw = leftccw;
        leftccw = counterclockwise(endpoint, startpoint, leftpoint);
        leftflag = leftccw > 0.0;
      }
      while (rightflag) {
        /* Turn right until satisfied. */
        oprevself(*searchtri);
        if (searchtri->tri == dummytri) {
          printf("Internal error in finddirection():  Unable to find a\n");
          printf("  triangle leading from (%.12g, %.12g) to", startpoint[0],
                 startpoint[1]);
          printf("  (%.12g, %.12g).\n", endpoint[0], endpoint[1]);
          internalerror();
        }
        dest(*searchtri, rightpoint);
        leftccw = rightccw;
        rightccw = counterclockwise(startpoint, endpoint, rightpoint);
        rightflag = rightccw > 0.0;
      }
      if (leftccw == 0.0) {
        return LEFTCOLLINEAR;
      } else if (rightccw == 0.0) {
        return RIGHTCOLLINEAR;
      } else {
        return WITHIN;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  segmentintersection()   Find the intersection of an existing segment     */
    /*                          and a segment that is being inserted.  Insert    */
    /*                          a point at the intersection, splitting an        */
    /*                          existing shell edge.                             */
    /*                                                                           */
    /*  The segment being inserted connects the apex of splittri to endpoint2.   */
    /*  splitshelle is the shell edge being split, and MUST be opposite          */
    /*  splittri.  Hence, the edge being split connects the origin and           */
    /*  destination of splittri.                                                 */
    /*                                                                           */
    /*  On completion, splittri is a handle having the newly inserted            */
    /*  intersection point as its origin, and endpoint1 as its destination.      */
    /*                                                                           */
    /*****************************************************************************/
    
    void segmentintersection(splittri, splitshelle, endpoint2)
    struct triedge *splittri;
    struct edge *splitshelle;
    point endpoint2;
    {
      point endpoint1;
      point torg, tdest;
      point leftpoint, rightpoint;
      point newpoint;
      enum insertsiteresult success;
      enum finddirectionresult collinear;
      REAL ex, ey;
      REAL tx, ty;
      REAL etx, ety;
      REAL split, denom;
      int i;
      triangle ptr;                       /* Temporary variable used by onext(). */
    
      /* Find the other three segment endpoints. */
      apex(*splittri, endpoint1);
      org(*splittri, torg);
      dest(*splittri, tdest);
      /* Segment intersection formulae; see the Antonio reference. */
      tx = tdest[0] - torg[0];
      ty = tdest[1] - torg[1];
      ex = endpoint2[0] - endpoint1[0];
      ey = endpoint2[1] - endpoint1[1];
      etx = torg[0] - endpoint2[0];
      ety = torg[1] - endpoint2[1];
      denom = ty * ex - tx * ey;
      if (denom == 0.0) {
        printf("Internal error in segmentintersection():");
        printf("  Attempt to find intersection of parallel segments.\n");
        internalerror();
      }
      split = (ey * etx - ex * ety) / denom;
      /* Create the new point. */
      newpoint = (point) poolalloc(&points);
      /* Interpolate its coordinate and attributes. */
      for (i = 0; i < 2 + nextras; i++) {
        newpoint[i] = torg[i] + split * (tdest[i] - torg[i]);
      }
      setpointmark(newpoint, mark(*splitshelle));
      if (verbose > 1) {
        printf(
        "  Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
               torg[0], torg[1], tdest[0], tdest[1], newpoint[0], newpoint[1]);
      }
      /* Insert the intersection point.  This should always succeed. */
      success = insertsite(newpoint, splittri, splitshelle, 0, 0);
      if (success != SUCCESSFULPOINT) {
        printf("Internal error in segmentintersection():\n");
        printf("  Failure to split a segment.\n");
        internalerror();
      }
      if (steinerleft > 0) {
        steinerleft--;
      }
      /* Inserting the point may have caused edge flips.  We wish to rediscover */
      /*   the edge connecting endpoint1 to the new intersection point.         */
      collinear = finddirection(splittri, endpoint1);
      dest(*splittri, rightpoint);
      apex(*splittri, leftpoint);
      if ((leftpoint[0] == endpoint1[0]) && (leftpoint[1] == endpoint1[1])) {
        onextself(*splittri);
      } else if ((rightpoint[0] != endpoint1[0]) ||
                 (rightpoint[1] != endpoint1[1])) {
        printf("Internal error in segmentintersection():\n");
        printf("  Topological inconsistency after splitting a segment.\n");
        internalerror();
      }
      /* `splittri' should have destination endpoint1. */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  scoutsegment()   Scout the first triangle on the path from one endpoint  */
    /*                   to another, and check for completion (reaching the      */
    /*                   second endpoint), a collinear point, and the            */
    /*                   intersection of two segments.                           */
    /*                                                                           */
    /*  Returns one if the entire segment is successfully inserted, and zero if  */
    /*  the job must be finished by conformingedge() or constrainededge().       */
    /*                                                                           */
    /*  If the first triangle on the path has the second endpoint as its         */
    /*  destination or apex, a shell edge is inserted and the job is done.       */
    /*                                                                           */
    /*  If the first triangle on the path has a destination or apex that lies on */
    /*  the segment, a shell edge is inserted connecting the first endpoint to   */
    /*  the collinear point, and the search is continued from the collinear      */
    /*  point.                                                                   */
    /*                                                                           */
    /*  If the first triangle on the path has a shell edge opposite its origin,  */
    /*  then there is a segment that intersects the segment being inserted.      */
    /*  Their intersection point is inserted, splitting the shell edge.          */
    /*                                                                           */
    /*  Otherwise, return zero.                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    int scoutsegment(searchtri, endpoint2, newmark)
    struct triedge *searchtri;
    point endpoint2;
    int newmark;
    {
      struct triedge crosstri;
      struct edge crossedge;
      point leftpoint, rightpoint;
      point endpoint1;
      enum finddirectionresult collinear;
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      collinear = finddirection(searchtri, endpoint2);
      dest(*searchtri, rightpoint);
      apex(*searchtri, leftpoint);
      if (((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) ||
          ((rightpoint[0] == endpoint2[0]) && (rightpoint[1] == endpoint2[1]))) {
        /* The segment is already an edge in the mesh. */
        if ((leftpoint[0] == endpoint2[0]) && (leftpoint[1] == endpoint2[1])) {
          lprevself(*searchtri);
        }
        /* Insert a shell edge, if there isn't already one there. */
        insertshelle(searchtri, newmark);
        return 1;
      } else if (collinear == LEFTCOLLINEAR) {
        /* We've collided with a point between the segment's endpoints. */
        /* Make the collinear point be the triangle's origin. */
        lprevself(*searchtri);
        insertshelle(searchtri, newmark);
        /* Insert the remainder of the segment. */
        return scoutsegment(searchtri, endpoint2, newmark);
      } else if (collinear == RIGHTCOLLINEAR) {
        /* We've collided with a point between the segment's endpoints. */
        insertshelle(searchtri, newmark);
        /* Make the collinear point be the triangle's origin. */
        lnextself(*searchtri);
        /* Insert the remainder of the segment. */
        return scoutsegment(searchtri, endpoint2, newmark);
      } else {
        lnext(*searchtri, crosstri);
        tspivot(crosstri, crossedge);
        /* Check for a crossing segment. */
        if (crossedge.sh == dummysh) {
          return 0;
        } else {
          org(*searchtri, endpoint1);
          /* Insert a point at the intersection. */
          segmentintersection(&crosstri, &crossedge, endpoint2);
          triedgecopy(crosstri, *searchtri);
          insertshelle(searchtri, newmark);
          /* Insert the remainder of the segment. */
          return scoutsegment(searchtri, endpoint2, newmark);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  conformingedge()   Force a segment into a conforming Delaunay            */
    /*                     triangulation by inserting a point at its midpoint,   */
    /*                     and recursively forcing in the two half-segments if   */
    /*                     necessary.                                            */
    /*                                                                           */
    /*  Generates a sequence of edges connecting `endpoint1' to `endpoint2'.     */
    /*  `newmark' is the boundary marker of the segment, assigned to each new    */
    /*  splitting point and shell edge.                                          */
    /*                                                                           */
    /*  Note that conformingedge() does not always maintain the conforming       */
    /*  Delaunay property.  Once inserted, segments are locked into place;       */
    /*  points inserted later (to force other segments in) may render these      */
    /*  fixed segments non-Delaunay.  The conforming Delaunay property will be   */
    /*  restored by enforcequality() by splitting encroached segments.           */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef REDUCED
    #ifndef CDT_ONLY
    
    void conformingedge(endpoint1, endpoint2, newmark)
    point endpoint1;
    point endpoint2;
    int newmark;
    {
      struct triedge searchtri1, searchtri2;
      struct edge brokenshelle;
      point newpoint;
      point midpoint1, midpoint2;
      enum insertsiteresult success;
      int result1, result2;
      int i;
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      if (verbose > 2) {
        printf("Forcing segment into triangulation by recursive splitting:\n");
        printf("  (%.12g, %.12g) (%.12g, %.12g)\n", endpoint1[0], endpoint1[1],
               endpoint2[0], endpoint2[1]);
      }
      /* Create a new point to insert in the middle of the segment. */
      newpoint = (point) poolalloc(&points);
      /* Interpolate coordinates and attributes. */
      for (i = 0; i < 2 + nextras; i++) {
        newpoint[i] = 0.5 * (endpoint1[i] + endpoint2[i]);
      }
      setpointmark(newpoint, newmark);
      /* Find a boundary triangle to search from. */
      searchtri1.tri = (triangle *) NULL;
      /* Attempt to insert the new point. */
      success = insertsite(newpoint, &searchtri1, (struct edge *) NULL, 0, 0);
      if (success == DUPLICATEPOINT) {
        if (verbose > 2) {
          printf("  Segment intersects existing point (%.12g, %.12g).\n",
                 newpoint[0], newpoint[1]);
        }
        /* Use the point that's already there. */
        pointdealloc(newpoint);
        org(searchtri1, newpoint);
      } else {
        if (success == VIOLATINGPOINT) {
          if (verbose > 2) {
            printf("  Two segments intersect at (%.12g, %.12g).\n",
                   newpoint[0], newpoint[1]);
          }
          /* By fluke, we've landed right on another segment.  Split it. */
          tspivot(searchtri1, brokenshelle);
          success = insertsite(newpoint, &searchtri1, &brokenshelle, 0, 0);
          if (success != SUCCESSFULPOINT) {
            printf("Internal error in conformingedge():\n");
            printf("  Failure to split a segment.\n");
            internalerror();
          }
        }
        /* The point has been inserted successfully. */
        if (steinerleft > 0) {
          steinerleft--;
        }
      }
      triedgecopy(searchtri1, searchtri2);
      result1 = scoutsegment(&searchtri1, endpoint1, newmark);
      result2 = scoutsegment(&searchtri2, endpoint2, newmark);
      if (!result1) {
        /* The origin of searchtri1 may have changed if a collision with an */
        /*   intervening vertex on the segment occurred.                    */
        org(searchtri1, midpoint1);
        conformingedge(midpoint1, endpoint1, newmark);
      }
      if (!result2) {
        /* The origin of searchtri2 may have changed if a collision with an */
        /*   intervening vertex on the segment occurred.                    */
        org(searchtri2, midpoint2);
        conformingedge(midpoint2, endpoint2, newmark);
      }
    }
    
    #endif /* not CDT_ONLY */
    #endif /* not REDUCED */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  delaunayfixup()   Enforce the Delaunay condition at an edge, fanning out */
    /*                    recursively from an existing point.  Pay special       */
    /*                    attention to stacking inverted triangles.              */
    /*                                                                           */
    /*  This is a support routine for inserting segments into a constrained      */
    /*  Delaunay triangulation.                                                  */
    /*                                                                           */
    /*  The origin of fixuptri is treated as if it has just been inserted, and   */
    /*  the local Delaunay condition needs to be enforced.  It is only enforced  */
    /*  in one sector, however, that being the angular range defined by          */
    /*  fixuptri.                                                                */
    /*                                                                           */
    /*  This routine also needs to make decisions regarding the "stacking" of    */
    /*  triangles.  (Read the description of constrainededge() below before      */
    /*  reading on here, so you understand the algorithm.)  If the position of   */
    /*  the new point (the origin of fixuptri) indicates that the vertex before  */
    /*  it on the polygon is a reflex vertex, then "stack" the triangle by       */
    /*  doing nothing.  (fixuptri is an inverted triangle, which is how stacked  */
    /*  triangles are identified.)                                               */
    /*                                                                           */
    /*  Otherwise, check whether the vertex before that was a reflex vertex.     */
    /*  If so, perform an edge flip, thereby eliminating an inverted triangle    */
    /*  (popping it off the stack).  The edge flip may result in the creation    */
    /*  of a new inverted triangle, depending on whether or not the new vertex   */
    /*  is visible to the vertex three edges behind on the polygon.              */
    /*                                                                           */
    /*  If neither of the two vertices behind the new vertex are reflex          */
    /*  vertices, fixuptri and fartri, the triangle opposite it, are not         */
    /*  inverted; hence, ensure that the edge between them is locally Delaunay.  */
    /*                                                                           */
    /*  `leftside' indicates whether or not fixuptri is to the left of the       */
    /*  segment being inserted.  (Imagine that the segment is pointing up from   */
    /*  endpoint1 to endpoint2.)                                                 */
    /*                                                                           */
    /*****************************************************************************/
    
    void delaunayfixup(fixuptri, leftside)
    struct triedge *fixuptri;
    int leftside;
    {
      struct triedge neartri;
      struct triedge fartri;
      struct edge faredge;
      point nearpoint, leftpoint, rightpoint, farpoint;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      lnext(*fixuptri, neartri);
      sym(neartri, fartri);
      /* Check if the edge opposite the origin of fixuptri can be flipped. */
      if (fartri.tri == dummytri) {
        return;
      }
      tspivot(neartri, faredge);
      if (faredge.sh != dummysh) {
        return;
      }
      /* Find all the relevant vertices. */
      apex(neartri, nearpoint);
      org(neartri, leftpoint);
      dest(neartri, rightpoint);
      apex(fartri, farpoint);
      /* Check whether the previous polygon vertex is a reflex vertex. */
      if (leftside) {
        if (counterclockwise(nearpoint, leftpoint, farpoint) <= 0.0) {
          /* leftpoint is a reflex vertex too.  Nothing can */
          /*   be done until a convex section is found.     */
          return;
        }
      } else {
        if (counterclockwise(farpoint, rightpoint, nearpoint) <= 0.0) {
          /* rightpoint is a reflex vertex too.  Nothing can */
          /*   be done until a convex section is found.      */
          return;
        }
      }
      if (counterclockwise(rightpoint, leftpoint, farpoint) > 0.0) {
        /* fartri is not an inverted triangle, and farpoint is not a reflex */
        /*   vertex.  As there are no reflex vertices, fixuptri isn't an    */
        /*   inverted triangle, either.  Hence, test the edge between the   */
        /*   triangles to ensure it is locally Delaunay.                    */
        if (incircle(leftpoint, farpoint, rightpoint, nearpoint) <= 0.0) {
          return;
        }
        /* Not locally Delaunay; go on to an edge flip. */
      }        /* else fartri is inverted; remove it from the stack by flipping. */
      flip(&neartri);
      lprevself(*fixuptri);    /* Restore the origin of fixuptri after the flip. */
      /* Recursively process the two triangles that result from the flip. */
      delaunayfixup(fixuptri, leftside);
      delaunayfixup(&fartri, leftside);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  constrainededge()   Force a segment into a constrained Delaunay          */
    /*                      triangulation by deleting the triangles it           */
    /*                      intersects, and triangulating the polygons that      */
    /*                      form on each side of it.                             */
    /*                                                                           */
    /*  Generates a single edge connecting `endpoint1' to `endpoint2'.  The      */
    /*  triangle `starttri' has `endpoint1' as its origin.  `newmark' is the     */
    /*  boundary marker of the segment.                                          */
    /*                                                                           */
    /*  To insert a segment, every triangle whose interior intersects the        */
    /*  segment is deleted.  The union of these deleted triangles is a polygon   */
    /*  (which is not necessarily monotone, but is close enough), which is       */
    /*  divided into two polygons by the new segment.  This routine's task is    */
    /*  to generate the Delaunay triangulation of these two polygons.            */
    /*                                                                           */
    /*  You might think of this routine's behavior as a two-step process.  The   */
    /*  first step is to walk from endpoint1 to endpoint2, flipping each edge    */
    /*  encountered.  This step creates a fan of edges connected to endpoint1,   */
    /*  including the desired edge to endpoint2.  The second step enforces the   */
    /*  Delaunay condition on each side of the segment in an incremental manner: */
    /*  proceeding along the polygon from endpoint1 to endpoint2 (this is done   */
    /*  independently on each side of the segment), each vertex is "enforced"    */
    /*  as if it had just been inserted, but affecting only the previous         */
    /*  vertices.  The result is the same as if the vertices had been inserted   */
    /*  in the order they appear on the polygon, so the result is Delaunay.      */
    /*                                                                           */
    /*  In truth, constrainededge() interleaves these two steps.  The procedure  */
    /*  walks from endpoint1 to endpoint2, and each time an edge is encountered  */
    /*  and flipped, the newly exposed vertex (at the far end of the flipped     */
    /*  edge) is "enforced" upon the previously flipped edges, usually affecting */
    /*  only one side of the polygon (depending upon which side of the segment   */
    /*  the vertex falls on).                                                    */
    /*                                                                           */
    /*  The algorithm is complicated by the need to handle polygons that are not */
    /*  convex.  Although the polygon is not necessarily monotone, it can be     */
    /*  triangulated in a manner similar to the stack-based algorithms for       */
    /*  monotone polygons.  For each reflex vertex (local concavity) of the      */
    /*  polygon, there will be an inverted triangle formed by one of the edge    */
    /*  flips.  (An inverted triangle is one with negative area - that is, its   */
    /*  vertices are arranged in clockwise order - and is best thought of as a   */
    /*  wrinkle in the fabric of the mesh.)  Each inverted triangle can be       */
    /*  thought of as a reflex vertex pushed on the stack, waiting to be fixed   */
    /*  later.                                                                   */
    /*                                                                           */
    /*  A reflex vertex is popped from the stack when a vertex is inserted that  */
    /*  is visible to the reflex vertex.  (However, if the vertex behind the     */
    /*  reflex vertex is not visible to the reflex vertex, a new inverted        */
    /*  triangle will take its place on the stack.)  These details are handled   */
    /*  by the delaunayfixup() routine above.                                    */
    /*                                                                           */
    /*****************************************************************************/
    
    void constrainededge(starttri, endpoint2, newmark)
    struct triedge *starttri;
    point endpoint2;
    int newmark;
    {
      struct triedge fixuptri, fixuptri2;
      struct edge fixupedge;
      point endpoint1;
      point farpoint;
      REAL area;
      int collision;
      int done;
      triangle ptr;             /* Temporary variable used by sym() and oprev(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      org(*starttri, endpoint1);
      lnext(*starttri, fixuptri);
      flip(&fixuptri);
      /* `collision' indicates whether we have found a point directly */
      /*   between endpoint1 and endpoint2.                           */
      collision = 0;
      done = 0;
      do {
        org(fixuptri, farpoint);
        /* `farpoint' is the extreme point of the polygon we are "digging" */
        /*   to get from endpoint1 to endpoint2.                           */
        if ((farpoint[0] == endpoint2[0]) && (farpoint[1] == endpoint2[1])) {
          oprev(fixuptri, fixuptri2);
          /* Enforce the Delaunay condition around endpoint2. */
          delaunayfixup(&fixuptri, 0);
          delaunayfixup(&fixuptri2, 1);
          done = 1;
        } else {
          /* Check whether farpoint is to the left or right of the segment */
          /*   being inserted, to decide which edge of fixuptri to dig     */
          /*   through next.                                               */
          area = counterclockwise(endpoint1, endpoint2, farpoint);
          if (area == 0.0) {
            /* We've collided with a point between endpoint1 and endpoint2. */
            collision = 1;
            oprev(fixuptri, fixuptri2);
            /* Enforce the Delaunay condition around farpoint. */
            delaunayfixup(&fixuptri, 0);
            delaunayfixup(&fixuptri2, 1);
            done = 1;
          } else {
            if (area > 0.0) {         /* farpoint is to the left of the segment. */
              oprev(fixuptri, fixuptri2);
              /* Enforce the Delaunay condition around farpoint, on the */
              /*   left side of the segment only.                       */
              delaunayfixup(&fixuptri2, 1);
              /* Flip the edge that crosses the segment.  After the edge is */
              /*   flipped, one of its endpoints is the fan vertex, and the */
              /*   destination of fixuptri is the fan vertex.               */
              lprevself(fixuptri);
            } else {                 /* farpoint is to the right of the segment. */
              delaunayfixup(&fixuptri, 0);
              /* Flip the edge that crosses the segment.  After the edge is */
              /*   flipped, one of its endpoints is the fan vertex, and the */
              /*   destination of fixuptri is the fan vertex.               */
              oprevself(fixuptri);
            }
            /* Check for two intersecting segments. */
            tspivot(fixuptri, fixupedge);
            if (fixupedge.sh == dummysh) {
              flip(&fixuptri);   /* May create an inverted triangle on the left. */
            } else {
              /* We've collided with a segment between endpoint1 and endpoint2. */
              collision = 1;
              /* Insert a point at the intersection. */
              segmentintersection(&fixuptri, &fixupedge, endpoint2);
              done = 1;
            }
          }
        }
      } while (!done);
      /* Insert a shell edge to make the segment permanent. */
      insertshelle(&fixuptri, newmark);
      /* If there was a collision with an interceding vertex, install another */
      /*   segment connecting that vertex with endpoint2.                     */
      if (collision) {
        /* Insert the remainder of the segment. */
        if (!scoutsegment(&fixuptri, endpoint2, newmark)) {
          constrainededge(&fixuptri, endpoint2, newmark);
        }
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  insertsegment()   Insert a PSLG segment into a triangulation.            */
    /*                                                                           */
    /*****************************************************************************/
    
    void insertsegment(endpoint1, endpoint2, newmark)
    point endpoint1;
    point endpoint2;
    int newmark;
    {
      struct triedge searchtri1, searchtri2;
      triangle encodedtri;
      point checkpoint;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (verbose > 1) {
        printf("  Connecting (%.12g, %.12g) to (%.12g, %.12g).\n",
               endpoint1[0], endpoint1[1], endpoint2[0], endpoint2[1]);
      }
    
      /* Find a triangle whose origin is the segment's first endpoint. */
      checkpoint = (point) NULL;
      encodedtri = point2tri(endpoint1);
      if (encodedtri != (triangle) NULL) {
        decode(encodedtri, searchtri1);
        org(searchtri1, checkpoint);
      }
      if (checkpoint != endpoint1) {
        /* Find a boundary triangle to search from. */
        searchtri1.tri = dummytri;
        searchtri1.orient = 0;
        symself(searchtri1);
        /* Search for the segment's first endpoint by point location. */
        if (locate(endpoint1, &searchtri1) != ONVERTEX) {
          printf(
            "Internal error in insertsegment():  Unable to locate PSLG point\n");
          printf("  (%.12g, %.12g) in triangulation.\n",
                 endpoint1[0], endpoint1[1]);
          internalerror();
        }
      }
      /* Remember this triangle to improve subsequent point location. */
      triedgecopy(searchtri1, recenttri);
      /* Scout the beginnings of a path from the first endpoint */
      /*   toward the second.                                   */
      if (scoutsegment(&searchtri1, endpoint2, newmark)) {
        /* The segment was easily inserted. */
        return;
      }
      /* The first endpoint may have changed if a collision with an intervening */
      /*   vertex on the segment occurred.                                      */
      org(searchtri1, endpoint1);
    
      /* Find a triangle whose origin is the segment's second endpoint. */
      checkpoint = (point) NULL;
      encodedtri = point2tri(endpoint2);
      if (encodedtri != (triangle) NULL) {
        decode(encodedtri, searchtri2);
        org(searchtri2, checkpoint);
      }
      if (checkpoint != endpoint2) {
        /* Find a boundary triangle to search from. */
        searchtri2.tri = dummytri;
        searchtri2.orient = 0;
        symself(searchtri2);
        /* Search for the segment's second endpoint by point location. */
        if (locate(endpoint2, &searchtri2) != ONVERTEX) {
          printf(
            "Internal error in insertsegment():  Unable to locate PSLG point\n");
          printf("  (%.12g, %.12g) in triangulation.\n",
                 endpoint2[0], endpoint2[1]);
          internalerror();
        }
      }
      /* Remember this triangle to improve subsequent point location. */
      triedgecopy(searchtri2, recenttri);
      /* Scout the beginnings of a path from the second endpoint */
      /*   toward the first.                                     */
      if (scoutsegment(&searchtri2, endpoint1, newmark)) {
        /* The segment was easily inserted. */
        return;
      }
      /* The second endpoint may have changed if a collision with an intervening */
      /*   vertex on the segment occurred.                                       */
      org(searchtri2, endpoint2);
    
    #ifndef REDUCED
    #ifndef CDT_ONLY
      if (splitseg) {
        /* Insert vertices to force the segment into the triangulation. */
        conformingedge(endpoint1, endpoint2, newmark);
      } else {
    #endif /* not CDT_ONLY */
    #endif /* not REDUCED */
        /* Insert the segment directly into the triangulation. */
        constrainededge(&searchtri1, endpoint2, newmark);
    #ifndef REDUCED
    #ifndef CDT_ONLY
      }
    #endif /* not CDT_ONLY */
    #endif /* not REDUCED */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  markhull()   Cover the convex hull of a triangulation with shell edges.  */
    /*                                                                           */
    /*****************************************************************************/
    
    void markhull()
    {
      struct triedge hulltri;
      struct triedge nexttri;
      struct triedge starttri;
      triangle ptr;             /* Temporary variable used by sym() and oprev(). */
    
      /* Find a triangle handle on the hull. */
      hulltri.tri = dummytri;
      hulltri.orient = 0;
      symself(hulltri);
      /* Remember where we started so we know when to stop. */
      triedgecopy(hulltri, starttri);
      /* Go once counterclockwise around the convex hull. */
      do {
        /* Create a shell edge if there isn't already one here. */
        insertshelle(&hulltri, 1);
        /* To find the next hull edge, go clockwise around the next vertex. */
        lnextself(hulltri);
        oprev(hulltri, nexttri);
        while (nexttri.tri != dummytri) {
          triedgecopy(nexttri, hulltri);
          oprev(hulltri, nexttri);
        }
      } while (!triedgeequal(hulltri, starttri));
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  formskeleton()   Create the shell edges of a triangulation, including    */
    /*                   PSLG edges and edges on the convex hull.                */
    /*                                                                           */
    /*  The PSLG edges are read from a .poly file.  The return value is the      */
    /*  number of segments in the file.                                          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    int formskeleton(segmentlist, segmentmarkerlist, numberofsegments)
    int *segmentlist;
    int *segmentmarkerlist;
    int numberofsegments;
    
    #else /* not TRILIBRARY */
    
    int formskeleton(polyfile, polyfilename)
    FILE *polyfile;
    char *polyfilename;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      char polyfilename[6];
      int index;
    #else /* not TRILIBRARY */
      char inputline[INPUTLINESIZE];
      char *stringptr;
    #endif /* not TRILIBRARY */
      point endpoint1, endpoint2;
      int segments;
      int segmentmarkers;
      int end1, end2;
      int boundmarker;
      int i;
    
      if (poly) {
        if (!quiet) {
          printf("Inserting segments into Delaunay triangulation.\n");
        }
    #ifdef TRILIBRARY
        strcpy(polyfilename, "input");
        segments = numberofsegments;
        segmentmarkers = segmentmarkerlist != (int *) NULL;
        index = 0;
    #else /* not TRILIBRARY */
        /* Read the segments from a .poly file. */
        /* Read number of segments and number of boundary markers. */
        stringptr = readline(inputline, polyfile, polyfilename);
        segments = (int) strtol (stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          segmentmarkers = 0;
        } else {
          segmentmarkers = (int) strtol (stringptr, &stringptr, 0);
        }
    #endif /* not TRILIBRARY */
        /* If segments are to be inserted, compute a mapping */
        /*   from points to triangles.                       */
        if (segments > 0) {
          if (verbose) {
            printf("  Inserting PSLG segments.\n");
          }
          makepointmap();
        }
    
        boundmarker = 0;
        /* Read and insert the segments. */
        for (i = 1; i <= segments; i++) {
    #ifdef TRILIBRARY
          end1 = segmentlist[index++];
          end2 = segmentlist[index++];
          if (segmentmarkers) {
            boundmarker = segmentmarkerlist[i - 1];
          }
    #else /* not TRILIBRARY */
          stringptr = readline(inputline, polyfile, inpolyfilename);
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %d has no endpoints in %s.\n", i,
                   polyfilename);
            exit(1);
          } else {
            end1 = (int) strtol (stringptr, &stringptr, 0);
          }
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Segment %d is missing its second endpoint in %s.\n", i,
                   polyfilename);
            exit(1);
          } else {
            end2 = (int) strtol (stringptr, &stringptr, 0);
          }
          if (segmentmarkers) {
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              boundmarker = 0;
            } else {
              boundmarker = (int) strtol (stringptr, &stringptr, 0);
            }
          }
    #endif /* not TRILIBRARY */
          if ((end1 < firstnumber) || (end1 >= firstnumber + inpoints)) {
            if (!quiet) {
              printf("Warning:  Invalid first endpoint of segment %d in %s.\n", i,
                     polyfilename);
            }
          } else if ((end2 < firstnumber) || (end2 >= firstnumber + inpoints)) {
            if (!quiet) {
              printf("Warning:  Invalid second endpoint of segment %d in %s.\n", i,
                     polyfilename);
            }
          } else {
            endpoint1 = getpoint(end1);
            endpoint2 = getpoint(end2);
            if ((endpoint1[0] == endpoint2[0]) && (endpoint1[1] == endpoint2[1])) {
              if (!quiet) {
                printf("Warning:  Endpoints of segment %d are coincident in %s.\n",
                       i, polyfilename);
              }
            } else {
              insertsegment(endpoint1, endpoint2, boundmarker);
            }
          }
        }
      } else {
        segments = 0;
      }
      if (convex || !poly) {
        /* Enclose the convex hull with shell edges. */
        if (verbose) {
          printf("  Enclosing convex hull with segments.\n");
        }
        markhull();
      }
      return segments;
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Segment (shell edge) insertion ends here                  *********/
    
    /********* Carving out holes and concavities begins here             *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  infecthull()   Virally infect all of the triangles of the convex hull    */
    /*                 that are not protected by shell edges.  Where there are   */
    /*                 shell edges, set boundary markers as appropriate.         */
    /*                                                                           */
    /*****************************************************************************/
    
    void infecthull()
    {
      struct triedge hulltri;
      struct triedge nexttri;
      struct triedge starttri;
      struct edge hulledge;
      triangle **deadtri;
      point horg, hdest;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      if (verbose) {
        printf("  Marking concavities (external triangles) for elimination.\n");
      }
      /* Find a triangle handle on the hull. */
      hulltri.tri = dummytri;
      hulltri.orient = 0;
      symself(hulltri);
      /* Remember where we started so we know when to stop. */
      triedgecopy(hulltri, starttri);
      /* Go once counterclockwise around the convex hull. */
      do {
        /* Ignore triangles that are already infected. */
        if (!infected(hulltri)) {
          /* Is the triangle protected by a shell edge? */
          tspivot(hulltri, hulledge);
          if (hulledge.sh == dummysh) {
            /* The triangle is not protected; infect it. */
            infect(hulltri);
            deadtri = (triangle **) poolalloc(&viri);
            *deadtri = hulltri.tri;
          } else {
            /* The triangle is protected; set boundary markers if appropriate. */
            if (mark(hulledge) == 0) {
              setmark(hulledge, 1);
              org(hulltri, horg);
              dest(hulltri, hdest);
              if (pointmark(horg) == 0) {
                setpointmark(horg, 1);
              }
              if (pointmark(hdest) == 0) {
                setpointmark(hdest, 1);
              }
            }
          }
        }
        /* To find the next hull edge, go clockwise around the next vertex. */
        lnextself(hulltri);
        oprev(hulltri, nexttri);
        while (nexttri.tri != dummytri) {
          triedgecopy(nexttri, hulltri);
          oprev(hulltri, nexttri);
        }
      } while (!triedgeequal(hulltri, starttri));
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  plague()   Spread the virus from all infected triangles to any neighbors */
    /*             not protected by shell edges.  Delete all infected triangles. */
    /*                                                                           */
    /*  This is the procedure that actually creates holes and concavities.       */
    /*                                                                           */
    /*  This procedure operates in two phases.  The first phase identifies all   */
    /*  the triangles that will die, and marks them as infected.  They are       */
    /*  marked to ensure that each triangle is added to the virus pool only      */
    /*  once, so the procedure will terminate.                                   */
    /*                                                                           */
    /*  The second phase actually eliminates the infected triangles.  It also    */
    /*  eliminates orphaned points.                                              */
    /*                                                                           */
    /*****************************************************************************/
    
    void plague()
    {
      struct triedge testtri;
      struct triedge neighbor;
      triangle **virusloop;
      triangle **deadtri;
      struct edge neighborshelle;
      point testpoint;
      point norg, ndest;
      point deadorg, deaddest, deadapex;
      int killorg;
      triangle ptr;             /* Temporary variable used by sym() and onext(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      if (verbose) {
        printf("  Marking neighbors of marked triangles.\n");
      }
      /* Loop through all the infected triangles, spreading the virus to */
      /*   their neighbors, then to their neighbors' neighbors.          */
      traversalinit(&viri);
      virusloop = (triangle **) traverse(&viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
        /* A triangle is marked as infected by messing with one of its shell */
        /*   edges, setting it to an illegal value.  Hence, we have to       */
        /*   temporarily uninfect this triangle so that we can examine its   */
        /*   adjacent shell edges.                                           */
        uninfect(testtri);
        if (verbose > 2) {
          /* Assign the triangle an orientation for convenience in */
          /*   checking its points.                                */
          testtri.orient = 0;
          org(testtri, deadorg);
          dest(testtri, deaddest);
          apex(testtri, deadapex);
          printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                 deadorg[0], deadorg[1], deaddest[0], deaddest[1],
                 deadapex[0], deadapex[1]);
        }
        /* Check each of the triangle's three neighbors. */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          /* Find the neighbor. */
          sym(testtri, neighbor);
          /* Check for a shell between the triangle and its neighbor. */
          tspivot(testtri, neighborshelle);
          /* Check if the neighbor is nonexistent or already infected. */
          if ((neighbor.tri == dummytri) || infected(neighbor)) {
            if (neighborshelle.sh != dummysh) {
              /* There is a shell edge separating the triangle from its */
              /*   neighbor, but both triangles are dying, so the shell */
              /*   edge dies too.                                       */
              shelledealloc(neighborshelle.sh);
              if (neighbor.tri != dummytri) {
                /* Make sure the shell edge doesn't get deallocated again */
                /*   later when the infected neighbor is visited.         */
                uninfect(neighbor);
                tsdissolve(neighbor);
                infect(neighbor);
              }
            }
          } else {                   /* The neighbor exists and is not infected. */
            if (neighborshelle.sh == dummysh) {
              /* There is no shell edge protecting the neighbor, so */
              /*   the neighbor becomes infected.                   */
              if (verbose > 2) {
                org(neighbor, deadorg);
                dest(neighbor, deaddest);
                apex(neighbor, deadapex);
                printf(
                  "    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                       deadorg[0], deadorg[1], deaddest[0], deaddest[1],
                       deadapex[0], deadapex[1]);
              }
              infect(neighbor);
              /* Ensure that the neighbor's neighbors will be infected. */
              deadtri = (triangle **) poolalloc(&viri);
              *deadtri = neighbor.tri;
            } else {               /* The neighbor is protected by a shell edge. */
              /* Remove this triangle from the shell edge. */
              stdissolve(neighborshelle);
              /* The shell edge becomes a boundary.  Set markers accordingly. */
              if (mark(neighborshelle) == 0) {
                setmark(neighborshelle, 1);
              }
              org(neighbor, norg);
              dest(neighbor, ndest);
              if (pointmark(norg) == 0) {
                setpointmark(norg, 1);
              }
              if (pointmark(ndest) == 0) {
                setpointmark(ndest, 1);
              }
            }
          }
        }
        /* Remark the triangle as infected, so it doesn't get added to the */
        /*   virus pool again.                                             */
        infect(testtri);
        virusloop = (triangle **) traverse(&viri);
      }
    
      if (verbose) {
        printf("  Deleting marked triangles.\n");
      }
      traversalinit(&viri);
      virusloop = (triangle **) traverse(&viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
    
        /* Check each of the three corners of the triangle for elimination. */
        /*   This is done by walking around each point, checking if it is   */
        /*   still connected to at least one live triangle.                 */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          org(testtri, testpoint);
          /* Check if the point has already been tested. */
          if (testpoint != (point) NULL) {
            killorg = 1;
            /* Mark the corner of the triangle as having been tested. */
            setorg(testtri, NULL);
            /* Walk counterclockwise about the point. */
            onext(testtri, neighbor);
            /* Stop upon reaching a boundary or the starting triangle. */
            while ((neighbor.tri != dummytri)
                   && (!triedgeequal(neighbor, testtri))) {
              if (infected(neighbor)) {
                /* Mark the corner of this triangle as having been tested. */
                setorg(neighbor, NULL);
              } else {
                /* A live triangle.  The point survives. */
                killorg = 0;
              }
              /* Walk counterclockwise about the point. */
              onextself(neighbor);
            }
            /* If we reached a boundary, we must walk clockwise as well. */
            if (neighbor.tri == dummytri) {
              /* Walk clockwise about the point. */
              oprev(testtri, neighbor);
              /* Stop upon reaching a boundary. */
              while (neighbor.tri != dummytri) {
                if (infected(neighbor)) {
                /* Mark the corner of this triangle as having been tested. */
                  setorg(neighbor, NULL);
                } else {
                  /* A live triangle.  The point survives. */
                  killorg = 0;
                }
                /* Walk clockwise about the point. */
                oprevself(neighbor);
              }
            }
            if (killorg) {
              if (verbose > 1) {
                printf("    Deleting point (%.12g, %.12g)\n",
                       testpoint[0], testpoint[1]);
              }
              pointdealloc(testpoint);
            }
          }
        }
    
        /* Record changes in the number of boundary edges, and disconnect */
        /*   dead triangles from their neighbors.                         */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          sym(testtri, neighbor);
          if (neighbor.tri == dummytri) {
            /* There is no neighboring triangle on this edge, so this edge    */
            /*   is a boundary edge.  This triangle is being deleted, so this */
            /*   boundary edge is deleted.                                    */
            hullsize--;
          } else {
            /* Disconnect the triangle from its neighbor. */
            dissolve(neighbor);
            /* There is a neighboring triangle on this edge, so this edge */
            /*   becomes a boundary edge when this triangle is deleted.   */
            hullsize++;
          }
        }
        /* Return the dead triangle to the pool of triangles. */
        triangledealloc(testtri.tri);
        virusloop = (triangle **) traverse(&viri);
      }
      /* Empty the virus pool. */
      poolrestart(&viri);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  regionplague()   Spread regional attributes and/or area constraints      */
    /*                   (from a .poly file) throughout the mesh.                */
    /*                                                                           */
    /*  This procedure operates in two phases.  The first phase spreads an       */
    /*  attribute and/or an area constraint through a (segment-bounded) region.  */
    /*  The triangles are marked to ensure that each triangle is added to the    */
    /*  virus pool only once, so the procedure will terminate.                   */
    /*                                                                           */
    /*  The second phase uninfects all infected triangles, returning them to     */
    /*  normal.                                                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    void regionplague(attribute, area)
    REAL attribute;
    REAL area;
    {
      struct triedge testtri;
      struct triedge neighbor;
      triangle **virusloop;
      triangle **regiontri;
      struct edge neighborshelle;
      point regionorg, regiondest, regionapex;
      triangle ptr;             /* Temporary variable used by sym() and onext(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      if (verbose > 1) {
        printf("  Marking neighbors of marked triangles.\n");
      }
      /* Loop through all the infected triangles, spreading the attribute      */
      /*   and/or area constraint to their neighbors, then to their neighbors' */
      /*   neighbors.                                                          */
      traversalinit(&viri);
      virusloop = (triangle **) traverse(&viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
        /* A triangle is marked as infected by messing with one of its shell */
        /*   edges, setting it to an illegal value.  Hence, we have to       */
        /*   temporarily uninfect this triangle so that we can examine its   */
        /*   adjacent shell edges.                                           */
        uninfect(testtri);
        if (regionattrib) {
          /* Set an attribute. */
          setelemattribute(testtri, eextras, attribute);
        }
        if (vararea) {
          /* Set an area constraint. */
          setareabound(testtri, area);
        }
        if (verbose > 2) {
          /* Assign the triangle an orientation for convenience in */
          /*   checking its points.                                */
          testtri.orient = 0;
          org(testtri, regionorg);
          dest(testtri, regiondest);
          apex(testtri, regionapex);
          printf("    Checking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                 regionorg[0], regionorg[1], regiondest[0], regiondest[1],
                 regionapex[0], regionapex[1]);
        }
        /* Check each of the triangle's three neighbors. */
        for (testtri.orient = 0; testtri.orient < 3; testtri.orient++) {
          /* Find the neighbor. */
          sym(testtri, neighbor);
          /* Check for a shell between the triangle and its neighbor. */
          tspivot(testtri, neighborshelle);
          /* Make sure the neighbor exists, is not already infected, and */
          /*   isn't protected by a shell edge.                          */
          if ((neighbor.tri != dummytri) && !infected(neighbor)
              && (neighborshelle.sh == dummysh)) {
            if (verbose > 2) {
              org(neighbor, regionorg);
              dest(neighbor, regiondest);
              apex(neighbor, regionapex);
              printf("    Marking (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                     regionorg[0], regionorg[1], regiondest[0], regiondest[1],
                     regionapex[0], regionapex[1]);
            }
            /* Infect the neighbor. */
            infect(neighbor);
            /* Ensure that the neighbor's neighbors will be infected. */
            regiontri = (triangle **) poolalloc(&viri);
            *regiontri = neighbor.tri;
          }
        }
        /* Remark the triangle as infected, so it doesn't get added to the */
        /*   virus pool again.                                             */
        infect(testtri);
        virusloop = (triangle **) traverse(&viri);
      }
    
      /* Uninfect all triangles. */
      if (verbose > 1) {
        printf("  Unmarking marked triangles.\n");
      }
      traversalinit(&viri);
      virusloop = (triangle **) traverse(&viri);
      while (virusloop != (triangle **) NULL) {
        testtri.tri = *virusloop;
        uninfect(testtri);
        virusloop = (triangle **) traverse(&viri);
      }
      /* Empty the virus pool. */
      poolrestart(&viri);
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  carveholes()   Find the holes and infect them.  Find the area            */
    /*                 constraints and infect them.  Infect the convex hull.     */
    /*                 Spread the infection and kill triangles.  Spread the      */
    /*                 area constraints.                                         */
    /*                                                                           */
    /*  This routine mainly calls other routines to carry out all these          */
    /*  functions.                                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    void carveholes(holelist, holes, regionlist, regions)
    REAL *holelist;
    int holes;
    REAL *regionlist;
    int regions;
    {
      struct triedge searchtri;
      struct triedge triangleloop;
      struct triedge *regiontris;
      triangle **holetri;
      triangle **regiontri;
      point searchorg, searchdest;
      enum locateresult intersect;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
      if (!(quiet || (noholes && convex))) {
        printf("Removing unwanted triangles.\n");
        if (verbose && (holes > 0)) {
          printf("  Marking holes for elimination.\n");
        }
      }
    
      if (regions > 0) {
        /* Allocate storage for the triangles in which region points fall. */
        regiontris = (struct triedge *) malloc(regions * sizeof(struct triedge));
        if (regiontris == (struct triedge *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
    
      if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
        /* Initialize a pool of viri to be used for holes, concavities, */
        /*   regional attributes, and/or regional area constraints.     */
        poolinit(&viri, sizeof(triangle *), VIRUSPERBLOCK, POINTER, 0);
      }
    
      if (!convex) {
        /* Mark as infected any unprotected triangles on the boundary. */
        /*   This is one way by which concavities are created.         */
        infecthull();
      }
    
      if ((holes > 0) && !noholes) {
        /* Infect each triangle in which a hole lies. */
        for (i = 0; i < 2 * holes; i += 2) {
          /* Ignore holes that aren't within the bounds of the mesh. */
          if ((holelist[i] >= xmin) && (holelist[i] <= xmax)
              && (holelist[i + 1] >= ymin) && (holelist[i + 1] <= ymax)) {
            /* Start searching from some triangle on the outer boundary. */
            searchtri.tri = dummytri;
            searchtri.orient = 0;
            symself(searchtri);
            /* Ensure that the hole is to the left of this boundary edge; */
            /*   otherwise, locate() will falsely report that the hole    */
            /*   falls within the starting triangle.                      */
            org(searchtri, searchorg);
            dest(searchtri, searchdest);
            if (counterclockwise(searchorg, searchdest, &holelist[i]) > 0.0) {
              /* Find a triangle that contains the hole. */
              intersect = locate(&holelist[i], &searchtri);
              if ((intersect != OUTSIDE) && (!infected(searchtri))) {
                /* Infect the triangle.  This is done by marking the triangle */
                /*   as infect and including the triangle in the virus pool.  */
                infect(searchtri);
                holetri = (triangle **) poolalloc(&viri);
                *holetri = searchtri.tri;
              }
            }
          }
        }
      }
    
      /* Now, we have to find all the regions BEFORE we carve the holes, because */
      /*   locate() won't work when the triangulation is no longer convex.       */
      /*   (Incidentally, this is the reason why regional attributes and area    */
      /*   constraints can't be used when refining a preexisting mesh, which     */
      /*   might not be convex; they can only be used with a freshly             */
      /*   triangulated PSLG.)                                                   */
      if (regions > 0) {
        /* Find the starting triangle for each region. */
        for (i = 0; i < regions; i++) {
          regiontris[i].tri = dummytri;
          /* Ignore region points that aren't within the bounds of the mesh. */
          if ((regionlist[4 * i] >= xmin) && (regionlist[4 * i] <= xmax) &&
              (regionlist[4 * i + 1] >= ymin) && (regionlist[4 * i + 1] <= ymax)) {
            /* Start searching from some triangle on the outer boundary. */
            searchtri.tri = dummytri;
            searchtri.orient = 0;
            symself(searchtri);
            /* Ensure that the region point is to the left of this boundary */
            /*   edge; otherwise, locate() will falsely report that the     */
            /*   region point falls within the starting triangle.           */
            org(searchtri, searchorg);
            dest(searchtri, searchdest);
            if (counterclockwise(searchorg, searchdest, &regionlist[4 * i]) >
                0.0) {
              /* Find a triangle that contains the region point. */
              intersect = locate(&regionlist[4 * i], &searchtri);
              if ((intersect != OUTSIDE) && (!infected(searchtri))) {
                /* Record the triangle for processing after the */
                /*   holes have been carved.                    */
                triedgecopy(searchtri, regiontris[i]);
              }
            }
          }
        }
      }
    
      if (viri.items > 0) {
        /* Carve the holes and concavities. */
        plague();
      }
      /* The virus pool should be empty now. */
    
      if (regions > 0) {
        if (!quiet) {
          if (regionattrib) {
            if (vararea) {
              printf("Spreading regional attributes and area constraints.\n");
            } else {
              printf("Spreading regional attributes.\n");
            }
          } else { 
            printf("Spreading regional area constraints.\n");
          }
        }
        if (regionattrib && !refine) {
          /* Assign every triangle a regional attribute of zero. */
          traversalinit(&triangles);
          triangleloop.orient = 0;
          triangleloop.tri = triangletraverse();
          while (triangleloop.tri != (triangle *) NULL) {
            setelemattribute(triangleloop, eextras, 0.0);
            triangleloop.tri = triangletraverse();
          }
        }
        for (i = 0; i < regions; i++) {
          if (regiontris[i].tri != dummytri) {
            /* Make sure the triangle under consideration still exists. */
            /*   It may have been eaten by the virus.                   */
            if (regiontris[i].tri[3] != (triangle) NULL) {
              /* Put one triangle in the virus pool. */
              infect(regiontris[i]);
              regiontri = (triangle **) poolalloc(&viri);
              *regiontri = regiontris[i].tri;
              /* Apply one region's attribute and/or area constraint. */
              regionplague(regionlist[4 * i + 2], regionlist[4 * i + 3]);
              /* The virus pool should be empty now. */
            }
          }
        }
        if (regionattrib && !refine) {
          /* Note the fact that each triangle has an additional attribute. */
          eextras++;
        }
      }
    
      /* Free up memory. */
      if (((holes > 0) && !noholes) || !convex || (regions > 0)) {
        pooldeinit(&viri);
      }
      if (regions > 0) {
        free(regiontris);
      }
    }
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Carving out holes and concavities ends here               *********/
    
    /********* Mesh quality maintenance begins here                      *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  tallyencs()   Traverse the entire list of shell edges, check each edge   */
    /*                to see if it is encroached.  If so, add it to the list.    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void tallyencs()
    {
      struct edge edgeloop;
      int dummy;
    
      traversalinit(&shelles);
      edgeloop.shorient = 0;
      edgeloop.sh = shelletraverse();
      while (edgeloop.sh != (shelle *) NULL) {
        /* If the segment is encroached, add it to the list. */
        dummy = checkedge4encroach(&edgeloop);
        edgeloop.sh = shelletraverse();
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  precisionerror()  Print an error message for precision problems.         */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void precisionerror()
    {
      printf("Try increasing the area criterion and/or reducing the minimum\n");
      printf("  allowable angle so that tiny triangles are not created.\n");
    #ifdef SINGLE
      printf("Alternatively, try recompiling me with double precision\n");
      printf("  arithmetic (by removing \"#define SINGLE\" from the\n");
      printf("  source file or \"-DSINGLE\" from the makefile).\n");
    #endif /* SINGLE */
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  repairencs()   Find and repair all the encroached segments.              */
    /*                                                                           */
    /*  Encroached segments are repaired by splitting them by inserting a point  */
    /*  at or near their centers.                                                */
    /*                                                                           */
    /*  `flaws' is a flag that specifies whether one should take note of new     */
    /*  encroached segments and bad triangles that result from inserting points  */
    /*  to repair existing encroached segments.                                  */
    /*                                                                           */
    /*  When a segment is split, the two resulting subsegments are always        */
    /*  tested to see if they are encroached upon, regardless of the value       */
    /*  of `flaws'.                                                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void repairencs(flaws)
    int flaws;
    {
      struct triedge enctri;
      struct triedge testtri;
      struct edge *encloop;
      struct edge testsh;
      point eorg, edest;
      point newpoint;
      enum insertsiteresult success;
      REAL segmentlength, nearestpoweroftwo;
      REAL split;
      int acuteorg, acutedest;
      int dummy;
      int i;
      triangle ptr;                     /* Temporary variable used by stpivot(). */
      shelle sptr;                        /* Temporary variable used by snext(). */
    
      while ((badsegments.items > 0) && (steinerleft != 0)) {
        traversalinit(&badsegments);
        encloop = badsegmenttraverse();
        while ((encloop != (struct edge *) NULL) && (steinerleft != 0)) {
          /* To decide where to split a segment, we need to know if the  */
          /*   segment shares an endpoint with an adjacent segment.      */
          /*   The concern is that, if we simply split every encroached  */
          /*   segment in its center, two adjacent segments with a small */
          /*   angle between them might lead to an infinite loop; each   */
          /*   point added to split one segment will encroach upon the   */
          /*   other segment, which must then be split with a point that */
          /*   will encroach upon the first segment, and so on forever.  */
          /* To avoid this, imagine a set of concentric circles, whose   */
          /*   radii are powers of two, about each segment endpoint.     */
          /*   These concentric circles determine where the segment is   */
          /*   split.  (If both endpoints are shared with adjacent       */
          /*   segments, split the segment in the middle, and apply the  */
          /*   concentric shells for later splittings.)                  */
    
          /* Is the origin shared with another segment? */
          stpivot(*encloop, enctri);
          lnext(enctri, testtri);
          tspivot(testtri, testsh);
          acuteorg = testsh.sh != dummysh;
          /* Is the destination shared with another segment? */
          lnextself(testtri);
          tspivot(testtri, testsh);
          acutedest = testsh.sh != dummysh;
          /* Now, check the other side of the segment, if there's a triangle */
          /*   there.                                                        */
          sym(enctri, testtri);
          if (testtri.tri != dummytri) {
            /* Is the destination shared with another segment? */
            lnextself(testtri);
            tspivot(testtri, testsh);
            acutedest = acutedest || (testsh.sh != dummysh);
            /* Is the origin shared with another segment? */
            lnextself(testtri);
            tspivot(testtri, testsh);
            acuteorg = acuteorg || (testsh.sh != dummysh);
          }
    
          sorg(*encloop, eorg);
          sdest(*encloop, edest);
          /* Use the concentric circles if exactly one endpoint is shared */
          /*   with another adjacent segment.                             */
          if (acuteorg ^ acutedest) {
            segmentlength = sqrt((edest[0] - eorg[0]) * (edest[0] - eorg[0])
                                 + (edest[1] - eorg[1]) * (edest[1] - eorg[1]));
            /* Find the power of two nearest the segment's length. */
            nearestpoweroftwo = 1.0;
            while (segmentlength > SQUAREROOTTWO * nearestpoweroftwo) {
              nearestpoweroftwo *= 2.0;
            }
            while (segmentlength < (0.5 * SQUAREROOTTWO) * nearestpoweroftwo) {
              nearestpoweroftwo *= 0.5;
            }
            /* Where do we split the segment? */
            split = 0.5 * nearestpoweroftwo / segmentlength;
            if (acutedest) {
              split = 1.0 - split;
            }
          } else {
            /* If we're not worried about adjacent segments, split */
            /*   this segment in the middle.                       */
            split = 0.5;
          }
    
          /* Create the new point. */
          newpoint = (point) poolalloc(&points);
          /* Interpolate its coordinate and attributes. */
          for (i = 0; i < 2 + nextras; i++) {
            newpoint[i] = (1.0 - split) * eorg[i] + split * edest[i];
          }
          setpointmark(newpoint, mark(*encloop));
          if (verbose > 1) {
            printf(
            "  Splitting edge (%.12g, %.12g) (%.12g, %.12g) at (%.12g, %.12g).\n",
                   eorg[0], eorg[1], edest[0], edest[1], newpoint[0], newpoint[1]);
          }
          /* Check whether the new point lies on an endpoint. */
          if (((newpoint[0] == eorg[0]) && (newpoint[1] == eorg[1]))
            || ((newpoint[0] == edest[0]) && (newpoint[1] == edest[1]))) {
            printf("Error:  Ran out of precision at (%.12g, %.12g).\n",
                   newpoint[0], newpoint[1]);
            printf("I attempted to split a segment to a smaller size than can\n");
            printf("  be accommodated by the finite precision of floating point\n"
                   );
            printf("  arithmetic.\n");
            precisionerror();
            exit(1);
          }
          /* Insert the splitting point.  This should always succeed. */
          success = insertsite(newpoint, &enctri, encloop, flaws, flaws);
          if ((success != SUCCESSFULPOINT) && (success != ENCROACHINGPOINT)) {
            printf("Internal error in repairencs():\n");
            printf("  Failure to split a segment.\n");
            internalerror();
          }
          if (steinerleft > 0) {
            steinerleft--;
          }
          /* Check the two new subsegments to see if they're encroached. */
          dummy = checkedge4encroach(encloop);
          snextself(*encloop);
          dummy = checkedge4encroach(encloop);
    
          badsegmentdealloc(encloop);
          encloop = badsegmenttraverse();
        }
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  tallyfaces()   Test every triangle in the mesh for quality measures.     */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void tallyfaces()
    {
      struct triedge triangleloop;
    
      if (verbose) {
        printf("  Making a list of bad triangles.\n");
      }
      traversalinit(&triangles);
      triangleloop.orient = 0;
      triangleloop.tri = triangletraverse();
      while (triangleloop.tri != (triangle *) NULL) {
        /* If the triangle is bad, enqueue it. */
        testtriangle(&triangleloop);
        triangleloop.tri = triangletraverse();
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  findcircumcenter()   Find the circumcenter of a triangle.                */
    /*                                                                           */
    /*  The result is returned both in terms of x-y coordinates and xi-eta       */
    /*  coordinates.  The xi-eta coordinate system is defined in terms of the    */
    /*  triangle:  the origin of the triangle is the origin of the coordinate    */
    /*  system; the destination of the triangle is one unit along the xi axis;   */
    /*  and the apex of the triangle is one unit along the eta axis.             */
    /*                                                                           */
    /*  The return value indicates which edge of the triangle is shortest.       */
    /*                                                                           */
    /*****************************************************************************/
    
    enum circumcenterresult findcircumcenter(torg, tdest, tapex, circumcenter,
                                             xi, eta)
    point torg;
    point tdest;
    point tapex;
    point circumcenter;
    REAL *xi;
    REAL *eta;
    {
      REAL xdo, ydo, xao, yao, xad, yad;
      REAL dodist, aodist, addist;
      REAL denominator;
      REAL dx, dy;
    
      circumcentercount++;
    
      /* Compute the circumcenter of the triangle. */
      xdo = tdest[0] - torg[0];
      ydo = tdest[1] - torg[1];
      xao = tapex[0] - torg[0];
      yao = tapex[1] - torg[1];
      dodist = xdo * xdo + ydo * ydo;
      aodist = xao * xao + yao * yao;
      if (noexact) {
        denominator = 0.5 / (xdo * yao - xao * ydo);
      } else {
        /* Use the counterclockwise() routine to ensure a positive (and */
        /*   reasonably accurate) result, avoiding any possibility of   */
        /*   division by zero.                                          */
        denominator = 0.5 / counterclockwise(tdest, tapex, torg);
        /* Don't count the above as an orientation test. */
        counterclockcount--;
      }
      circumcenter[0] = torg[0] - (ydo * aodist - yao * dodist) * denominator;  
      circumcenter[1] = torg[1] + (xdo * aodist - xao * dodist) * denominator;  
    
      /* To interpolate point attributes for the new point inserted at  */
      /*   the circumcenter, define a coordinate system with a xi-axis, */
      /*   directed from the triangle's origin to its destination, and  */
      /*   an eta-axis, directed from its origin to its apex.           */
      /*   Calculate the xi and eta coordinates of the circumcenter.    */
      dx = circumcenter[0] - torg[0];
      dy = circumcenter[1] - torg[1];
      *xi = (dx * yao - xao * dy) * (2.0 * denominator);
      *eta = (xdo * dy - dx * ydo) * (2.0 * denominator);
    
      xad = tapex[0] - tdest[0];
      yad = tapex[1] - tdest[1];
      addist = xad * xad + yad * yad;
      if ((addist < dodist) && (addist < aodist)) {
        return OPPOSITEORG;
      } else if (dodist < aodist) {
        return OPPOSITEAPEX;
      } else {
        return OPPOSITEDEST;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  splittriangle()   Inserts a point at the circumcenter of a triangle.     */
    /*                    Deletes the newly inserted point if it encroaches upon */
    /*                    a segment.                                             */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void splittriangle(badtri)
    struct badface *badtri;
    {
      point borg, bdest, bapex;
      point newpoint;
      REAL xi, eta;
      enum insertsiteresult success;
      enum circumcenterresult shortedge;
      int errorflag;
      int i;
    
      org(badtri->badfacetri, borg);
      dest(badtri->badfacetri, bdest);
      apex(badtri->badfacetri, bapex);
      /* Make sure that this triangle is still the same triangle it was      */
      /*   when it was tested and determined to be of bad quality.           */
      /*   Subsequent transformations may have made it a different triangle. */
      if ((borg == badtri->faceorg) && (bdest == badtri->facedest) &&
          (bapex == badtri->faceapex)) {
        if (verbose > 1) {
          printf("  Splitting this triangle at its circumcenter:\n");
          printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n", borg[0],
                 borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
        }
        errorflag = 0;
        /* Create a new point at the triangle's circumcenter. */
        newpoint = (point) poolalloc(&points);
        shortedge = findcircumcenter(borg, bdest, bapex, newpoint, &xi, &eta);
        /* Check whether the new point lies on a triangle vertex. */
        if (((newpoint[0] == borg[0]) && (newpoint[1] == borg[1]))
            || ((newpoint[0] == bdest[0]) && (newpoint[1] == bdest[1]))
            || ((newpoint[0] == bapex[0]) && (newpoint[1] == bapex[1]))) {
          if (!quiet) {
            printf("Warning:  New point (%.12g, %.12g) falls on existing vertex.\n"
                   , newpoint[0], newpoint[1]);
            errorflag = 1;
          }
          pointdealloc(newpoint);
        } else {
          for (i = 2; i < 2 + nextras; i++) {
            /* Interpolate the point attributes at the circumcenter. */
            newpoint[i] = borg[i] + xi * (bdest[i] - borg[i])
                                 + eta * (bapex[i] - borg[i]);
          }
          /* The new point must be in the interior, and have a marker of zero. */
          setpointmark(newpoint, 0);
          /* Ensure that the handle `badtri->badfacetri' represents the shortest */
          /*   edge of the triangle.  This ensures that the circumcenter must    */
          /*   fall to the left of this edge, so point location will work.       */
          if (shortedge == OPPOSITEORG) {
            lnextself(badtri->badfacetri);
          } else if (shortedge == OPPOSITEDEST) {
            lprevself(badtri->badfacetri);
          }
          /* Insert the circumcenter, searching from the edge of the triangle, */
          /*   and maintain the Delaunay property of the triangulation.        */
          success = insertsite(newpoint, &(badtri->badfacetri),
                               (struct edge *) NULL, 1, 1);
          if (success == SUCCESSFULPOINT) {
            if (steinerleft > 0) {
              steinerleft--;
            }
          } else if (success == ENCROACHINGPOINT) {
            /* If the newly inserted point encroaches upon a segment, delete it. */
            deletesite(&(badtri->badfacetri));
          } else if (success == VIOLATINGPOINT) {
            /* Failed to insert the new point, but some segment was */
            /*   marked as being encroached.                        */
            pointdealloc(newpoint);
          } else {                                  /* success == DUPLICATEPOINT */
            /* Failed to insert the new point because a vertex is already there. */
            if (!quiet) {
              printf(
                "Warning:  New point (%.12g, %.12g) falls on existing vertex.\n"
                     , newpoint[0], newpoint[1]);
              errorflag = 1;
            }
            pointdealloc(newpoint);
          }
        }
        if (errorflag) {
          if (verbose) {
            printf("  The new point is at the circumcenter of triangle\n");
            printf("    (%.12g, %.12g) (%.12g, %.12g) (%.12g, %.12g)\n",
                   borg[0], borg[1], bdest[0], bdest[1], bapex[0], bapex[1]);
          }
          printf("This probably means that I am trying to refine triangles\n");
          printf("  to a smaller size than can be accommodated by the finite\n");
          printf("  precision of floating point arithmetic.  (You can be\n");
          printf("  sure of this if I fail to terminate.)\n");
          precisionerror();
        }
      }
      /* Return the bad triangle to the pool. */
      pooldealloc(&badtriangles, (VOID *) badtri);
    }
    
    #endif /* not CDT_ONLY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  enforcequality()   Remove all the encroached edges and bad triangles     */
    /*                     from the triangulation.                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef CDT_ONLY
    
    void enforcequality()
    {
      int i;
    
      if (!quiet) {
        printf("Adding Steiner points to enforce quality.\n");
      }
      /* Initialize the pool of encroached segments. */
      poolinit(&badsegments, sizeof(struct edge), BADSEGMENTPERBLOCK, POINTER, 0);
      if (verbose) {
        printf("  Looking for encroached segments.\n");
      }
      /* Test all segments to see if they're encroached. */
      tallyencs();
      if (verbose && (badsegments.items > 0)) {
        printf("  Splitting encroached segments.\n");
      }
      /* Note that steinerleft == -1 if an unlimited number */
      /*   of Steiner points is allowed.                    */
      while ((badsegments.items > 0) && (steinerleft != 0)) {
        /* Fix the segments without noting newly encroached segments or   */
        /*   bad triangles.  The reason we don't want to note newly       */
        /*   encroached segments is because some encroached segments are  */
        /*   likely to be noted multiple times, and would then be blindly */
        /*   split multiple times.  I should fix that some time.          */
        repairencs(0);
        /* Now, find all the segments that became encroached while adding */
        /*   points to split encroached segments.                         */
        tallyencs();
      }
      /* At this point, if we haven't run out of Steiner points, the */
      /*   triangulation should be (conforming) Delaunay.            */
    
      /* Next, we worry about enforcing triangle quality. */
      if ((minangle > 0.0) || vararea || fixedarea) {
        /* Initialize the pool of bad triangles. */
        poolinit(&badtriangles, sizeof(struct badface), BADTRIPERBLOCK, POINTER,
                 0);
        /* Initialize the queues of bad triangles. */
        for (i = 0; i < 64; i++) {
          queuefront[i] = (struct badface *) NULL;
          queuetail[i] = &queuefront[i];
        }
        /* Test all triangles to see if they're bad. */
        tallyfaces();
        if (verbose) {
          printf("  Splitting bad triangles.\n");
        }
        while ((badtriangles.items > 0) && (steinerleft != 0)) {
          /* Fix one bad triangle by inserting a point at its circumcenter. */
          splittriangle(dequeuebadtri());
          /* Fix any encroached segments that may have resulted.  Record */
          /*   any new bad triangles or encroached segments that result. */
          if (badsegments.items > 0) {
            repairencs(1);
          }
        }
      }
      /* At this point, if we haven't run out of Steiner points, the */
      /*   triangulation should be (conforming) Delaunay and have no */
      /*   low-quality triangles.                                    */
    
      /* Might we have run out of Steiner points too soon? */
      if (!quiet && (badsegments.items > 0) && (steinerleft == 0)) {
        printf("\nWarning:  I ran out of Steiner points, but the mesh has\n");
        if (badsegments.items == 1) {
          printf("  an encroached segment, and therefore might not be truly\n");
        } else {
          printf("  %ld encroached segments, and therefore might not be truly\n",
                 badsegments.items);
        }
        printf("  Delaunay.  If the Delaunay property is important to you,\n");
        printf("  try increasing the number of Steiner points (controlled by\n");
        printf("  the -S switch) slightly and try again.\n\n");
      }
    }
    
    #endif /* not CDT_ONLY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* Mesh quality maintenance ends here                        *********/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  highorder()   Create extra nodes for quadratic subparametric elements.   */
    /*                                                                           */
    /*****************************************************************************/
    
    void highorder()
    {
      struct triedge triangleloop, trisym;
      struct edge checkmark;
      point newpoint;
      point torg, tdest;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
      if (!quiet) {
        printf("Adding vertices for second-order triangles.\n");
      }
      /* The following line ensures that dead items in the pool of nodes    */
      /*   cannot be allocated for the extra nodes associated with high     */
      /*   order elements.  This ensures that the primary nodes (at the     */
      /*   corners of elements) will occur earlier in the output files, and */
      /*   have lower indices, than the extra nodes.                        */
      points.deaditemstack = (VOID *) NULL;
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      /* To loop over the set of edges, loop over all triangles, and look at   */
      /*   the three edges of each triangle.  If there isn't another triangle  */
      /*   adjacent to the edge, operate on the edge.  If there is another     */
      /*   adjacent triangle, operate on the edge only if the current triangle */
      /*   has a smaller pointer than its neighbor.  This way, each edge is    */
      /*   considered only once.                                               */
      while (triangleloop.tri != (triangle *) NULL) {
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          sym(triangleloop, trisym);
          if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
            org(triangleloop, torg);
            dest(triangleloop, tdest);
            /* Create a new node in the middle of the edge.  Interpolate */
            /*   its attributes.                                         */
            newpoint = (point) poolalloc(&points);
            for (i = 0; i < 2 + nextras; i++) {
              newpoint[i] = 0.5 * (torg[i] + tdest[i]);
            }
            /* Set the new node's marker to zero or one, depending on */
            /*   whether it lies on a boundary.                       */
            setpointmark(newpoint, trisym.tri == dummytri);
            if (useshelles) {
              tspivot(triangleloop, checkmark);
              /* If this edge is a segment, transfer the marker to the new node. */
              if (checkmark.sh != dummysh) {
                setpointmark(newpoint, mark(checkmark));
              }
            }
            if (verbose > 1) {
              printf("  Creating (%.12g, %.12g).\n", newpoint[0], newpoint[1]);
            }
            /* Record the new node in the (one or two) adjacent elements. */
            triangleloop.tri[highorderindex + triangleloop.orient] =
                    (triangle) newpoint;
            if (trisym.tri != dummytri) {
              trisym.tri[highorderindex + trisym.orient] = (triangle) newpoint;
            }
          }
        }
        triangleloop.tri = triangletraverse();
      }
    }
    
    /********* File I/O routines begin here                              *********/
    /**                                                                         **/
    /**                                                                         **/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  readline()   Read a nonempty line from a file.                           */
    /*                                                                           */
    /*  A line is considered "nonempty" if it contains something that looks like */
    /*  a number.                                                                */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    char *readline(string, infile, infilename)
    char *string;
    FILE *infile;
    char *infilename;
    {
      char *result;
    
      /* Search for something that looks like a number. */
      do {
        result = fgets(string, INPUTLINESIZE, infile);
        if (result == (char *) NULL) {
          printf("  Error:  Unexpected end of file in %s.\n", infilename);
          exit(1);
        }
        /* Skip anything that doesn't look like a number, a comment, */
        /*   or the end of a line.                                   */
        while ((*result != '\0') && (*result != '#')
               && (*result != '.') && (*result != '+') && (*result != '-')
               && ((*result < '0') || (*result > '9'))) {
          result++;
        }
      /* If it's a comment or end of line, read another line and try again. */
      } while ((*result == '#') || (*result == '\0'));
      return result;
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  findfield()   Find the next field of a string.                           */
    /*                                                                           */
    /*  Jumps past the current field by searching for whitespace, then jumps     */
    /*  past the whitespace to find the next field.                              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    char *findfield(string)
    char *string;
    {
      char *result;
    
      result = string;
      /* Skip the current field.  Stop upon reaching whitespace. */
      while ((*result != '\0') && (*result != '#')
             && (*result != ' ') && (*result != '\t')) {
        result++;
      }
      /* Now skip the whitespace and anything else that doesn't look like a */
      /*   number, a comment, or the end of a line.                         */
      while ((*result != '\0') && (*result != '#')
             && (*result != '.') && (*result != '+') && (*result != '-')
             && ((*result < '0') || (*result > '9'))) {
        result++;
      }
      /* Check for a comment (prefixed with `#'). */
      if (*result == '#') {
        *result = '\0';
      }
      return result;
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  readnodes()   Read the points from a file, which may be a .node or .poly */
    /*                file.                                                      */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void readnodes(nodefilename, polyfilename, polyfile)
    char *nodefilename;
    char *polyfilename;
    FILE **polyfile;
    {
      FILE *infile;
      point pointloop;
      char inputline[INPUTLINESIZE];
      char *stringptr;
      char *infilename;
      REAL x, y;
      int firstnode;
      int nodemarkers;
      int currentmarker;
      int i, j;
    
      if (poly) {
        /* Read the points from a .poly file. */
        if (!quiet) {
          printf("Opening %s.\n", polyfilename);
        }
        *polyfile = fopen(polyfilename, "r");
        if (*polyfile == (FILE *) NULL) {
          printf("  Error:  Cannot access file %s.\n", polyfilename);
          exit(1);
        }
        /* Read number of points, number of dimensions, number of point */
        /*   attributes, and number of boundary markers.                */
        stringptr = readline(inputline, *polyfile, polyfilename);
        inpoints = (int) strtol (stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          mesh_dim = 2;
        } else {
          mesh_dim = (int) strtol (stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          nextras = 0;
        } else {
          nextras = (int) strtol (stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          nodemarkers = 0;
        } else {
          nodemarkers = (int) strtol (stringptr, &stringptr, 0);
        }
        if (inpoints > 0) {
          infile = *polyfile;
          infilename = polyfilename;
          readnodefile = 0;
        } else {
          /* If the .poly file claims there are zero points, that means that */
          /*   the points should be read from a separate .node file.         */
          readnodefile = 1;
          infilename = innodefilename;
        }
      } else {
        readnodefile = 1;
        infilename = innodefilename;
        *polyfile = (FILE *) NULL;
      }
    
      if (readnodefile) {
        /* Read the points from a .node file. */
        if (!quiet) {
          printf("Opening %s.\n", innodefilename);
        }
        infile = fopen(innodefilename, "r");
        if (infile == (FILE *) NULL) {
          printf("  Error:  Cannot access file %s.\n", innodefilename);
          exit(1);
        }
        /* Read number of points, number of dimensions, number of point */
        /*   attributes, and number of boundary markers.                */
        stringptr = readline(inputline, infile, innodefilename);
        inpoints = (int) strtol (stringptr, &stringptr, 0);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          mesh_dim = 2;
        } else {
          mesh_dim = (int) strtol (stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          nextras = 0;
        } else {
          nextras = (int) strtol (stringptr, &stringptr, 0);
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          nodemarkers = 0;
        } else {
          nodemarkers = (int) strtol (stringptr, &stringptr, 0);
        }
      }
    
      if (inpoints < 3) {
        printf("Error:  Input must have at least three input points.\n");
        exit(1);
      }
      if (mesh_dim != 2) {
        printf("Error:  Triangle only works with two-dimensional meshes.\n");
        exit(1);
      }
    
      initializepointpool();
    
      /* Read the points. */
      for (i = 0; i < inpoints; i++) {
        pointloop = (point) poolalloc(&points);
        stringptr = readline(inputline, infile, infilename);
        if (i == 0) {
          firstnode = (int) strtol (stringptr, &stringptr, 0);
          if ((firstnode == 0) || (firstnode == 1)) {
            firstnumber = firstnode;
          }
        }
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          printf("Error:  Point %d has no x coordinate.\n", firstnumber + i);
          exit(1);
        }
        x = (REAL) strtod(stringptr, &stringptr);
        stringptr = findfield(stringptr);
        if (*stringptr == '\0') {
          printf("Error:  Point %d has no y coordinate.\n", firstnumber + i);
          exit(1);
        }
        y = (REAL) strtod(stringptr, &stringptr);
        pointloop[0] = x;
        pointloop[1] = y;
        /* Read the point attributes. */
        for (j = 2; j < 2 + nextras; j++) {
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            pointloop[j] = 0.0;
          } else {
            pointloop[j] = (REAL) strtod(stringptr, &stringptr);
          }
        }
        if (nodemarkers) {
          /* Read a point marker. */
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            setpointmark(pointloop, 0);
          } else {
            currentmarker = (int) strtol (stringptr, &stringptr, 0);
            setpointmark(pointloop, currentmarker);
          }
        } else {
          /* If no markers are specified in the file, they default to zero. */
          setpointmark(pointloop, 0);
        }
        /* Determine the smallest and largest x and y coordinates. */
        if (i == 0) {
          xmin = xmax = x;
          ymin = ymax = y;
        } else {
          xmin = (x < xmin) ? x : xmin;
          xmax = (x > xmax) ? x : xmax;
          ymin = (y < ymin) ? y : ymin;
          ymax = (y > ymax) ? y : ymax;
        }
      }
      if (readnodefile) {
        fclose(infile);
      }
    
      /* Nonexistent x value used as a flag to mark circle events in sweepline */
      /*   Delaunay algorithm.                                                 */
      xminextreme = 10 * xmin - 9 * xmax;
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  transfernodes()   Read the points from memory.                           */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    void transfernodes(pointlist, pointattriblist, pointmarkerlist, numberofpoints,
                       numberofpointattribs)
    REAL *pointlist;
    REAL *pointattriblist;
    int *pointmarkerlist;
    int numberofpoints;
    int numberofpointattribs;
    {
      point pointloop;
      REAL x, y;
      int i, j;
      int coordindex;
      int attribindex;
    
      inpoints = numberofpoints;
      mesh_dim = 2;
      nextras = numberofpointattribs;
      readnodefile = 0;
      if (inpoints < 3) {
        printf("Error:  Input must have at least three input points.\n");
        exit(1);
      }
    
      initializepointpool();
    
      /* Read the points. */
      coordindex = 0;
      attribindex = 0;
      for (i = 0; i < inpoints; i++) {
        pointloop = (point) poolalloc(&points);
        /* Read the point coordinates. */
        x = pointloop[0] = pointlist[coordindex++];
        y = pointloop[1] = pointlist[coordindex++];
        /* Read the point attributes. */
        for (j = 0; j < numberofpointattribs; j++) {
          pointloop[2 + j] = pointattriblist[attribindex++];
        }
        if (pointmarkerlist != (int *) NULL) {
          /* Read a point marker. */
          setpointmark(pointloop, pointmarkerlist[i]);
        } else {
          /* If no markers are specified, they default to zero. */
          setpointmark(pointloop, 0);
        }
        x = pointloop[0];
        y = pointloop[1];
        /* Determine the smallest and largest x and y coordinates. */
        if (i == 0) {
          xmin = xmax = x;
          ymin = ymax = y;
        } else {
          xmin = (x < xmin) ? x : xmin;
          xmax = (x > xmax) ? x : xmax;
          ymin = (y < ymin) ? y : ymin;
          ymax = (y > ymax) ? y : ymax;
        }
      }
    
      /* Nonexistent x value used as a flag to mark circle events in sweepline */
      /*   Delaunay algorithm.                                                 */
      xminextreme = 10 * xmin - 9 * xmax;
    }
    
    #endif /* TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  readholes()   Read the holes, and possibly regional attributes and area  */
    /*                constraints, from a .poly file.                            */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void readholes(polyfile, polyfilename, hlist, holes, rlist, regions)
    FILE *polyfile;
    char *polyfilename;
    REAL **hlist;
    int *holes;
    REAL **rlist;
    int *regions;
    {
      REAL *holelist;
      REAL *regionlist;
      char inputline[INPUTLINESIZE];
      char *stringptr;
      int index;
      int i;
    
      /* Read the holes. */
      stringptr = readline(inputline, polyfile, polyfilename);
      *holes = (int) strtol (stringptr, &stringptr, 0);
      if (*holes > 0) {
        holelist = (REAL *) malloc(2 * *holes * sizeof(REAL));
        *hlist = holelist;
        if (holelist == (REAL *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
        for (i = 0; i < 2 * *holes; i += 2) {
          stringptr = readline(inputline, polyfile, polyfilename);
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Hole %d has no x coordinate.\n",
                   firstnumber + (i >> 1));
            exit(1);
          } else {
            holelist[i] = (REAL) strtod(stringptr, &stringptr);
          }
          stringptr = findfield(stringptr);
          if (*stringptr == '\0') {
            printf("Error:  Hole %d has no y coordinate.\n",
                   firstnumber + (i >> 1));
            exit(1);
          } else {
            holelist[i + 1] = (REAL) strtod(stringptr, &stringptr);
          }
        }
      } else {
        *hlist = (REAL *) NULL;
      }
    
    #ifndef CDT_ONLY
      if ((regionattrib || vararea) && !refine) {
        /* Read the area constraints. */
        stringptr = readline(inputline, polyfile, polyfilename);
        *regions = (int) strtol (stringptr, &stringptr, 0);
        if (*regions > 0) {
          regionlist = (REAL *) malloc(4 * *regions * sizeof(REAL));
          *rlist = regionlist;
          if (regionlist == (REAL *) NULL) {
            printf("Error:  Out of memory.\n");
            exit(1);
          }
          index = 0;
          for (i = 0; i < *regions; i++) {
            stringptr = readline(inputline, polyfile, polyfilename);
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              printf("Error:  Region %d has no x coordinate.\n",
                     firstnumber + i);
              exit(1);
            } else {
              regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
            }
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              printf("Error:  Region %d has no y coordinate.\n",
                     firstnumber + i);
              exit(1);
            } else {
              regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
            }
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              printf(
                "Error:  Region %d has no region attribute or area constraint.\n",
                     firstnumber + i);
              exit(1);
            } else {
              regionlist[index++] = (REAL) strtod(stringptr, &stringptr);
            }
            stringptr = findfield(stringptr);
            if (*stringptr == '\0') {
              regionlist[index] = regionlist[index - 1];
            } else {
              regionlist[index] = (REAL) strtod(stringptr, &stringptr);
            }
            index++;
          }
        }
      } else {
        /* Set `*regions' to zero to avoid an accidental free() later. */
        *regions = 0;
        *rlist = (REAL *) NULL;
      }
    #endif /* not CDT_ONLY */
    
      fclose(polyfile);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  finishfile()   Write the command line to the output file so the user     */
    /*                 can remember how the file was generated.  Close the file. */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void finishfile(outfile, argc, argv)
    FILE *outfile;
    int argc;
    char **argv;
    {
      int i;
    
      fprintf(outfile, "# Generated by");
      for (i = 0; i < argc; i++) {
        fprintf(outfile, " ");
        fputs(argv[i], outfile);
      }
      fprintf(outfile, "\n");
      fclose(outfile);
    }
    
    #endif /* not TRILIBRARY */
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writenodes()   Number the points and write them to a .node file.         */
    /*                                                                           */
    /*  To save memory, the point numbers are written over the shell markers     */
    /*  after the points are written to a file.                                  */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    void writenodes(pointlist, pointattriblist, pointmarkerlist)
    REAL **pointlist;
    REAL **pointattriblist;
    int **pointmarkerlist;
    
    #else /* not TRILIBRARY */
    
    void writenodes(nodefilename, argc, argv)
    char *nodefilename;
    int argc;
    char **argv;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      REAL *plist;
      REAL *palist;
      int *pmlist;
      int coordindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      point pointloop;
      int pointnumber;
      int i;
    
    #ifdef TRILIBRARY
      if (!quiet) {
        printf("Writing points.\n");
      }
      /* Allocate memory for output points if necessary. */
      if (*pointlist == (REAL *) NULL) {
        *pointlist = (REAL *) malloc(points.items * 2 * sizeof(REAL));
        if (*pointlist == (REAL *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      /* Allocate memory for output point attributes if necessary. */
      if ((nextras > 0) && (*pointattriblist == (REAL *) NULL)) {
        *pointattriblist = (REAL *) malloc(points.items * nextras * sizeof(REAL));
        if (*pointattriblist == (REAL *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      /* Allocate memory for output point markers if necessary. */
      if (!nobound && (*pointmarkerlist == (int *) NULL)) {
        *pointmarkerlist = (int *) malloc(points.items * sizeof(int));
        if (*pointmarkerlist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      plist = *pointlist;
      palist = *pointattriblist;
      pmlist = *pointmarkerlist;
      coordindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (!quiet) {
        printf("Writing %s.\n", nodefilename);
      }
      outfile = fopen(nodefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", nodefilename);
        exit(1);
      }
      /* Number of points, number of dimensions, number of point attributes, */
      /*   and number of boundary markers (zero or one).                     */
      fprintf(outfile, "%ld  %d  %d  %d\n", points.items, mesh_dim, nextras,
              1 - nobound);
    #endif /* not TRILIBRARY */
    
      traversalinit(&points);
      pointloop = pointtraverse();
      pointnumber = firstnumber;
      while (pointloop != (point) NULL) {
    #ifdef TRILIBRARY
        /* X and y coordinates. */
        plist[coordindex++] = pointloop[0];
        plist[coordindex++] = pointloop[1];
        /* Point attributes. */
        for (i = 0; i < nextras; i++) {
          palist[attribindex++] = pointloop[2 + i];
        }
        if (!nobound) {
          /* Copy the boundary marker. */
          pmlist[pointnumber - firstnumber] = pointmark(pointloop);
        }
    #else /* not TRILIBRARY */
        /* Point number, x and y coordinates. */
        fprintf(outfile, "%4d    %.17g  %.17g", pointnumber, pointloop[0],
                pointloop[1]);
        for (i = 0; i < nextras; i++) {
          /* Write an attribute. */
          fprintf(outfile, "  %.17g", pointloop[i + 2]);
        }
        if (nobound) {
          fprintf(outfile, "\n");
        } else {
          /* Write the boundary marker. */
          fprintf(outfile, "    %d\n", pointmark(pointloop));
        }
    #endif /* not TRILIBRARY */
    
        setpointmark(pointloop, pointnumber);
        pointloop = pointtraverse();
        pointnumber++;
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  numbernodes()   Number the points.                                       */
    /*                                                                           */
    /*  Each point is assigned a marker equal to its number.                     */
    /*                                                                           */
    /*  Used when writenodes() is not called because no .node file is written.   */
    /*                                                                           */
    /*****************************************************************************/
    
    void numbernodes()
    {
      point pointloop;
      int pointnumber;
    
      traversalinit(&points);
      pointloop = pointtraverse();
      pointnumber = firstnumber;
      while (pointloop != (point) NULL) {
        setpointmark(pointloop, pointnumber);
        pointloop = pointtraverse();
        pointnumber++;
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writeelements()   Write the triangles to an .ele file.                   */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    void writeelements(trianglelist, triangleattriblist)
    int **trianglelist;
    REAL **triangleattriblist;
    
    #else /* not TRILIBRARY */
    
    void writeelements(elefilename, argc, argv)
    char *elefilename;
    int argc;
    char **argv;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *tlist;
      REAL *talist;
      int pointindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct triedge triangleloop;
      point p1, p2, p3;
      point mid1, mid2, mid3;
      int elementnumber;
      int i;
    
    #ifdef TRILIBRARY
      if (!quiet) {
        printf("Writing triangles.\n");
      }
      /* Allocate memory for output triangles if necessary. */
      if (*trianglelist == (int *) NULL) {
        *trianglelist = (int *) malloc(triangles.items *
                                   ((order + 1) * (order + 2) / 2) * sizeof(int));
        if (*trianglelist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      /* Allocate memory for output triangle attributes if necessary. */
      if ((eextras > 0) && (*triangleattriblist == (REAL *) NULL)) {
        *triangleattriblist = (REAL *) malloc(triangles.items * eextras *
                                              sizeof(REAL));
        if (*triangleattriblist == (REAL *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      tlist = *trianglelist;
      talist = *triangleattriblist;
      pointindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (!quiet) {
        printf("Writing %s.\n", elefilename);
      }
      outfile = fopen(elefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", elefilename);
        exit(1);
      }
      /* Number of triangles, points per triangle, attributes per triangle. */
      fprintf(outfile, "%ld  %d  %d\n", triangles.items,
              (order + 1) * (order + 2) / 2, eextras);
    #endif /* not TRILIBRARY */
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      triangleloop.orient = 0;
      elementnumber = firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, p1);
        dest(triangleloop, p2);
        apex(triangleloop, p3);
        if (order == 1) {
    #ifdef TRILIBRARY
          tlist[pointindex++] = pointmark(p1);
          tlist[pointindex++] = pointmark(p2);
          tlist[pointindex++] = pointmark(p3);
    #else /* not TRILIBRARY */
          /* Triangle number, indices for three points. */
          fprintf(outfile, "%4d    %4d  %4d  %4d", elementnumber,
                  pointmark(p1), pointmark(p2), pointmark(p3));
    #endif /* not TRILIBRARY */
        } else {
          mid1 = (point) triangleloop.tri[highorderindex + 1];
          mid2 = (point) triangleloop.tri[highorderindex + 2];
          mid3 = (point) triangleloop.tri[highorderindex];
    #ifdef TRILIBRARY
          tlist[pointindex++] = pointmark(p1);
          tlist[pointindex++] = pointmark(p2);
          tlist[pointindex++] = pointmark(p3);
          tlist[pointindex++] = pointmark(mid1);
          tlist[pointindex++] = pointmark(mid2);
          tlist[pointindex++] = pointmark(mid3);
    #else /* not TRILIBRARY */
          /* Triangle number, indices for six points. */
          fprintf(outfile, "%4d    %4d  %4d  %4d  %4d  %4d  %4d", elementnumber,
                  pointmark(p1), pointmark(p2), pointmark(p3), pointmark(mid1),
                  pointmark(mid2), pointmark(mid3));
    #endif /* not TRILIBRARY */
        }
    
    #ifdef TRILIBRARY
        for (i = 0; i < eextras; i++) {
          talist[attribindex++] = elemattribute(triangleloop, i);
        }
    #else /* not TRILIBRARY */
        for (i = 0; i < eextras; i++) {
          fprintf(outfile, "  %.17g", elemattribute(triangleloop, i));
        }
        fprintf(outfile, "\n");
    #endif /* not TRILIBRARY */
    
        triangleloop.tri = triangletraverse();
        elementnumber++;
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writepoly()   Write the segments and holes to a .poly file.              */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    void writepoly(segmentlist, segmentmarkerlist)
    int **segmentlist;
    int **segmentmarkerlist;
    
    #else /* not TRILIBRARY */
    
    void writepoly(polyfilename, holelist, holes, regionlist, regions, argc, argv)
    char *polyfilename;
    REAL *holelist;
    int holes;
    REAL *regionlist;
    int regions;
    int argc;
    char **argv;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *slist;
      int *smlist;
      int index;
    #else /* not TRILIBRARY */
      FILE *outfile;
      int i;
    #endif /* not TRILIBRARY */
      struct edge shelleloop;
      point endpoint1, endpoint2;
      int shellenumber;
    
    #ifdef TRILIBRARY
      if (!quiet) {
        printf("Writing segments.\n");
      }
      /* Allocate memory for output segments if necessary. */
      if (*segmentlist == (int *) NULL) {
        *segmentlist = (int *) malloc(shelles.items * 2 * sizeof(int));
        if (*segmentlist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      /* Allocate memory for output segment markers if necessary. */
      if (!nobound && (*segmentmarkerlist == (int *) NULL)) {
        *segmentmarkerlist = (int *) malloc(shelles.items * sizeof(int));
        if (*segmentmarkerlist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      slist = *segmentlist;
      smlist = *segmentmarkerlist;
      index = 0;
    #else /* not TRILIBRARY */
      if (!quiet) {
        printf("Writing %s.\n", polyfilename);
      }
      outfile = fopen(polyfilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", polyfilename);
        exit(1);
      }
      /* The zero indicates that the points are in a separate .node file. */
      /*   Followed by number of dimensions, number of point attributes,  */
      /*   and number of boundary markers (zero or one).                  */
      fprintf(outfile, "%d  %d  %d  %d\n", 0, mesh_dim, nextras, 1 - nobound);
      /* Number of segments, number of boundary markers (zero or one). */
      fprintf(outfile, "%ld  %d\n", shelles.items, 1 - nobound);
    #endif /* not TRILIBRARY */
    
      traversalinit(&shelles);
      shelleloop.sh = shelletraverse();
      shelleloop.shorient = 0;
      shellenumber = firstnumber;
      while (shelleloop.sh != (shelle *) NULL) {
        sorg(shelleloop, endpoint1);
        sdest(shelleloop, endpoint2);
    #ifdef TRILIBRARY
        /* Copy indices of the segment's two endpoints. */
        slist[index++] = pointmark(endpoint1);
        slist[index++] = pointmark(endpoint2);
        if (!nobound) {
          /* Copy the boundary marker. */
          smlist[shellenumber - firstnumber] = mark(shelleloop);
        }
    #else /* not TRILIBRARY */
        /* Segment number, indices of its two endpoints, and possibly a marker. */
        if (nobound) {
          fprintf(outfile, "%4d    %4d  %4d\n", shellenumber,
                  pointmark(endpoint1), pointmark(endpoint2));
        } else {
          fprintf(outfile, "%4d    %4d  %4d    %4d\n", shellenumber,
                  pointmark(endpoint1), pointmark(endpoint2), mark(shelleloop));
        }
    #endif /* not TRILIBRARY */
    
        shelleloop.sh = shelletraverse();
        shellenumber++;
      }
    
    #ifndef TRILIBRARY
    #ifndef CDT_ONLY
      fprintf(outfile, "%d\n", holes);
      if (holes > 0) {
        for (i = 0; i < holes; i++) {
          /* Hole number, x and y coordinates. */
          fprintf(outfile, "%4d   %.17g  %.17g\n", firstnumber + i,
                  holelist[2 * i], holelist[2 * i + 1]);
        }
      }
      if (regions > 0) {
        fprintf(outfile, "%d\n", regions);
        for (i = 0; i < regions; i++) {
          /* Region number, x and y coordinates, attribute, maximum area. */
          fprintf(outfile, "%4d   %.17g  %.17g  %.17g  %.17g\n", firstnumber + i,
                  regionlist[4 * i], regionlist[4 * i + 1],
                  regionlist[4 * i + 2], regionlist[4 * i + 3]);
        }
      }
    #endif /* not CDT_ONLY */
    
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writeedges()   Write the edges to a .edge file.                          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    void writeedges(edgelist, edgemarkerlist)
    int **edgelist;
    int **edgemarkerlist;
    
    #else /* not TRILIBRARY */
    
    void writeedges(edgefilename, argc, argv)
    char *edgefilename;
    int argc;
    char **argv;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *elist;
      int *emlist;
      int index;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct triedge triangleloop, trisym;
      struct edge checkmark;
      point p1, p2;
      int edgenumber;
      triangle ptr;                         /* Temporary variable used by sym(). */
      shelle sptr;                      /* Temporary variable used by tspivot(). */
    
    #ifdef TRILIBRARY
      if (!quiet) {
        printf("Writing edges.\n");
      }
      /* Allocate memory for edges if necessary. */
      if (*edgelist == (int *) NULL) {
        *edgelist = (int *) malloc(edges * 2 * sizeof(int));
        if (*edgelist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      /* Allocate memory for edge markers if necessary. */
      if (!nobound && (*edgemarkerlist == (int *) NULL)) {
        *edgemarkerlist = (int *) malloc(edges * sizeof(int));
        if (*edgemarkerlist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      elist = *edgelist;
      emlist = *edgemarkerlist;
      index = 0;
    #else /* not TRILIBRARY */
      if (!quiet) {
        printf("Writing %s.\n", edgefilename);
      }
      outfile = fopen(edgefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", edgefilename);
        exit(1);
      }
      /* Number of edges, number of boundary markers (zero or one). */
      fprintf(outfile, "%ld  %d\n", edges, 1 - nobound);
    #endif /* not TRILIBRARY */
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      edgenumber = firstnumber;
      /* To loop over the set of edges, loop over all triangles, and look at   */
      /*   the three edges of each triangle.  If there isn't another triangle  */
      /*   adjacent to the edge, operate on the edge.  If there is another     */
      /*   adjacent triangle, operate on the edge only if the current triangle */
      /*   has a smaller pointer than its neighbor.  This way, each edge is    */
      /*   considered only once.                                               */
      while (triangleloop.tri != (triangle *) NULL) {
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          sym(triangleloop, trisym);
          if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
            org(triangleloop, p1);
            dest(triangleloop, p2);
    #ifdef TRILIBRARY
            elist[index++] = pointmark(p1);
            elist[index++] = pointmark(p2);
    #endif /* TRILIBRARY */
            if (nobound) {
    #ifndef TRILIBRARY
              /* Edge number, indices of two endpoints. */
              fprintf(outfile, "%4d   %d  %d\n", edgenumber,
                      pointmark(p1), pointmark(p2));
    #endif /* not TRILIBRARY */
            } else {
              /* Edge number, indices of two endpoints, and a boundary marker. */
              /*   If there's no shell edge, the boundary marker is zero.      */
              if (useshelles) {
                tspivot(triangleloop, checkmark);
                if (checkmark.sh == dummysh) {
    #ifdef TRILIBRARY
                  emlist[edgenumber - firstnumber] = 0;
    #else /* not TRILIBRARY */
                  fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
                          pointmark(p1), pointmark(p2), 0);
    #endif /* not TRILIBRARY */
                } else {
    #ifdef TRILIBRARY
                  emlist[edgenumber - firstnumber] = mark(checkmark);
    #else /* not TRILIBRARY */
                  fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
                          pointmark(p1), pointmark(p2), mark(checkmark));
    #endif /* not TRILIBRARY */
                }
              } else {
    #ifdef TRILIBRARY
                emlist[edgenumber - firstnumber] = trisym.tri == dummytri;
    #else /* not TRILIBRARY */
                fprintf(outfile, "%4d   %d  %d  %d\n", edgenumber,
                        pointmark(p1), pointmark(p2), trisym.tri == dummytri);
    #endif /* not TRILIBRARY */
              }
            }
            edgenumber++;
          }
        }
        triangleloop.tri = triangletraverse();
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writevoronoi()   Write the Voronoi diagram to a .v.node and .v.edge      */
    /*                   file.                                                   */
    /*                                                                           */
    /*  The Voronoi diagram is the geometric dual of the Delaunay triangulation. */
    /*  Hence, the Voronoi vertices are listed by traversing the Delaunay        */
    /*  triangles, and the Voronoi edges are listed by traversing the Delaunay   */
    /*  edges.                                                                   */
    /*                                                                           */
    /*  WARNING:  In order to assign numbers to the Voronoi vertices, this       */
    /*  procedure messes up the shell edges or the extra nodes of every          */
    /*  element.  Hence, you should call this procedure last.                    */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    void writevoronoi(vpointlist, vpointattriblist, vpointmarkerlist, vedgelist,
                      vedgemarkerlist, vnormlist)
    REAL **vpointlist;
    REAL **vpointattriblist;
    int **vpointmarkerlist;
    int **vedgelist;
    int **vedgemarkerlist;
    REAL **vnormlist;
    
    #else /* not TRILIBRARY */
    
    void writevoronoi(vnodefilename, vedgefilename, argc, argv)
    char *vnodefilename;
    char *vedgefilename;
    int argc;
    char **argv;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      REAL *plist;
      REAL *palist;
      int *elist;
      REAL *normlist;
      int coordindex;
      int attribindex;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct triedge triangleloop, trisym;
      point torg, tdest, tapex;
      REAL circumcenter[2];
      REAL xi, eta;
      int vnodenumber, vedgenumber;
      int p1, p2;
      int i;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
    #ifdef TRILIBRARY
      if (!quiet) {
        printf("Writing Voronoi vertices.\n");
      }
      /* Allocate memory for Voronoi vertices if necessary. */
      if (*vpointlist == (REAL *) NULL) {
        *vpointlist = (REAL *) malloc(triangles.items * 2 * sizeof(REAL));
        if (*vpointlist == (REAL *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      /* Allocate memory for Voronoi vertex attributes if necessary. */
      if (*vpointattriblist == (REAL *) NULL) {
        *vpointattriblist = (REAL *) malloc(triangles.items * nextras *
                                            sizeof(REAL));
        if (*vpointattriblist == (REAL *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      *vpointmarkerlist = (int *) NULL;
      plist = *vpointlist;
      palist = *vpointattriblist;
      coordindex = 0;
      attribindex = 0;
    #else /* not TRILIBRARY */
      if (!quiet) {
        printf("Writing %s.\n", vnodefilename);
      }
      outfile = fopen(vnodefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", vnodefilename);
        exit(1);
      }
      /* Number of triangles, two dimensions, number of point attributes, */
      /*   zero markers.                                                  */
      fprintf(outfile, "%ld  %d  %d  %d\n", triangles.items, 2, nextras, 0);
    #endif /* not TRILIBRARY */
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      triangleloop.orient = 0;
      vnodenumber = firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, torg);
        dest(triangleloop, tdest);
        apex(triangleloop, tapex);
        findcircumcenter(torg, tdest, tapex, circumcenter, &xi, &eta);
    #ifdef TRILIBRARY
        /* X and y coordinates. */
        plist[coordindex++] = circumcenter[0];
        plist[coordindex++] = circumcenter[1];
        for (i = 2; i < 2 + nextras; i++) {
          /* Interpolate the point attributes at the circumcenter. */
          palist[attribindex++] = torg[i] + xi * (tdest[i] - torg[i])
                                         + eta * (tapex[i] - torg[i]);
        }
    #else /* not TRILIBRARY */
        /* Voronoi vertex number, x and y coordinates. */
        fprintf(outfile, "%4d    %.17g  %.17g", vnodenumber, circumcenter[0],
                circumcenter[1]);
        for (i = 2; i < 2 + nextras; i++) {
          /* Interpolate the point attributes at the circumcenter. */
          fprintf(outfile, "  %.17g", torg[i] + xi * (tdest[i] - torg[i])
                                             + eta * (tapex[i] - torg[i]));
        }
        fprintf(outfile, "\n");
    #endif /* not TRILIBRARY */
    
        * (int *) (triangleloop.tri + 6) = vnodenumber;
        triangleloop.tri = triangletraverse();
        vnodenumber++;
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    
    #ifdef TRILIBRARY
      if (!quiet) {
        printf("Writing Voronoi edges.\n");
      }
      /* Allocate memory for output Voronoi edges if necessary. */
      if (*vedgelist == (int *) NULL) {
        *vedgelist = (int *) malloc(edges * 2 * sizeof(int));
        if (*vedgelist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      *vedgemarkerlist = (int *) NULL;
      /* Allocate memory for output Voronoi norms if necessary. */
      if (*vnormlist == (REAL *) NULL) {
        *vnormlist = (REAL *) malloc(edges * 2 * sizeof(REAL));
        if (*vnormlist == (REAL *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      elist = *vedgelist;
      normlist = *vnormlist;
      coordindex = 0;
    #else /* not TRILIBRARY */
      if (!quiet) {
        printf("Writing %s.\n", vedgefilename);
      }
      outfile = fopen(vedgefilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", vedgefilename);
        exit(1);
      }
      /* Number of edges, zero boundary markers. */
      fprintf(outfile, "%ld  %d\n", edges, 0);
    #endif /* not TRILIBRARY */
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      vedgenumber = firstnumber;
      /* To loop over the set of edges, loop over all triangles, and look at   */
      /*   the three edges of each triangle.  If there isn't another triangle  */
      /*   adjacent to the edge, operate on the edge.  If there is another     */
      /*   adjacent triangle, operate on the edge only if the current triangle */
      /*   has a smaller pointer than its neighbor.  This way, each edge is    */
      /*   considered only once.                                               */
      while (triangleloop.tri != (triangle *) NULL) {
        for (triangleloop.orient = 0; triangleloop.orient < 3;
             triangleloop.orient++) {
          sym(triangleloop, trisym);
          if ((triangleloop.tri < trisym.tri) || (trisym.tri == dummytri)) {
            /* Find the number of this triangle (and Voronoi vertex). */
            p1 = * (int *) (triangleloop.tri + 6);
            if (trisym.tri == dummytri) {
              org(triangleloop, torg);
              dest(triangleloop, tdest);
    #ifdef TRILIBRARY
              /* Copy an infinite ray.  Index of one endpoint, and -1. */
              elist[coordindex] = p1;
              normlist[coordindex++] = tdest[1] - torg[1];
              elist[coordindex] = -1;
              normlist[coordindex++] = torg[0] - tdest[0];
    #else /* not TRILIBRARY */
              /* Write an infinite ray.  Edge number, index of one endpoint, -1, */
              /*   and x and y coordinates of a vector representing the          */
              /*   direction of the ray.                                         */
              fprintf(outfile, "%4d   %d  %d   %.17g  %.17g\n", vedgenumber,
                      p1, -1, tdest[1] - torg[1], torg[0] - tdest[0]);
    #endif /* not TRILIBRARY */
            } else {
              /* Find the number of the adjacent triangle (and Voronoi vertex). */
              p2 = * (int *) (trisym.tri + 6);
              /* Finite edge.  Write indices of two endpoints. */
    #ifdef TRILIBRARY
              elist[coordindex] = p1;
              normlist[coordindex++] = 0.0;
              elist[coordindex] = p2;
              normlist[coordindex++] = 0.0;
    #else /* not TRILIBRARY */
              fprintf(outfile, "%4d   %d  %d\n", vedgenumber, p1, p2);
    #endif /* not TRILIBRARY */
            }
            vedgenumber++;
          }
        }
        triangleloop.tri = triangletraverse();
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* not TRILIBRARY */
    }
    
    #ifdef TRILIBRARY
    
    void writeneighbors(neighborlist)
    int **neighborlist;
    
    #else /* not TRILIBRARY */
    
    void writeneighbors(neighborfilename, argc, argv)
    char *neighborfilename;
    int argc;
    char **argv;
    
    #endif /* not TRILIBRARY */
    
    {
    #ifdef TRILIBRARY
      int *nlist;
      int index;
    #else /* not TRILIBRARY */
      FILE *outfile;
    #endif /* not TRILIBRARY */
      struct triedge triangleloop, trisym;
      int elementnumber;
      int neighbor1, neighbor2, neighbor3;
      triangle ptr;                         /* Temporary variable used by sym(). */
    
    #ifdef TRILIBRARY
      if (!quiet) {
        printf("Writing neighbors.\n");
      }
      /* Allocate memory for neighbors if necessary. */
      if (*neighborlist == (int *) NULL) {
        *neighborlist = (int *) malloc(triangles.items * 3 * sizeof(int));
        if (*neighborlist == (int *) NULL) {
          printf("Error:  Out of memory.\n");
          exit(1);
        }
      }
      nlist = *neighborlist;
      index = 0;
    #else /* not TRILIBRARY */
      if (!quiet) {
        printf("Writing %s.\n", neighborfilename);
      }
      outfile = fopen(neighborfilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", neighborfilename);
        exit(1);
      }
      /* Number of triangles, three edges per triangle. */
      fprintf(outfile, "%ld  %d\n", triangles.items, 3);
    #endif /* not TRILIBRARY */
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      triangleloop.orient = 0;
      elementnumber = firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        * (int *) (triangleloop.tri + 6) = elementnumber;
        triangleloop.tri = triangletraverse();
        elementnumber++;
      }
      * (int *) (dummytri + 6) = -1;
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      elementnumber = firstnumber;
      while (triangleloop.tri != (triangle *) NULL) {
        triangleloop.orient = 1;
        sym(triangleloop, trisym);
        neighbor1 = * (int *) (trisym.tri + 6);
        triangleloop.orient = 2;
        sym(triangleloop, trisym);
        neighbor2 = * (int *) (trisym.tri + 6);
        triangleloop.orient = 0;
        sym(triangleloop, trisym);
        neighbor3 = * (int *) (trisym.tri + 6);
    #ifdef TRILIBRARY
        nlist[index++] = neighbor1;
        nlist[index++] = neighbor2;
        nlist[index++] = neighbor3;
    #else /* not TRILIBRARY */
        /* Triangle number, neighboring triangle numbers. */
        fprintf(outfile, "%4d    %d  %d  %d\n", elementnumber,
                neighbor1, neighbor2, neighbor3);
    #endif /* not TRILIBRARY */
    
        triangleloop.tri = triangletraverse();
        elementnumber++;
      }
    
    #ifndef TRILIBRARY
      finishfile(outfile, argc, argv);
    #endif /* TRILIBRARY */
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  writeoff()   Write the triangulation to an .off file.                    */
    /*                                                                           */
    /*  OFF stands for the Object File Format, a format used by the Geometry     */
    /*  Center's Geomview package.                                               */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifndef TRILIBRARY
    
    void writeoff(offfilename, argc, argv)
    char *offfilename;
    int argc;
    char **argv;
    {
      FILE *outfile;
      struct triedge triangleloop;
      point pointloop;
      point p1, p2, p3;
    
      if (!quiet) {
        printf("Writing %s.\n", offfilename);
      }
      outfile = fopen(offfilename, "w");
      if (outfile == (FILE *) NULL) {
        printf("  Error:  Cannot create file %s.\n", offfilename);
        exit(1);
      }
      /* Number of points, triangles, and edges. */
      fprintf(outfile, "OFF\n%ld  %ld  %ld\n", points.items, triangles.items,
              edges);
    
      /* Write the points. */
      traversalinit(&points);
      pointloop = pointtraverse();
      while (pointloop != (point) NULL) {
        /* The "0.0" is here because the OFF format uses 3D coordinates. */
        fprintf(outfile, " %.17g  %.17g  %.17g\n", pointloop[0],
                pointloop[1], 0.0);
        pointloop = pointtraverse();
      }
    
      /* Write the triangles. */
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      triangleloop.orient = 0;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, p1);
        dest(triangleloop, p2);
        apex(triangleloop, p3);
        /* The "3" means a three-vertex polygon. */
        fprintf(outfile, " 3   %4d  %4d  %4d\n", pointmark(p1) - 1,
                pointmark(p2) - 1, pointmark(p3) - 1);
        triangleloop.tri = triangletraverse();
      }
      finishfile(outfile, argc, argv);
    }
    
    #endif /* not TRILIBRARY */
    
    /**                                                                         **/
    /**                                                                         **/
    /********* File I/O routines end here                                *********/
    
    /*****************************************************************************/
    /*                                                                           */
    /*  quality_statistics()   Print statistics about the quality of the mesh.   */
    /*                                                                           */
    /*****************************************************************************/
    
    void quality_statistics()
    {
      struct triedge triangleloop;
      point p[3];
      REAL cossquaretable[8];
      REAL ratiotable[16];
      REAL dx[3], dy[3];
      REAL edgelength[3];
      REAL dotproduct;
      REAL cossquare;
      REAL triarea;
      REAL shortest, longest;
      REAL trilongest2;
      REAL smallestarea, biggestarea;
      REAL triminaltitude2;
      REAL minaltitude;
      REAL triaspect2;
      REAL worstaspect;
      REAL smallestangle, biggestangle;
      REAL radconst, degconst;
      int angletable[18];
      int aspecttable[16];
      int aspectindex;
      int tendegree;
      int acutebiggest;
      int i, ii, j, k;
    
      printf("Mesh quality statistics:\n\n");
      radconst = PI / 18.0;
      degconst = 180.0 / PI;
      for (i = 0; i < 8; i++) {
        cossquaretable[i] = cos(radconst * (REAL) (i + 1));
        cossquaretable[i] = cossquaretable[i] * cossquaretable[i];
      }
      for (i = 0; i < 18; i++) {
        angletable[i] = 0;
      }
    
      ratiotable[0]  =      1.5;      ratiotable[1]  =     2.0;
      ratiotable[2]  =      2.5;      ratiotable[3]  =     3.0;
      ratiotable[4]  =      4.0;      ratiotable[5]  =     6.0;
      ratiotable[6]  =     10.0;      ratiotable[7]  =    15.0;
      ratiotable[8]  =     25.0;      ratiotable[9]  =    50.0;
      ratiotable[10] =    100.0;      ratiotable[11] =   300.0;
      ratiotable[12] =   1000.0;      ratiotable[13] = 10000.0;
      ratiotable[14] = 100000.0;      ratiotable[15] =     0.0;
      for (i = 0; i < 16; i++) {
        aspecttable[i] = 0;
      }
    
      worstaspect = 0.0;
      minaltitude = xmax - xmin + ymax - ymin;
      minaltitude = minaltitude * minaltitude;
      shortest = minaltitude;
      longest = 0.0;
      smallestarea = minaltitude;
      biggestarea = 0.0;
      worstaspect = 0.0;
      smallestangle = 0.0;
      biggestangle = 2.0;
      acutebiggest = 1;
    
      traversalinit(&triangles);
      triangleloop.tri = triangletraverse();
      triangleloop.orient = 0;
      while (triangleloop.tri != (triangle *) NULL) {
        org(triangleloop, p[0]);
        dest(triangleloop, p[1]);
        apex(triangleloop, p[2]);
        trilongest2 = 0.0;
    
        for (i = 0; i < 3; i++) {
          j = plus1mod3[i];
          k = minus1mod3[i];
          dx[i] = p[j][0] - p[k][0];
          dy[i] = p[j][1] - p[k][1];
          edgelength[i] = dx[i] * dx[i] + dy[i] * dy[i];
          if (edgelength[i] > trilongest2) {
            trilongest2 = edgelength[i];
          }
          if (edgelength[i] > longest) {
            longest = edgelength[i];
          }
          if (edgelength[i] < shortest) {
            shortest = edgelength[i];
          }
        }
    
        triarea = counterclockwise(p[0], p[1], p[2]);
        if (triarea < smallestarea) {
          smallestarea = triarea;
        }
        if (triarea > biggestarea) {
          biggestarea = triarea;
        }
        triminaltitude2 = triarea * triarea / trilongest2;
        if (triminaltitude2 < minaltitude) {
          minaltitude = triminaltitude2;
        }
        triaspect2 = trilongest2 / triminaltitude2;
        if (triaspect2 > worstaspect) {
          worstaspect = triaspect2;
        }
        aspectindex = 0;
        while ((triaspect2 > ratiotable[aspectindex] * ratiotable[aspectindex])
               && (aspectindex < 15)) {
          aspectindex++;
        }
        aspecttable[aspectindex]++;
    
        for (i = 0; i < 3; i++) {
          j = plus1mod3[i];
          k = minus1mod3[i];
          dotproduct = dx[j] * dx[k] + dy[j] * dy[k];
          cossquare = dotproduct * dotproduct / (edgelength[j] * edgelength[k]);
          tendegree = 8;
          for (ii = 7; ii >= 0; ii--) {
            if (cossquare > cossquaretable[ii]) {
              tendegree = ii;
            }
          }
          if (dotproduct <= 0.0) {
            angletable[tendegree]++;
            if (cossquare > smallestangle) {
              smallestangle = cossquare;
            }
            if (acutebiggest && (cossquare < biggestangle)) {
              biggestangle = cossquare;
            }
          } else {
            angletable[17 - tendegree]++;
            if (acutebiggest || (cossquare > biggestangle)) {
              biggestangle = cossquare;
              acutebiggest = 0;
            }
          }
        }
        triangleloop.tri = triangletraverse();
      }
    
      shortest = sqrt(shortest);
      longest = sqrt(longest);
      minaltitude = sqrt(minaltitude);
      worstaspect = sqrt(worstaspect);
      smallestarea *= 2.0;
      biggestarea *= 2.0;
      if (smallestangle >= 1.0) {
        smallestangle = 0.0;
      } else {
        smallestangle = degconst * acos(sqrt(smallestangle));
      }
      if (biggestangle >= 1.0) {
        biggestangle = 180.0;
      } else {
        if (acutebiggest) {
          biggestangle = degconst * acos(sqrt(biggestangle));
        } else {
          biggestangle = 180.0 - degconst * acos(sqrt(biggestangle));
        }
      }
    
      printf("  Smallest area: %16.5g   |  Largest area: %16.5g\n",
             smallestarea, biggestarea);
      printf("  Shortest edge: %16.5g   |  Longest edge: %16.5g\n",
             shortest, longest);
      printf("  Shortest altitude: %12.5g   |  Largest aspect ratio: %8.5g\n\n",
             minaltitude, worstaspect);
      printf("  Aspect ratio histogram:\n");
      printf("  1.1547 - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
             ratiotable[0], aspecttable[0], ratiotable[7], ratiotable[8],
             aspecttable[8]);
      for (i = 1; i < 7; i++) {
        printf("  %6.6g - %-6.6g    :  %8d    | %6.6g - %-6.6g     :  %8d\n",
               ratiotable[i - 1], ratiotable[i], aspecttable[i],
               ratiotable[i + 7], ratiotable[i + 8], aspecttable[i + 8]);
      }
      printf("  %6.6g - %-6.6g    :  %8d    | %6.6g -            :  %8d\n",
             ratiotable[6], ratiotable[7], aspecttable[7], ratiotable[14],
             aspecttable[15]);
      printf(
    "  (Triangle aspect ratio is longest edge divided by shortest altitude)\n\n");
      printf("  Smallest angle: %15.5g   |  Largest angle: %15.5g\n\n",
             smallestangle, biggestangle);
      printf("  Angle histogram:\n");
      for (i = 0; i < 9; i++) {
        printf("    %3d - %3d degrees:  %8d    |    %3d - %3d degrees:  %8d\n",
               i * 10, i * 10 + 10, angletable[i],
               i * 10 + 90, i * 10 + 100, angletable[i + 9]);
      }
      printf("\n");
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  statistics()   Print all sorts of cool facts.                            */
    /*                                                                           */
    /*****************************************************************************/
    
    void statistics()
    {
      printf("\nStatistics:\n\n");
      printf("  Input points: %d\n", inpoints);
      if (refine) {
        printf("  Input triangles: %d\n", inelements);
      }
      if (poly) {
        printf("  Input segments: %d\n", insegments);
        if (!refine) {
          printf("  Input holes: %d\n", holes);
        }
      }
    
      printf("\n  Mesh points: %ld\n", points.items);
      printf("  Mesh triangles: %ld\n", triangles.items);
      printf("  Mesh edges: %ld\n", edges);
      if (poly || refine) {
        printf("  Mesh boundary edges: %ld\n", hullsize);
        printf("  Mesh segments: %ld\n\n", shelles.items);
      } else {
        printf("  Mesh convex hull edges: %ld\n\n", hullsize);
      }
      if (verbose) {
        quality_statistics();
        printf("Memory allocation statistics:\n\n");
        printf("  Maximum number of points: %ld\n", points.maxitems);
        printf("  Maximum number of triangles: %ld\n", triangles.maxitems);
        if (shelles.maxitems > 0) {
          printf("  Maximum number of segments: %ld\n", shelles.maxitems);
        }
        if (viri.maxitems > 0) {
          printf("  Maximum number of viri: %ld\n", viri.maxitems);
        }
        if (badsegments.maxitems > 0) {
          printf("  Maximum number of encroached segments: %ld\n",
                 badsegments.maxitems);
        }
        if (badtriangles.maxitems > 0) {
          printf("  Maximum number of bad triangles: %ld\n",
                 badtriangles.maxitems);
        }
        if (splaynodes.maxitems > 0) {
          printf("  Maximum number of splay tree nodes: %ld\n",
                 splaynodes.maxitems);
        }
        printf("  Approximate heap memory use (bytes): %ld\n\n",
               points.maxitems * points.itembytes
               + triangles.maxitems * triangles.itembytes
               + shelles.maxitems * shelles.itembytes
               + viri.maxitems * viri.itembytes
               + badsegments.maxitems * badsegments.itembytes
               + badtriangles.maxitems * badtriangles.itembytes
               + splaynodes.maxitems * splaynodes.itembytes);
    
        printf("Algorithmic statistics:\n\n");
        printf("  Number of incircle tests: %ld\n", incirclecount);
        printf("  Number of orientation tests: %ld\n", counterclockcount);
        if (hyperbolacount > 0) {
          printf("  Number of right-of-hyperbola tests: %ld\n",
                 hyperbolacount);
        }
        if (circumcentercount > 0) {
          printf("  Number of circumcenter computations: %ld\n",
                 circumcentercount);
        }
        if (circletopcount > 0) {
          printf("  Number of circle top computations: %ld\n",
                 circletopcount);
        }
        printf("\n");
      }
    }
    
    /*****************************************************************************/
    /*                                                                           */
    /*  main() or triangulate()   Gosh, do everything.                           */
    /*                                                                           */
    /*  The sequence is roughly as follows.  Many of these steps can be skipped, */
    /*  depending on the command line switches.                                  */
    /*                                                                           */
    /*  - Initialize constants and parse the command line.                       */
    /*  - Read the points from a file and either                                 */
    /*    - triangulate them (no -r), or                                         */
    /*    - read an old mesh from files and reconstruct it (-r).                 */
    /*  - Insert the PSLG segments (-p), and possibly segments on the convex     */
    /*      hull (-c).                                                           */
    /*  - Read the holes (-p), regional attributes (-pA), and regional area      */
    /*      constraints (-pa).  Carve the holes and concavities, and spread the  */
    /*      regional attributes and area constraints.                            */
    /*  - Enforce the constraints on minimum angle (-q) and maximum area (-a).   */
    /*      Also enforce the conforming Delaunay property (-q and -a).           */
    /*  - Compute the number of edges in the resulting mesh.                     */
    /*  - Promote the mesh's linear triangles to higher order elements (-o).     */
    /*  - Write the output files and print the statistics.                       */
    /*  - Check the consistency and Delaunay property of the mesh (-C).          */
    /*                                                                           */
    /*****************************************************************************/
    
    #ifdef TRILIBRARY
    
    void triangulate(triswitches, in, out, vorout)
    char *triswitches;
    struct triangulateio *in;
    struct triangulateio *out;
    struct triangulateio *vorout;
    
    #else /* not TRILIBRARY */
    
    int main(argc, argv)
    int argc;
    char **argv;
    
    #endif /* not TRILIBRARY */
    
    {
      REAL *holearray;                                        /* Array of holes. */
      REAL *regionarray;   /* Array of regional attributes and area constraints. */
    #ifndef TRILIBRARY
      FILE *polyfile;
    #endif /* not TRILIBRARY */
    #ifndef NO_TIMER
      /* Variables for timing the performance of Triangle.  The types are */
      /*   defined in sys/time.h.                                         */
      struct timeval tv0, tv1, tv2, tv3, tv4, tv5, tv6;
      struct timezone tz;
    #endif /* NO_TIMER */
    
    #ifndef NO_TIMER
      gettimeofday(&tv0, &tz);
    #endif /* NO_TIMER */
    
      triangleinit();
    #ifdef TRILIBRARY
      parsecommandline(1, &triswitches);
    #else /* not TRILIBRARY */
      parsecommandline(argc, argv);
    #endif /* not TRILIBRARY */
    
    #ifdef TRILIBRARY
      transfernodes(in->pointlist, in->pointattributelist, in->pointmarkerlist,
                    in->numberofpoints, in->numberofpointattributes);
    #else /* not TRILIBRARY */
      readnodes(innodefilename, inpolyfilename, &polyfile);
    #endif /* not TRILIBRARY */
    
    #ifndef NO_TIMER
      if (!quiet) {
        gettimeofday(&tv1, &tz);
      }
    #endif /* NO_TIMER */
    
    #ifdef CDT_ONLY
      hullsize = delaunay();                          /* Triangulate the points. */
    #else /* not CDT_ONLY */
      if (refine) {
        /* Read and reconstruct a mesh. */
    #ifdef TRILIBRARY
        hullsize = reconstruct(in->trianglelist, in->triangleattributelist,
                               in->trianglearealist, in->numberoftriangles,
                               in->numberofcorners, in->numberoftriangleattributes,
                               in->segmentlist, in->segmentmarkerlist,
                               in->numberofsegments);
    #else /* not TRILIBRARY */
        hullsize = reconstruct(inelefilename, areafilename, inpolyfilename,
                               polyfile);
    #endif /* not TRILIBRARY */
      } else {
        hullsize = delaunay();                        /* Triangulate the points. */
      }
    #endif /* not CDT_ONLY */
    
    #ifndef NO_TIMER
      if (!quiet) {
        gettimeofday(&tv2, &tz);
        if (refine) {
          printf("Mesh reconstruction");
        } else {
          printf("Delaunay");
        }
        printf(" milliseconds:  %ld\n", 1000l * (tv2.tv_sec - tv1.tv_sec)
               + (tv2.tv_usec - tv1.tv_usec) / 1000l);
      }
    #endif /* NO_TIMER */
    
      /* Ensure that no point can be mistaken for a triangular bounding */
      /*   box point in insertsite().                                   */
      infpoint1 = (point) NULL;
      infpoint2 = (point) NULL;
      infpoint3 = (point) NULL;
    
      if (useshelles) {
        checksegments = 1;                  /* Segments will be introduced next. */
        if (!refine) {
          /* Insert PSLG segments and/or convex hull segments. */
    #ifdef TRILIBRARY
          insegments = formskeleton(in->segmentlist, in->segmentmarkerlist,
                                    in->numberofsegments);
    #else /* not TRILIBRARY */
          insegments = formskeleton(polyfile, inpolyfilename);
    #endif /* not TRILIBRARY */
        }
      }
    
    #ifndef NO_TIMER
      if (!quiet) {
        gettimeofday(&tv3, &tz);
        if (useshelles && !refine) {
          printf("Segment milliseconds:  %ld\n",
                 1000l * (tv3.tv_sec - tv2.tv_sec)
                 + (tv3.tv_usec - tv2.tv_usec) / 1000l);
        }
      }
    #endif /* NO_TIMER */
    
      if (poly) {
    #ifdef TRILIBRARY
        holearray = in->holelist;
        holes = in->numberofholes;
        regionarray = in->regionlist;
        regions = in->numberofregions;
    #else /* not TRILIBRARY */
        readholes(polyfile, inpolyfilename, &holearray, &holes,
                  &regionarray, &regions);
    #endif /* not TRILIBRARY */
        if (!refine) {
          /* Carve out holes and concavities. */
          carveholes(holearray, holes, regionarray, regions);
        }
      } else {
        /* Without a PSLG, there can be no holes or regional attributes   */
        /*   or area constraints.  The following are set to zero to avoid */
        /*   an accidental free() later.                                  */
        holes = 0;
        regions = 0;
      }
    
    #ifndef NO_TIMER
      if (!quiet) {
        gettimeofday(&tv4, &tz);
        if (poly && !refine) {
          printf("Hole milliseconds:  %ld\n", 1000l * (tv4.tv_sec - tv3.tv_sec)
                 + (tv4.tv_usec - tv3.tv_usec) / 1000l);
        }
      }
    #endif /* NO_TIMER */
    
    #ifndef CDT_ONLY
      if (quality) {
        enforcequality();                 /* Enforce angle and area constraints. */
      }
    #endif /* not CDT_ONLY */
    
    #ifndef NO_TIMER
      if (!quiet) {
        gettimeofday(&tv5, &tz);
    #ifndef CDT_ONLY
        if (quality) {
          printf("Quality milliseconds:  %ld\n",
                 1000l * (tv5.tv_sec - tv4.tv_sec)
                 + (tv5.tv_usec - tv4.tv_usec) / 1000l);
        }
    #endif /* not CDT_ONLY */
      }
    #endif /* NO_TIMER */
    
      /* Compute the number of edges. */
      edges = (3l * triangles.items + hullsize) / 2l;
    
      if (order > 1) {
        highorder();             /* Promote elements to higher polynomial order. */
      }
      if (!quiet) {
        printf("\n");
      }
    
    #ifdef TRILIBRARY
      out->numberofpoints = points.items;
      out->numberofpointattributes = nextras;
      out->numberoftriangles = triangles.items;
      out->numberofcorners = (order + 1) * (order + 2) / 2;
      out->numberoftriangleattributes = eextras;
      out->numberofedges = edges;
      if (useshelles) {
        out->numberofsegments = shelles.items;
      } else {
        out->numberofsegments = hullsize;
      }
      if (vorout != (struct triangulateio *) NULL) {
        vorout->numberofpoints = triangles.items;
        vorout->numberofpointattributes = nextras;
        vorout->numberofedges = edges;
      }
    #endif /* TRILIBRARY */
      /* If not using iteration numbers, don't write a .node file if one was */
      /*   read, because the original one would be overwritten!              */
      if (nonodewritten || (noiterationnum && readnodefile)) {
        if (!quiet) {
    #ifdef TRILIBRARY
          printf("NOT writing points.\n");
    #else /* not TRILIBRARY */
          printf("NOT writing a .node file.\n");
    #endif /* not TRILIBRARY */
        }
        numbernodes();                 /* We must remember to number the points. */
      } else {
    #ifdef TRILIBRARY
        writenodes(&out->pointlist, &out->pointattributelist,
                   &out->pointmarkerlist);
    #else /* not TRILIBRARY */
        writenodes(outnodefilename, argc, argv);      /* Numbers the points too. */
    #endif /* TRILIBRARY */
      }
      if (noelewritten) {
        if (!quiet) {
    #ifdef TRILIBRARY
          printf("NOT writing triangles.\n");
    #else /* not TRILIBRARY */
          printf("NOT writing an .ele file.\n");
    #endif /* not TRILIBRARY */
        }
      } else {
    #ifdef TRILIBRARY
        writeelements(&out->trianglelist, &out->triangleattributelist);
    #else /* not TRILIBRARY */
        writeelements(outelefilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
      /* The -c switch (convex switch) causes a PSLG to be written */
      /*   even if none was read.                                  */
      if (poly || convex) {
        /* If not using iteration numbers, don't overwrite the .poly file. */
        if (nopolywritten || noiterationnum) {
          if (!quiet) {
    #ifdef TRILIBRARY
            printf("NOT writing segments.\n");
    #else /* not TRILIBRARY */
            printf("NOT writing a .poly file.\n");
    #endif /* not TRILIBRARY */
          }
        } else {
    #ifdef TRILIBRARY
          writepoly(&out->segmentlist, &out->segmentmarkerlist);
          out->numberofholes = holes;
          out->numberofregions = regions;
          if (poly) {
            out->holelist = in->holelist;
            out->regionlist = in->regionlist;
          } else {
            out->holelist = (REAL *) NULL;
            out->regionlist = (REAL *) NULL;
          }
    #else /* not TRILIBRARY */
          writepoly(outpolyfilename, holearray, holes, regionarray, regions,
                    argc, argv);
    #endif /* not TRILIBRARY */
        }
      }
    #ifndef TRILIBRARY
    #ifndef CDT_ONLY
      if (regions > 0) {
        free(regionarray);
      }
    #endif /* not CDT_ONLY */
      if (holes > 0) {
        free(holearray);
      }
      if (geomview) {
        writeoff(offfilename, argc, argv);
      }
    #endif /* not TRILIBRARY */
      if (edgesout) {
    #ifdef TRILIBRARY
        writeedges(&out->edgelist, &out->edgemarkerlist);
    #else /* not TRILIBRARY */
        writeedges(edgefilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
      if (voronoi) {
    #ifdef TRILIBRARY
        writevoronoi(&vorout->pointlist, &vorout->pointattributelist,
                     &vorout->pointmarkerlist, &vorout->edgelist,
                     &vorout->edgemarkerlist, &vorout->normlist);
    #else /* not TRILIBRARY */
        writevoronoi(vnodefilename, vedgefilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
      if (neighbors) {
    #ifdef TRILIBRARY
        writeneighbors(&out->neighborlist);
    #else /* not TRILIBRARY */
        writeneighbors(neighborfilename, argc, argv);
    #endif /* not TRILIBRARY */
      }
    
      if (!quiet) {
    #ifndef NO_TIMER
        gettimeofday(&tv6, &tz);
        printf("\nOutput milliseconds:  %ld\n",
               1000l * (tv6.tv_sec - tv5.tv_sec)
               + (tv6.tv_usec - tv5.tv_usec) / 1000l);
        printf("Total running milliseconds:  %ld\n",
               1000l * (tv6.tv_sec - tv0.tv_sec)
               + (tv6.tv_usec - tv0.tv_usec) / 1000l);
    #endif /* NO_TIMER */
    
        statistics();
      }
    
    #ifndef REDUCED
      if (docheck) {
        checkmesh();
        checkdelaunay();
      }
    #endif /* not REDUCED */
    
      triangledeinit();
    #ifndef TRILIBRARY
      return 0;
    #endif /* not TRILIBRARY */
    }