Skip to content
Snippets Groups Projects
Select Git revision
  • 9e2d07470f883661d386f7c4869cbf631e7d7d7b
  • master default protected
  • hierarchical-basis-refactor
  • hierarchical-basis
  • revert-ef4a3a4f
  • patch_releases_4_14
  • overlaps_tags_and_distributed_export
  • overlaps_tags_and_distributed_export_rebased
  • relaying
  • alphashapes
  • steplayer
  • bl
  • pluginMeshQuality
  • fixBugsAmaury
  • new_export_boris
  • oras_vs_osm
  • reassign_partitions
  • distributed_fwi
  • rename-classes
  • fix/fortran-api-example-t4
  • robust_partitions
  • gmsh_4_14_0
  • gmsh_4_13_1
  • gmsh_4_13_0
  • gmsh_4_12_2
  • gmsh_4_12_1
  • gmsh_4_12_0
  • gmsh_4_11_1
  • gmsh_4_11_0
  • gmsh_4_10_5
  • gmsh_4_10_4
  • gmsh_4_10_3
  • gmsh_4_10_2
  • gmsh_4_10_1
  • gmsh_4_10_0
  • gmsh_4_9_5
  • gmsh_4_9_4
  • gmsh_4_9_3
  • gmsh_4_9_2
  • gmsh_4_9_1
  • gmsh_4_9_0
41 results

Field.h

Blame
  • minitpart2.c 10.67 KiB
    /*
     * Copyright 1997, Regents of the University of Minnesota
     *
     * minitpart2.c
     *
     * This file contains code that performs the initial partition of the
     * coarsest graph
     *
     * Started 7/23/97
     * George
     *
     * $Id: minitpart2.c,v 1.1 2005-09-07 14:36:45 remacle Exp $
     *
     */
    
    #include <metis.h>
    
    /*************************************************************************
    * This function computes the initial bisection of the coarsest graph
    **************************************************************************/
    void MocInit2WayPartition2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec) 
    {
      int dbglvl;
    
      dbglvl = ctrl->dbglvl;
      IFSET(ctrl->dbglvl, DBG_REFINE, ctrl->dbglvl -= DBG_REFINE);
      IFSET(ctrl->dbglvl, DBG_MOVEINFO, ctrl->dbglvl -= DBG_MOVEINFO);
    
      IFSET(ctrl->dbglvl, DBG_TIME, starttimer(ctrl->InitPartTmr));
    
      switch (ctrl->IType) {
        case IPART_GGPKL:
        case IPART_RANDOM:
          MocGrowBisection2(ctrl, graph, tpwgts, ubvec);
          break;
        case 3:
          MocGrowBisectionNew2(ctrl, graph, tpwgts, ubvec);
          break;
        default:
          errexit("Unknown initial partition type: %d\n", ctrl->IType);
      }
    
      IFSET(ctrl->dbglvl, DBG_IPART, printf("Initial Cut: %d\n", graph->mincut));
      IFSET(ctrl->dbglvl, DBG_TIME, stoptimer(ctrl->InitPartTmr));
      ctrl->dbglvl = dbglvl;
    
    }
    
    
    
    
    /*************************************************************************
    * This function takes a graph and produces a bisection by using a region
    * growing algorithm. The resulting partition is returned in
    * graph->where
    **************************************************************************/
    void MocGrowBisection2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
    {
      int i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs;
      idxtype *bestwhere, *where;
    
      nvtxs = graph->nvtxs;
    
      MocAllocate2WayPartitionMemory(ctrl, graph);
      where = graph->where;
    
      bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
      nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
      bestcut = idxsum(graph->nedges, graph->adjwgt);  
    
      for (; nbfs>0; nbfs--) {
        idxset(nvtxs, 1, where);
        where[RandomInRange(nvtxs)] = 0;
    
        MocCompute2WayPartitionParams(ctrl, graph);
    
        MocBalance2Way2(ctrl, graph, tpwgts, ubvec);
    
        MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); 
    
        MocBalance2Way2(ctrl, graph, tpwgts, ubvec);
        MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); 
    
        if (bestcut > graph->mincut) {
          bestcut = graph->mincut;
          idxcopy(nvtxs, where, bestwhere);
          if (bestcut == 0)
            break;
        }
      }
    
      graph->mincut = bestcut;
      idxcopy(nvtxs, bestwhere, where);
    
      GKfree(&bestwhere, LTERM);
    }
    
    
    
    
    
    
    /*************************************************************************
    * This function takes a graph and produces a bisection by using a region
    * growing algorithm. The resulting partition is returned in
    * graph->where
    **************************************************************************/
    void MocGrowBisectionNew2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
    {
      int i, j, k, nvtxs, ncon, from, bestcut, mincut, nbfs;
      idxtype *bestwhere, *where;
    
      nvtxs = graph->nvtxs;
    
      MocAllocate2WayPartitionMemory(ctrl, graph);
      where = graph->where;
    
      bestwhere = idxmalloc(nvtxs, "BisectGraph: bestwhere");
      nbfs = 2*(nvtxs <= ctrl->CoarsenTo ? SMALLNIPARTS : LARGENIPARTS);
      bestcut = idxsum(graph->nedges, graph->adjwgt);  
    
      for (; nbfs>0; nbfs--) {
        idxset(nvtxs, 1, where);
        where[RandomInRange(nvtxs)] = 0;
    
        MocCompute2WayPartitionParams(ctrl, graph);
    
        MocInit2WayBalance2(ctrl, graph, tpwgts, ubvec);
    
        MocFM_2WayEdgeRefine2(ctrl, graph, tpwgts, ubvec, 4); 
    
        if (bestcut > graph->mincut) {
          bestcut = graph->mincut;
          idxcopy(nvtxs, where, bestwhere);
          if (bestcut == 0)
            break;
        }
      }
    
      graph->mincut = bestcut;
      idxcopy(nvtxs, bestwhere, where);
    
      GKfree(&bestwhere, LTERM);
    }
    
    
    
    /*************************************************************************
    * This function balances two partitions by moving the highest gain 
    * (including negative gain) vertices to the other domain.
    * It is used only when tha unbalance is due to non contigous
    * subdomains. That is, the are no boundary vertices.
    * It moves vertices from the domain that is overweight to the one that 
    * is underweight.
    **************************************************************************/
    void MocInit2WayBalance2(CtrlType *ctrl, GraphType *graph, float *tpwgts, float *ubvec)
    {
      int i, ii, j, k, l, kwgt, nvtxs, nbnd, ncon, nswaps, from, to, pass, me, cnum, tmp, imin;
      idxtype *xadj, *adjncy, *adjwgt, *where, *id, *ed, *bndptr, *bndind;
      idxtype *moved, *perm, *qnum;
      float *nvwgt, *npwgts, minwgt;
      PQueueType parts[MAXNCON][2];
      int higain, oldgain, mincut;
    
      nvtxs = graph->nvtxs;
      ncon = graph->ncon;
      xadj = graph->xadj;
      adjncy = graph->adjncy;
      nvwgt = graph->nvwgt;
      adjwgt = graph->adjwgt;
      where = graph->where;
      id = graph->id;
      ed = graph->ed;
      npwgts = graph->npwgts;
      bndptr = graph->bndptr;
      bndind = graph->bndind;
    
      moved = idxwspacemalloc(ctrl, nvtxs);
      perm = idxwspacemalloc(ctrl, nvtxs);
      qnum = idxwspacemalloc(ctrl, nvtxs);
    
      /* This is called for initial partitioning so we know from where to pick nodes */
      from = 1;
      to = (from+1)%2;
    
      if (ctrl->dbglvl&DBG_REFINE) {
        printf("Parts: [");
        for (l=0; l<ncon; l++)
          printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
        printf("] T[%.3f %.3f], Nv-Nb[%5d, %5d]. ICut: %6d, LB: %.3f [B]\n", tpwgts[0], tpwgts[1], graph->nvtxs, graph->nbnd, graph->mincut, ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));
      }
    
      for (i=0; i<ncon; i++) {
        PQueueInit(ctrl, &parts[i][0], nvtxs, PLUS_GAINSPAN+1);
        PQueueInit(ctrl, &parts[i][1], nvtxs, PLUS_GAINSPAN+1);
      }
    
      idxset(nvtxs, -1, moved);
    
      ASSERT(ComputeCut(graph, where) == graph->mincut);
      ASSERT(CheckBnd(graph));
      ASSERT(CheckGraph(graph));
    
      /* Compute the queues in which each vertex will be assigned to */
      for (i=0; i<nvtxs; i++)
        qnum[i] = samax(ncon, nvwgt+i*ncon);
    
      /* Insert the nodes of the proper partition in the appropriate priority queue */
      RandomPermute(nvtxs, perm, 1);
      for (ii=0; ii<nvtxs; ii++) {
        i = perm[ii];
        if (where[i] == from) {
          if (ed[i] > 0)
            PQueueInsert(&parts[qnum[i]][0], i, ed[i]-id[i]);
          else
            PQueueInsert(&parts[qnum[i]][1], i, ed[i]-id[i]);
        }
      }
    
    /*
      for (i=0; i<ncon; i++)
        printf("Queue #%d has %d %d\n", i, parts[i][0].nnodes, parts[i][1].nnodes);
    */
    
      /* Determine the termination criterion */
      imin = 0;
      for (i=1; i<ncon; i++) 
        imin = (ubvec[i] < ubvec[imin] ? i : imin);
      minwgt = .5/ubvec[imin];
    
      mincut = graph->mincut;
      nbnd = graph->nbnd;
      for (nswaps=0; nswaps<nvtxs; nswaps++) {
        /* Exit as soon as the minimum weight crossed over */
        if (npwgts[to*ncon+imin] > minwgt)  
          break;
    
        if ((cnum = SelectQueueOneWay2(ncon, npwgts+to*ncon, parts, ubvec)) == -1)
          break;
    
        if ((higain = PQueueGetMax(&parts[cnum][0])) == -1)
          higain = PQueueGetMax(&parts[cnum][1]);
    
        mincut -= (ed[higain]-id[higain]);
        saxpy(ncon, 1.0, nvwgt+higain*ncon, 1, npwgts+to*ncon, 1);
        saxpy(ncon, -1.0, nvwgt+higain*ncon, 1, npwgts+from*ncon, 1);
    
        where[higain] = to;
        moved[higain] = nswaps;
    
        if (ctrl->dbglvl&DBG_MOVEINFO) {
          printf("Moved %6d from %d(%d). [%5d] %5d, NPwgts: ", higain, from, cnum, ed[higain]-id[higain], mincut);
          for (l=0; l<ncon; l++) 
            printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
          printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));
          if (ed[higain] == 0 && id[higain] > 0)
            printf("\t Pulled from the interior!\n");
        }
    
    
        /**************************************************************
        * Update the id[i]/ed[i] values of the affected nodes
        ***************************************************************/
        SWAP(id[higain], ed[higain], tmp);
        if (ed[higain] == 0 && bndptr[higain] != -1 && xadj[higain] < xadj[higain+1]) 
          BNDDelete(nbnd, bndind,  bndptr, higain);
        if (ed[higain] > 0 && bndptr[higain] == -1)
          BNDInsert(nbnd, bndind,  bndptr, higain);
    
        for (j=xadj[higain]; j<xadj[higain+1]; j++) {
          k = adjncy[j];
          oldgain = ed[k]-id[k];
    
          kwgt = (to == where[k] ? adjwgt[j] : -adjwgt[j]);
          INC_DEC(id[k], ed[k], kwgt);
    
          /* Update the queue position */
          if (moved[k] == -1 && where[k] == from) {
            if (ed[k] > 0 && bndptr[k] == -1) {  /* It moves in boundary */
              PQueueDelete(&parts[qnum[k]][1], k, oldgain);
              PQueueInsert(&parts[qnum[k]][0], k, ed[k]-id[k]);
            }
            else { /* It must be in the boundary already */
              if (bndptr[k] == -1)
                printf("What you thought was wrong!\n");
              PQueueUpdate(&parts[qnum[k]][0], k, oldgain, ed[k]-id[k]);
            }
          }
    
          /* Update its boundary information */
          if (ed[k] == 0 && bndptr[k] != -1) 
            BNDDelete(nbnd, bndind, bndptr, k);
          else if (ed[k] > 0 && bndptr[k] == -1)  
            BNDInsert(nbnd, bndind, bndptr, k);
        }
    
        ASSERTP(ComputeCut(graph, where) == mincut, ("%d != %d\n", ComputeCut(graph, where), mincut));
    
      }
    
      if (ctrl->dbglvl&DBG_REFINE) {
        printf("\tMincut: %6d, NBND: %6d, NPwgts: ", mincut, nbnd);
        for (l=0; l<ncon; l++)
          printf("(%.3f, %.3f) ", npwgts[l], npwgts[ncon+l]);
        printf(", LB: %.3f\n", ComputeLoadImbalance(ncon, 2, npwgts, tpwgts));
      }
    
      graph->mincut = mincut;
      graph->nbnd = nbnd;
    
      for (i=0; i<ncon; i++) {
        PQueueFree(ctrl, &parts[i][0]);
        PQueueFree(ctrl, &parts[i][1]);
      }
    
      ASSERT(ComputeCut(graph, where) == graph->mincut);
      ASSERT(CheckBnd(graph));
    
      idxwspacefree(ctrl, nvtxs);
      idxwspacefree(ctrl, nvtxs);
      idxwspacefree(ctrl, nvtxs);
    }
    
    
    
    /*************************************************************************
    * This function selects the partition number and the queue from which
    * we will move vertices out
    **************************************************************************/ 
    int SelectQueueOneWay2(int ncon, float *pto, PQueueType queues[MAXNCON][2], float *ubvec)
    {
      int i, cnum=-1, imax, maxgain;
      float max=0.0;
      float twgt[MAXNCON];
    
      for (i=0; i<ncon; i++) {
        if (max < pto[i]) {
          imax = i;
          max = pto[i];
        }
      }
      for (i=0; i<ncon; i++) 
        twgt[i] = (max/(ubvec[imax]*ubvec[i]))/pto[i];
      twgt[imax] = 0.0;
    
      max = 0.0;
      for (i=0; i<ncon; i++) {
        if (max < twgt[i] && (PQueueGetSize(&queues[i][0]) > 0 || PQueueGetSize(&queues[i][1]) > 0)) {
          max = twgt[i];
          cnum = i;
        }
      }
      if (max > 1)
        return cnum;
    
      /* optimize of cut */
      maxgain = -10000000;
      for (i=0; i<ncon; i++) {
        if (PQueueGetSize(&queues[i][0]) > 0 && PQueueGetKey(&queues[i][0]) > maxgain) {
          maxgain = PQueueGetKey(&queues[i][0]);
          cnum = i;
        }
      }
    
      return cnum;
    
    }