Skip to content
Snippets Groups Projects
Select Git revision
  • 3b86cf6119b6abf3ae983fa9569d6a0e65815a35
  • master default protected
  • revert-ef4a3a4f
  • patch_releases_4_14
  • overlaps_tags_and_distributed_export
  • overlaps_tags_and_distributed_export_rebased
  • relaying
  • alphashapes
  • steplayer
  • bl
  • pluginMeshQuality
  • fixBugsAmaury
  • hierarchical-basis
  • new_export_boris
  • oras_vs_osm
  • reassign_partitions
  • distributed_fwi
  • rename-classes
  • fix/fortran-api-example-t4
  • robust_partitions
  • reducing_files
  • gmsh_4_14_0
  • gmsh_4_13_1
  • gmsh_4_13_0
  • gmsh_4_12_2
  • gmsh_4_12_1
  • gmsh_4_12_0
  • gmsh_4_11_1
  • gmsh_4_11_0
  • gmsh_4_10_5
  • gmsh_4_10_4
  • gmsh_4_10_3
  • gmsh_4_10_2
  • gmsh_4_10_1
  • gmsh_4_10_0
  • gmsh_4_9_5
  • gmsh_4_9_4
  • gmsh_4_9_3
  • gmsh_4_9_2
  • gmsh_4_9_1
  • gmsh_4_9_0
41 results

JacobianBasis.h

Blame
  • optimization.h 135.48 KiB
    /*************************************************************************
    Copyright (c) Sergey Bochkanov (ALGLIB project).
    
    >>> SOURCE LICENSE >>>
    This program is free software; you can redistribute it and/or modify
    it under the terms of the GNU General Public License as published by
    the Free Software Foundation (www.fsf.org); either version 2 of the
    License, or (at your option) any later version.
    
    This program is distributed in the hope that it will be useful,
    but WITHOUT ANY WARRANTY; without even the implied warranty of
    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
    GNU General Public License for more details.
    
    A copy of the GNU General Public License is available at
    http://www.fsf.org/licensing/licenses
    >>> END OF LICENSE >>>
    *************************************************************************/
    #ifndef _optimization_pkg_h
    #define _optimization_pkg_h
    #include "ap.h"
    #include "alglibinternal.h"
    #include "alglibmisc.h"
    #include "linalg.h"
    #include "solvers.h"
    
    /////////////////////////////////////////////////////////////////////////
    //
    // THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (DATATYPES)
    //
    /////////////////////////////////////////////////////////////////////////
    namespace alglib_impl
    {
    typedef struct
    {
        ae_int_t n;
        double epsg;
        double epsf;
        double epsx;
        ae_int_t maxits;
        double stpmax;
        double suggestedstep;
        ae_bool xrep;
        ae_bool drep;
        ae_int_t cgtype;
        ae_int_t prectype;
        ae_vector diagh;
        ae_vector diaghl2;
        ae_matrix vcorr;
        ae_int_t vcnt;
        ae_vector s;
        double diffstep;
        ae_int_t nfev;
        ae_int_t mcstage;
        ae_int_t k;
        ae_vector xk;
        ae_vector dk;
        ae_vector xn;
        ae_vector dn;
        ae_vector d;
        double fold;
        double stp;
        double curstpmax;
        ae_vector yk;
        double laststep;
        double lastscaledstep;
        ae_int_t mcinfo;
        ae_bool innerresetneeded;
        ae_bool terminationneeded;
        double trimthreshold;
        ae_int_t rstimer;
        ae_vector x;
        double f;
        ae_vector g;
        ae_bool needf;
        ae_bool needfg;
        ae_bool xupdated;
        ae_bool algpowerup;
        ae_bool lsstart;
        ae_bool lsend;
        rcommstate rstate;
        ae_int_t repiterationscount;
        ae_int_t repnfev;
        ae_int_t repterminationtype;
        ae_int_t debugrestartscount;
        linminstate lstate;
        double fbase;
        double fm2;
        double fm1;
        double fp1;
        double fp2;
        double betahs;
        double betady;
        ae_vector work0;
        ae_vector work1;
    } mincgstate;
    typedef struct
    {
        ae_int_t iterationscount;
        ae_int_t nfev;
        ae_int_t terminationtype;
    } mincgreport;
    typedef struct
    {
        ae_int_t nmain;
        ae_int_t nslack;
        double innerepsg;
        double innerepsf;
        double innerepsx;
        double outerepsx;
        double outerepsi;
        ae_int_t maxits;
        ae_bool xrep;
        double stpmax;
        double diffstep;
        ae_int_t prectype;
        ae_vector diaghoriginal;
        ae_vector diagh;
        ae_vector x;
        double f;
        ae_vector g;
        ae_bool needf;
        ae_bool needfg;
        ae_bool xupdated;
        rcommstate rstate;
        ae_int_t repinneriterationscount;
        ae_int_t repouteriterationscount;
        ae_int_t repnfev;
        ae_int_t repterminationtype;
        double repdebugeqerr;
        double repdebugfs;
        double repdebugff;
        double repdebugdx;
        ae_vector xcur;
        ae_vector xprev;
        ae_vector xstart;
        ae_int_t itsleft;
        ae_vector xend;
        ae_vector lastg;
        double trimthreshold;
        ae_matrix ceoriginal;
        ae_matrix ceeffective;
        ae_matrix cecurrent;
        ae_vector ct;
        ae_int_t cecnt;
        ae_int_t cedim;
        ae_vector xe;
        ae_vector hasbndl;
        ae_vector hasbndu;
        ae_vector bndloriginal;
        ae_vector bnduoriginal;
        ae_vector bndleffective;
        ae_vector bndueffective;
        ae_vector activeconstraints;
        ae_vector constrainedvalues;
        ae_vector transforms;
        ae_vector seffective;
        ae_vector soriginal;
        ae_vector w;
        ae_vector tmp0;
        ae_vector tmp1;
        ae_vector tmp2;
        ae_vector r;
        ae_matrix lmmatrix;
        double v0;
        double v1;
        double v2;
        double t;
        double errfeas;
        double gnorm;
        double mpgnorm;
        double mba;
        ae_int_t variabletofreeze;
        double valuetofreeze;
        double fbase;
        double fm2;
        double fm1;
        double fp1;
        double fp2;
        double xm1;
        double xp1;
        mincgstate cgstate;
        mincgreport cgrep;
        ae_int_t optdim;
    } minbleicstate;
    typedef struct
    {
        ae_int_t inneriterationscount;
        ae_int_t outeriterationscount;
        ae_int_t nfev;
        ae_int_t terminationtype;
        double debugeqerr;
        double debugfs;
        double debugff;
        double debugdx;
    } minbleicreport;
    typedef struct
    {
        ae_int_t n;
        ae_int_t m;
        double epsg;
        double epsf;
        double epsx;
        ae_int_t maxits;
        ae_bool xrep;
        double stpmax;
        ae_vector s;
        double diffstep;
        ae_int_t nfev;
        ae_int_t mcstage;
        ae_int_t k;
        ae_int_t q;
        ae_int_t p;
        ae_vector rho;
        ae_matrix yk;
        ae_matrix sk;
        ae_vector theta;
        ae_vector d;
        double stp;
        ae_vector work;
        double fold;
        double trimthreshold;
        ae_int_t prectype;
        double gammak;
        ae_matrix denseh;
        ae_vector diagh;
        double fbase;
        double fm2;
        double fm1;
        double fp1;
        double fp2;
        ae_vector autobuf;
        ae_vector x;
        double f;
        ae_vector g;
        ae_bool needf;
        ae_bool needfg;
        ae_bool xupdated;
        rcommstate rstate;
        ae_int_t repiterationscount;
        ae_int_t repnfev;
        ae_int_t repterminationtype;
        linminstate lstate;
    } minlbfgsstate;
    typedef struct
    {
        ae_int_t iterationscount;
        ae_int_t nfev;
        ae_int_t terminationtype;
    } minlbfgsreport;
    typedef struct
    {
        ae_int_t n;
        ae_int_t algokind;
        ae_int_t akind;
        ae_matrix densea;
        ae_vector diaga;
        ae_vector b;
        ae_vector bndl;
        ae_vector bndu;
        ae_vector havebndl;
        ae_vector havebndu;
        ae_vector xorigin;
        ae_vector startx;
        ae_bool havex;
        ae_vector xc;
        ae_vector gc;
        ae_vector activeconstraints;
        ae_vector prevactiveconstraints;
        double constterm;
        ae_vector workbndl;
        ae_vector workbndu;
        ae_int_t repinneriterationscount;
        ae_int_t repouteriterationscount;
        ae_int_t repncholesky;
        ae_int_t repnmv;
        ae_int_t repterminationtype;
        ae_vector tmp0;
        ae_vector tmp1;
        ae_vector itmp0;
        ae_vector p2;
        ae_matrix bufa;
        ae_vector bufb;
        ae_vector bufx;
        apbuffers buf;
    } minqpstate;
    typedef struct
    {
        ae_int_t inneriterationscount;
        ae_int_t outeriterationscount;
        ae_int_t nmv;
        ae_int_t ncholesky;
        ae_int_t terminationtype;
    } minqpreport;
    typedef struct
    {
        ae_int_t n;
        ae_int_t m;
        double diffstep;
        double epsg;
        double epsf;
        double epsx;
        ae_int_t maxits;
        ae_bool xrep;
        double stpmax;
        ae_int_t maxmodelage;
        ae_bool makeadditers;
        ae_vector x;
        double f;
        ae_vector fi;
        ae_matrix j;
        ae_matrix h;
        ae_vector g;
        ae_bool needf;
        ae_bool needfg;
        ae_bool needfgh;
        ae_bool needfij;
        ae_bool needfi;
        ae_bool xupdated;
        ae_int_t algomode;
        ae_bool hasf;
        ae_bool hasfi;
        ae_bool hasg;
        ae_vector xbase;
        double fbase;
        ae_vector fibase;
        ae_vector gbase;
        ae_matrix quadraticmodel;
        ae_vector bndl;
        ae_vector bndu;
        ae_vector havebndl;
        ae_vector havebndu;
        ae_vector s;
        double lambdav;
        double nu;
        ae_int_t modelage;
        ae_vector xdir;
        ae_vector deltax;
        ae_vector deltaf;
        ae_bool deltaxready;
        ae_bool deltafready;
        ae_int_t repiterationscount;
        ae_int_t repterminationtype;
        ae_int_t repnfunc;
        ae_int_t repnjac;
        ae_int_t repngrad;
        ae_int_t repnhess;
        ae_int_t repncholesky;
        rcommstate rstate;
        ae_vector choleskybuf;
        ae_vector tmp0;
        double actualdecrease;
        double predicteddecrease;
        double xm1;
        double xp1;
        ae_vector fm1;
        ae_vector fp1;
        minlbfgsstate internalstate;
        minlbfgsreport internalrep;
        minqpstate qpstate;
        minqpreport qprep;
    } minlmstate;
    typedef struct
    {
        ae_int_t iterationscount;
        ae_int_t terminationtype;
        ae_int_t nfunc;
        ae_int_t njac;
        ae_int_t ngrad;
        ae_int_t nhess;
        ae_int_t ncholesky;
    } minlmreport;
    typedef struct
    {
        ae_int_t n;
        double epsg;
        double epsf;
        double epsx;
        ae_int_t maxits;
        ae_bool xrep;
        double stpmax;
        ae_int_t cgtype;
        ae_int_t k;
        ae_int_t nfev;
        ae_int_t mcstage;
        ae_vector bndl;
        ae_vector bndu;
        ae_int_t curalgo;
        ae_int_t acount;
        double mu;
        double finit;
        double dginit;
        ae_vector ak;
        ae_vector xk;
        ae_vector dk;
        ae_vector an;
        ae_vector xn;
        ae_vector dn;
        ae_vector d;
        double fold;
        double stp;
        ae_vector work;
        ae_vector yk;
        ae_vector gc;
        double laststep;
        ae_vector x;
        double f;
        ae_vector g;
        ae_bool needfg;
        ae_bool xupdated;
        rcommstate rstate;
        ae_int_t repiterationscount;
        ae_int_t repnfev;
        ae_int_t repterminationtype;
        ae_int_t debugrestartscount;
        linminstate lstate;
        double betahs;
        double betady;
    } minasastate;
    typedef struct
    {
        ae_int_t iterationscount;
        ae_int_t nfev;
        ae_int_t terminationtype;
        ae_int_t activeconstraints;
    } minasareport;
    
    }
    
    /////////////////////////////////////////////////////////////////////////
    //
    // THIS SECTION CONTAINS C++ INTERFACE
    //
    /////////////////////////////////////////////////////////////////////////
    namespace alglib
    {
    
    /*************************************************************************
    This object stores state of the nonlinear CG optimizer.
    
    You should use ALGLIB functions to work with this object.
    *************************************************************************/
    class _mincgstate_owner
    {
    public:
        _mincgstate_owner();
        _mincgstate_owner(const _mincgstate_owner &rhs);
        _mincgstate_owner& operator=(const _mincgstate_owner &rhs);
        virtual ~_mincgstate_owner();
        alglib_impl::mincgstate* c_ptr();
        alglib_impl::mincgstate* c_ptr() const;
    protected:
        alglib_impl::mincgstate *p_struct;
    };
    class mincgstate : public _mincgstate_owner
    {
    public:
        mincgstate();
        mincgstate(const mincgstate &rhs);
        mincgstate& operator=(const mincgstate &rhs);
        virtual ~mincgstate();
        ae_bool &needf;
        ae_bool &needfg;
        ae_bool &xupdated;
        double &f;
        real_1d_array g;
        real_1d_array x;
    
    };
    
    
    /*************************************************************************
    
    *************************************************************************/
    class _mincgreport_owner
    {
    public:
        _mincgreport_owner();
        _mincgreport_owner(const _mincgreport_owner &rhs);
        _mincgreport_owner& operator=(const _mincgreport_owner &rhs);
        virtual ~_mincgreport_owner();
        alglib_impl::mincgreport* c_ptr();
        alglib_impl::mincgreport* c_ptr() const;
    protected:
        alglib_impl::mincgreport *p_struct;
    };
    class mincgreport : public _mincgreport_owner
    {
    public:
        mincgreport();
        mincgreport(const mincgreport &rhs);
        mincgreport& operator=(const mincgreport &rhs);
        virtual ~mincgreport();
        ae_int_t &iterationscount;
        ae_int_t &nfev;
        ae_int_t &terminationtype;
    
    };
    
    /*************************************************************************
    This object stores nonlinear optimizer state.
    You should use functions provided by MinBLEIC subpackage to work with this
    object
    *************************************************************************/
    class _minbleicstate_owner
    {
    public:
        _minbleicstate_owner();
        _minbleicstate_owner(const _minbleicstate_owner &rhs);
        _minbleicstate_owner& operator=(const _minbleicstate_owner &rhs);
        virtual ~_minbleicstate_owner();
        alglib_impl::minbleicstate* c_ptr();
        alglib_impl::minbleicstate* c_ptr() const;
    protected:
        alglib_impl::minbleicstate *p_struct;
    };
    class minbleicstate : public _minbleicstate_owner
    {
    public:
        minbleicstate();
        minbleicstate(const minbleicstate &rhs);
        minbleicstate& operator=(const minbleicstate &rhs);
        virtual ~minbleicstate();
        ae_bool &needf;
        ae_bool &needfg;
        ae_bool &xupdated;
        double &f;
        real_1d_array g;
        real_1d_array x;
    
    };
    
    
    /*************************************************************************
    This structure stores optimization report:
    * InnerIterationsCount      number of inner iterations
    * OuterIterationsCount      number of outer iterations
    * NFEV                      number of gradient evaluations
    * TerminationType           termination type (see below)
    
    TERMINATION CODES
    
    TerminationType field contains completion code, which can be:
      -10   unsupported combination of algorithm settings:
            1) StpMax is set to non-zero value,
            AND 2) non-default preconditioner is used.
            You can't use both features at the same moment,
            so you have to choose one of them (and to turn
            off another one).
      -3    inconsistent constraints. Feasible point is
            either nonexistent or too hard to find. Try to
            restart optimizer with better initial
            approximation
       4    conditions on constraints are fulfilled
            with error less than or equal to EpsC
       5    MaxIts steps was taken
       7    stopping conditions are too stringent,
            further improvement is impossible,
            X contains best point found so far.
    
    ADDITIONAL FIELDS
    
    There are additional fields which can be used for debugging:
    * DebugEqErr                error in the equality constraints (2-norm)
    * DebugFS                   f, calculated at projection of initial point
                                to the feasible set
    * DebugFF                   f, calculated at the final point
    * DebugDX                   |X_start-X_final|
    *************************************************************************/
    class _minbleicreport_owner
    {
    public:
        _minbleicreport_owner();
        _minbleicreport_owner(const _minbleicreport_owner &rhs);
        _minbleicreport_owner& operator=(const _minbleicreport_owner &rhs);
        virtual ~_minbleicreport_owner();
        alglib_impl::minbleicreport* c_ptr();
        alglib_impl::minbleicreport* c_ptr() const;
    protected:
        alglib_impl::minbleicreport *p_struct;
    };
    class minbleicreport : public _minbleicreport_owner
    {
    public:
        minbleicreport();
        minbleicreport(const minbleicreport &rhs);
        minbleicreport& operator=(const minbleicreport &rhs);
        virtual ~minbleicreport();
        ae_int_t &inneriterationscount;
        ae_int_t &outeriterationscount;
        ae_int_t &nfev;
        ae_int_t &terminationtype;
        double &debugeqerr;
        double &debugfs;
        double &debugff;
        double &debugdx;
    
    };
    
    /*************************************************************************
    
    *************************************************************************/
    class _minlbfgsstate_owner
    {
    public:
        _minlbfgsstate_owner();
        _minlbfgsstate_owner(const _minlbfgsstate_owner &rhs);
        _minlbfgsstate_owner& operator=(const _minlbfgsstate_owner &rhs);
        virtual ~_minlbfgsstate_owner();
        alglib_impl::minlbfgsstate* c_ptr();
        alglib_impl::minlbfgsstate* c_ptr() const;
    protected:
        alglib_impl::minlbfgsstate *p_struct;
    };
    class minlbfgsstate : public _minlbfgsstate_owner
    {
    public:
        minlbfgsstate();
        minlbfgsstate(const minlbfgsstate &rhs);
        minlbfgsstate& operator=(const minlbfgsstate &rhs);
        virtual ~minlbfgsstate();
        ae_bool &needf;
        ae_bool &needfg;
        ae_bool &xupdated;
        double &f;
        real_1d_array g;
        real_1d_array x;
    
    };
    
    
    /*************************************************************************
    
    *************************************************************************/
    class _minlbfgsreport_owner
    {
    public:
        _minlbfgsreport_owner();
        _minlbfgsreport_owner(const _minlbfgsreport_owner &rhs);
        _minlbfgsreport_owner& operator=(const _minlbfgsreport_owner &rhs);
        virtual ~_minlbfgsreport_owner();
        alglib_impl::minlbfgsreport* c_ptr();
        alglib_impl::minlbfgsreport* c_ptr() const;
    protected:
        alglib_impl::minlbfgsreport *p_struct;
    };
    class minlbfgsreport : public _minlbfgsreport_owner
    {
    public:
        minlbfgsreport();
        minlbfgsreport(const minlbfgsreport &rhs);
        minlbfgsreport& operator=(const minlbfgsreport &rhs);
        virtual ~minlbfgsreport();
        ae_int_t &iterationscount;
        ae_int_t &nfev;
        ae_int_t &terminationtype;
    
    };
    
    /*************************************************************************
    This object stores nonlinear optimizer state.
    You should use functions provided by MinQP subpackage to work with this
    object
    *************************************************************************/
    class _minqpstate_owner
    {
    public:
        _minqpstate_owner();
        _minqpstate_owner(const _minqpstate_owner &rhs);
        _minqpstate_owner& operator=(const _minqpstate_owner &rhs);
        virtual ~_minqpstate_owner();
        alglib_impl::minqpstate* c_ptr();
        alglib_impl::minqpstate* c_ptr() const;
    protected:
        alglib_impl::minqpstate *p_struct;
    };
    class minqpstate : public _minqpstate_owner
    {
    public:
        minqpstate();
        minqpstate(const minqpstate &rhs);
        minqpstate& operator=(const minqpstate &rhs);
        virtual ~minqpstate();
    
    };
    
    
    /*************************************************************************
    This structure stores optimization report:
    * InnerIterationsCount      number of inner iterations
    * OuterIterationsCount      number of outer iterations
    * NCholesky                 number of Cholesky decomposition
    * NMV                       number of matrix-vector products
                                (only products calculated as part of iterative
                                process are counted)
    * TerminationType           completion code (see below)
    
    Completion codes:
    * -5    inappropriate solver was used:
            * Cholesky solver for semidefinite or indefinite problems
            * Cholesky solver for problems with non-boundary constraints
    * -3    inconsistent constraints (or, maybe, feasible point is
            too hard to find). If you are sure that constraints are feasible,
            try to restart optimizer with better initial approximation.
    *  4    successful completion
    *  5    MaxIts steps was taken
    *  7    stopping conditions are too stringent,
            further improvement is impossible,
            X contains best point found so far.
    *************************************************************************/
    class _minqpreport_owner
    {
    public:
        _minqpreport_owner();
        _minqpreport_owner(const _minqpreport_owner &rhs);
        _minqpreport_owner& operator=(const _minqpreport_owner &rhs);
        virtual ~_minqpreport_owner();
        alglib_impl::minqpreport* c_ptr();
        alglib_impl::minqpreport* c_ptr() const;
    protected:
        alglib_impl::minqpreport *p_struct;
    };
    class minqpreport : public _minqpreport_owner
    {
    public:
        minqpreport();
        minqpreport(const minqpreport &rhs);
        minqpreport& operator=(const minqpreport &rhs);
        virtual ~minqpreport();
        ae_int_t &inneriterationscount;
        ae_int_t &outeriterationscount;
        ae_int_t &nmv;
        ae_int_t &ncholesky;
        ae_int_t &terminationtype;
    
    };
    
    /*************************************************************************
    Levenberg-Marquardt optimizer.
    
    This structure should be created using one of the MinLMCreate???()
    functions. You should not access its fields directly; use ALGLIB functions
    to work with it.
    *************************************************************************/
    class _minlmstate_owner
    {
    public:
        _minlmstate_owner();
        _minlmstate_owner(const _minlmstate_owner &rhs);
        _minlmstate_owner& operator=(const _minlmstate_owner &rhs);
        virtual ~_minlmstate_owner();
        alglib_impl::minlmstate* c_ptr();
        alglib_impl::minlmstate* c_ptr() const;
    protected:
        alglib_impl::minlmstate *p_struct;
    };
    class minlmstate : public _minlmstate_owner
    {
    public:
        minlmstate();
        minlmstate(const minlmstate &rhs);
        minlmstate& operator=(const minlmstate &rhs);
        virtual ~minlmstate();
        ae_bool &needf;
        ae_bool &needfg;
        ae_bool &needfgh;
        ae_bool &needfi;
        ae_bool &needfij;
        ae_bool &xupdated;
        double &f;
        real_1d_array fi;
        real_1d_array g;
        real_2d_array h;
        real_2d_array j;
        real_1d_array x;
    
    };
    
    
    /*************************************************************************
    Optimization report, filled by MinLMResults() function
    
    FIELDS:
    * TerminationType, completetion code:
        * -9    derivative correctness check failed;
                see Rep.WrongNum, Rep.WrongI, Rep.WrongJ for
                more information.
        *  1    relative function improvement is no more than
                EpsF.
        *  2    relative step is no more than EpsX.
        *  4    gradient is no more than EpsG.
        *  5    MaxIts steps was taken
        *  7    stopping conditions are too stringent,
                further improvement is impossible
    * IterationsCount, contains iterations count
    * NFunc, number of function calculations
    * NJac, number of Jacobi matrix calculations
    * NGrad, number of gradient calculations
    * NHess, number of Hessian calculations
    * NCholesky, number of Cholesky decomposition calculations
    *************************************************************************/
    class _minlmreport_owner
    {
    public:
        _minlmreport_owner();
        _minlmreport_owner(const _minlmreport_owner &rhs);
        _minlmreport_owner& operator=(const _minlmreport_owner &rhs);
        virtual ~_minlmreport_owner();
        alglib_impl::minlmreport* c_ptr();
        alglib_impl::minlmreport* c_ptr() const;
    protected:
        alglib_impl::minlmreport *p_struct;
    };
    class minlmreport : public _minlmreport_owner
    {
    public:
        minlmreport();
        minlmreport(const minlmreport &rhs);
        minlmreport& operator=(const minlmreport &rhs);
        virtual ~minlmreport();
        ae_int_t &iterationscount;
        ae_int_t &terminationtype;
        ae_int_t &nfunc;
        ae_int_t &njac;
        ae_int_t &ngrad;
        ae_int_t &nhess;
        ae_int_t &ncholesky;
    
    };
    
    /*************************************************************************
    
    *************************************************************************/
    class _minasastate_owner
    {
    public:
        _minasastate_owner();
        _minasastate_owner(const _minasastate_owner &rhs);
        _minasastate_owner& operator=(const _minasastate_owner &rhs);
        virtual ~_minasastate_owner();
        alglib_impl::minasastate* c_ptr();
        alglib_impl::minasastate* c_ptr() const;
    protected:
        alglib_impl::minasastate *p_struct;
    };
    class minasastate : public _minasastate_owner
    {
    public:
        minasastate();
        minasastate(const minasastate &rhs);
        minasastate& operator=(const minasastate &rhs);
        virtual ~minasastate();
        ae_bool &needfg;
        ae_bool &xupdated;
        double &f;
        real_1d_array g;
        real_1d_array x;
    
    };
    
    
    /*************************************************************************
    
    *************************************************************************/
    class _minasareport_owner
    {
    public:
        _minasareport_owner();
        _minasareport_owner(const _minasareport_owner &rhs);
        _minasareport_owner& operator=(const _minasareport_owner &rhs);
        virtual ~_minasareport_owner();
        alglib_impl::minasareport* c_ptr();
        alglib_impl::minasareport* c_ptr() const;
    protected:
        alglib_impl::minasareport *p_struct;
    };
    class minasareport : public _minasareport_owner
    {
    public:
        minasareport();
        minasareport(const minasareport &rhs);
        minasareport& operator=(const minasareport &rhs);
        virtual ~minasareport();
        ae_int_t &iterationscount;
        ae_int_t &nfev;
        ae_int_t &terminationtype;
        ae_int_t &activeconstraints;
    
    };
    
    /*************************************************************************
            NONLINEAR CONJUGATE GRADIENT METHOD
    
    DESCRIPTION:
    The subroutine minimizes function F(x) of N arguments by using one of  the
    nonlinear conjugate gradient methods.
    
    These CG methods are globally convergent (even on non-convex functions) as
    long as grad(f) is Lipschitz continuous in  a  some  neighborhood  of  the
    L = { x : f(x)<=f(x0) }.
    
    
    REQUIREMENTS:
    Algorithm will request following information during its operation:
    * function value F and its gradient G (simultaneously) at given point X
    
    
    USAGE:
    1. User initializes algorithm state with MinCGCreate() call
    2. User tunes solver parameters with MinCGSetCond(), MinCGSetStpMax() and
       other functions
    3. User calls MinCGOptimize() function which takes algorithm  state   and
       pointer (delegate, etc.) to callback function which calculates F/G.
    4. User calls MinCGResults() to get solution
    5. Optionally, user may call MinCGRestartFrom() to solve another  problem
       with same N but another starting point and/or another function.
       MinCGRestartFrom() allows to reuse already initialized structure.
    
    
    INPUT PARAMETERS:
        N       -   problem dimension, N>0:
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size of X
        X       -   starting point, array[0..N-1].
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
      -- ALGLIB --
         Copyright 25.03.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgcreate(const ae_int_t n, const real_1d_array &x, mincgstate &state);
    void mincgcreate(const real_1d_array &x, mincgstate &state);
    
    
    /*************************************************************************
    The subroutine is finite difference variant of MinCGCreate(). It uses
    finite differences in order to differentiate target function.
    
    Description below contains information which is specific to this function
    only. We recommend to read comments on MinCGCreate() in order to get more
    information about creation of CG optimizer.
    
    INPUT PARAMETERS:
        N       -   problem dimension, N>0:
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size of X
        X       -   starting point, array[0..N-1].
        DiffStep-   differentiation step, >0
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTES:
    1. algorithm uses 4-point central formula for differentiation.
    2. differentiation step along I-th axis is equal to DiffStep*S[I] where
       S[] is scaling vector which can be set by MinCGSetScale() call.
    3. we recommend you to use moderate values of  differentiation  step.  Too
       large step will result in too large truncation  errors, while too small
       step will result in too large numerical  errors.  1.0E-6  can  be  good
       value to start with.
    4. Numerical  differentiation  is   very   inefficient  -   one   gradient
       calculation needs 4*N function evaluations. This function will work for
       any N - either small (1...10), moderate (10...100) or  large  (100...).
       However, performance penalty will be too severe for any N's except  for
       small ones.
       We should also say that code which relies on numerical  differentiation
       is  less  robust  and  precise.  L-BFGS  needs  exact  gradient values.
       Imprecise  gradient may slow down  convergence,  especially  on  highly
       nonlinear problems.
       Thus  we  recommend to use this function for fast prototyping on small-
       dimensional problems only, and to implement analytical gradient as soon
       as possible.
    
      -- ALGLIB --
         Copyright 16.05.2011 by Bochkanov Sergey
    *************************************************************************/
    void mincgcreatef(const ae_int_t n, const real_1d_array &x, const double diffstep, mincgstate &state);
    void mincgcreatef(const real_1d_array &x, const double diffstep, mincgstate &state);
    
    
    /*************************************************************************
    This function sets stopping conditions for CG optimization algorithm.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        EpsG    -   >=0
                    The  subroutine  finishes  its  work   if   the  condition
                    |v|<EpsG is satisfied, where:
                    * |.| means Euclidian norm
                    * v - scaled gradient vector, v[i]=g[i]*s[i]
                    * g - gradient
                    * s - scaling coefficients set by MinCGSetScale()
        EpsF    -   >=0
                    The  subroutine  finishes  its work if on k+1-th iteration
                    the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                    is satisfied.
        EpsX    -   >=0
                    The subroutine finishes its work if  on  k+1-th  iteration
                    the condition |v|<=EpsX is fulfilled, where:
                    * |.| means Euclidian norm
                    * v - scaled step vector, v[i]=dx[i]/s[i]
                    * dx - ste pvector, dx=X(k+1)-X(k)
                    * s - scaling coefficients set by MinCGSetScale()
        MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                    iterations is unlimited.
    
    Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
    automatic stopping criterion selection (small EpsX).
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetcond(const mincgstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);
    
    
    /*************************************************************************
    This function sets scaling coefficients for CG optimizer.
    
    ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
    size and gradient are scaled before comparison with tolerances).  Scale of
    the I-th variable is a translation invariant measure of:
    a) "how large" the variable is
    b) how large the step should be to make significant changes in the function
    
    Scaling is also used by finite difference variant of CG optimizer  -  step
    along I-th axis is equal to DiffStep*S[I].
    
    In   most   optimizers  (and  in  the  CG  too)  scaling is NOT a form  of
    preconditioning. It just  affects  stopping  conditions.  You  should  set
    preconditioner by separate call to one of the MinCGSetPrec...() functions.
    
    There  is  special  preconditioning  mode, however,  which  uses   scaling
    coefficients to form diagonal preconditioning matrix. You  can  turn  this
    mode on, if you want.   But  you should understand that scaling is not the
    same thing as preconditioning - these are two different, although  related
    forms of tuning solver.
    
    INPUT PARAMETERS:
        State   -   structure stores algorithm state
        S       -   array[N], non-zero scaling coefficients
                    S[i] may be negative, sign doesn't matter.
    
      -- ALGLIB --
         Copyright 14.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetscale(const mincgstate &state, const real_1d_array &s);
    
    
    /*************************************************************************
    This function turns on/off reporting.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        NeedXRep-   whether iteration reports are needed or not
    
    If NeedXRep is True, algorithm will call rep() callback function if  it is
    provided to MinCGOptimize().
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetxrep(const mincgstate &state, const bool needxrep);
    
    
    /*************************************************************************
    This function sets CG algorithm.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        CGType  -   algorithm type:
                    * -1    automatic selection of the best algorithm
                    * 0     DY (Dai and Yuan) algorithm
                    * 1     Hybrid DY-HS algorithm
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetcgtype(const mincgstate &state, const ae_int_t cgtype);
    
    
    /*************************************************************************
    This function sets maximum step length
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                    want to limit step length.
    
    Use this subroutine when you optimize target function which contains exp()
    or  other  fast  growing  functions,  and optimization algorithm makes too
    large  steps  which  leads  to overflow. This function allows us to reject
    steps  that  are  too  large  (and  therefore  expose  us  to the possible
    overflow) without actually calculating function value at the x+stp*d.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetstpmax(const mincgstate &state, const double stpmax);
    
    
    /*************************************************************************
    This function allows to suggest initial step length to the CG algorithm.
    
    Suggested  step  length  is used as starting point for the line search. It
    can be useful when you have  badly  scaled  problem,  i.e.  when  ||grad||
    (which is used as initial estimate for the first step) is many  orders  of
    magnitude different from the desired step.
    
    Line search  may  fail  on  such problems without good estimate of initial
    step length. Imagine, for example, problem with ||grad||=10^50 and desired
    step equal to 0.1 Line  search function will use 10^50  as  initial  step,
    then  it  will  decrease step length by 2 (up to 20 attempts) and will get
    10^44, which is still too large.
    
    This function allows us to tell than line search should  be  started  from
    some moderate step length, like 1.0, so algorithm will be able  to  detect
    desired step length in a several searches.
    
    Default behavior (when no step is suggested) is to use preconditioner,  if
    it is available, to generate initial estimate of step length.
    
    This function influences only first iteration of algorithm. It  should  be
    called between MinCGCreate/MinCGRestartFrom() call and MinCGOptimize call.
    Suggested step is ignored if you have preconditioner.
    
    INPUT PARAMETERS:
        State   -   structure used to store algorithm state.
        Stp     -   initial estimate of the step length.
                    Can be zero (no estimate).
    
      -- ALGLIB --
         Copyright 30.07.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsuggeststep(const mincgstate &state, const double stp);
    
    
    /*************************************************************************
    Modification of the preconditioner: preconditioning is turned off.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
    iterations.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetprecdefault(const mincgstate &state);
    
    
    /*************************************************************************
    Modification  of  the  preconditioner:  diagonal of approximate Hessian is
    used.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        D       -   diagonal of the approximate Hessian, array[0..N-1],
                    (if larger, only leading N elements are used).
    
    NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
    iterations.
    
    NOTE 2: D[i] should be positive. Exception will be thrown otherwise.
    
    NOTE 3: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetprecdiag(const mincgstate &state, const real_1d_array &d);
    
    
    /*************************************************************************
    Modification of the preconditioner: scale-based diagonal preconditioning.
    
    This preconditioning mode can be useful when you  don't  have  approximate
    diagonal of Hessian, but you know that your  variables  are  badly  scaled
    (for  example,  one  variable is in [1,10], and another in [1000,100000]),
    and most part of the ill-conditioning comes from different scales of vars.
    
    In this case simple  scale-based  preconditioner,  with H[i] = 1/(s[i]^2),
    can greatly improve convergence.
    
    IMPRTANT: you should set scale of your variables with MinCGSetScale() call
    (before or after MinCGSetPrecScale() call). Without knowledge of the scale
    of your variables scale-based preconditioner will be just unit matrix.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
    iterations.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgsetprecscale(const mincgstate &state);
    
    
    /*************************************************************************
    This function provides reverse communication interface
    Reverse communication interface is not documented or recommended to use.
    See below for functions which provide better documented API
    *************************************************************************/
    bool mincgiteration(const mincgstate &state);
    
    
    /*************************************************************************
    This family of functions is used to launcn iterations of nonlinear optimizer
    
    These functions accept following parameters:
        state   -   algorithm state
        func    -   callback which calculates function (or merit function)
                    value func at given point x
        grad    -   callback which calculates function (or merit function)
                    value func and gradient grad at given point x
        rep     -   optional callback which is called after each iteration
                    can be NULL
        ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                    can be NULL
    
    NOTES:
    
    1. This function has two different implementations: one which  uses  exact
       (analytical) user-supplied  gradient, and one which uses function value
       only  and  numerically  differentiates  function  in  order  to  obtain
       gradient.
    
       Depending  on  the  specific  function  used to create optimizer object
       (either MinCGCreate()  for analytical gradient  or  MinCGCreateF()  for
       numerical differentiation) you should  choose  appropriate  variant  of
       MinCGOptimize() - one which accepts function AND gradient or one  which
       accepts function ONLY.
    
       Be careful to choose variant of MinCGOptimize()  which  corresponds  to
       your optimization scheme! Table below lists different  combinations  of
       callback (function/gradient) passed  to  MinCGOptimize()  and  specific
       function used to create optimizer.
    
    
                      |         USER PASSED TO MinCGOptimize()
       CREATED WITH   |  function only   |  function and gradient
       ------------------------------------------------------------
       MinCGCreateF() |     work                FAIL
       MinCGCreate()  |     FAIL                work
    
       Here "FAIL" denotes inappropriate combinations  of  optimizer  creation
       function and MinCGOptimize() version. Attemps to use  such  combination
       (for  example,  to create optimizer with  MinCGCreateF()  and  to  pass
       gradient information to MinCGOptimize()) will lead to  exception  being
       thrown. Either  you  did  not  pass  gradient when it WAS needed or you
       passed gradient when it was NOT needed.
    
      -- ALGLIB --
         Copyright 20.04.2009 by Bochkanov Sergey
    
    *************************************************************************/
    void mincgoptimize(mincgstate &state,
        void (*func)(const real_1d_array &x, double &func, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    void mincgoptimize(mincgstate &state,
        void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    
    
    /*************************************************************************
    Conjugate gradient results
    
    INPUT PARAMETERS:
        State   -   algorithm state
    
    OUTPUT PARAMETERS:
        X       -   array[0..N-1], solution
        Rep     -   optimization report:
                    * Rep.TerminationType completetion code:
                        *  1    relative function improvement is no more than
                                EpsF.
                        *  2    relative step is no more than EpsX.
                        *  4    gradient norm is no more than EpsG
                        *  5    MaxIts steps was taken
                        *  7    stopping conditions are too stringent,
                                further improvement is impossible,
                                we return best X found so far
                        *  8    terminated by user
                    * Rep.IterationsCount contains iterations count
                    * NFEV countains number of function calculations
    
      -- ALGLIB --
         Copyright 20.04.2009 by Bochkanov Sergey
    *************************************************************************/
    void mincgresults(const mincgstate &state, real_1d_array &x, mincgreport &rep);
    
    
    /*************************************************************************
    Conjugate gradient results
    
    Buffered implementation of MinCGResults(), which uses pre-allocated buffer
    to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
    intended to be used in the inner cycles of performance critical algorithms
    where array reallocation penalty is too large to be ignored.
    
      -- ALGLIB --
         Copyright 20.04.2009 by Bochkanov Sergey
    *************************************************************************/
    void mincgresultsbuf(const mincgstate &state, real_1d_array &x, mincgreport &rep);
    
    
    /*************************************************************************
    This  subroutine  restarts  CG  algorithm from new point. All optimization
    parameters are left unchanged.
    
    This  function  allows  to  solve multiple  optimization  problems  (which
    must have same number of dimensions) without object reallocation penalty.
    
    INPUT PARAMETERS:
        State   -   structure used to store algorithm state.
        X       -   new starting point.
    
      -- ALGLIB --
         Copyright 30.07.2010 by Bochkanov Sergey
    *************************************************************************/
    void mincgrestartfrom(const mincgstate &state, const real_1d_array &x);
    
    /*************************************************************************
                         BOUND CONSTRAINED OPTIMIZATION
           WITH ADDITIONAL LINEAR EQUALITY AND INEQUALITY CONSTRAINTS
    
    DESCRIPTION:
    The  subroutine  minimizes  function   F(x)  of N arguments subject to any
    combination of:
    * bound constraints
    * linear inequality constraints
    * linear equality constraints
    
    REQUIREMENTS:
    * user must provide function value and gradient
    * starting point X0 must be feasible or
      not too far away from the feasible set
    * grad(f) must be Lipschitz continuous on a level set:
      L = { x : f(x)<=f(x0) }
    * function must be defined everywhere on the feasible set F
    
    USAGE:
    
    Constrained optimization if far more complex than the unconstrained one.
    Here we give very brief outline of the BLEIC optimizer. We strongly recommend
    you to read examples in the ALGLIB Reference Manual and to read ALGLIB User Guide
    on optimization, which is available at http://www.alglib.net/optimization/
    
    1. User initializes algorithm state with MinBLEICCreate() call
    
    2. USer adds boundary and/or linear constraints by calling
       MinBLEICSetBC() and MinBLEICSetLC() functions.
    
    3. User sets stopping conditions for underlying unconstrained solver
       with MinBLEICSetInnerCond() call.
       This function controls accuracy of underlying optimization algorithm.
    
    4. User sets stopping conditions for outer iteration by calling
       MinBLEICSetOuterCond() function.
       This function controls handling of boundary and inequality constraints.
    
    5. Additionally, user may set limit on number of internal iterations
       by MinBLEICSetMaxIts() call.
       This function allows to prevent algorithm from looping forever.
    
    6. User calls MinBLEICOptimize() function which takes algorithm  state and
       pointer (delegate, etc.) to callback function which calculates F/G.
    
    7. User calls MinBLEICResults() to get solution
    
    8. Optionally user may call MinBLEICRestartFrom() to solve another problem
       with same N but another starting point.
       MinBLEICRestartFrom() allows to reuse already initialized structure.
    
    
    INPUT PARAMETERS:
        N       -   problem dimension, N>0:
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size ofX
        X       -   starting point, array[N]:
                    * it is better to set X to a feasible point
                    * but X can be infeasible, in which case algorithm will try
                      to find feasible point first, using X as initial
                      approximation.
    
    OUTPUT PARAMETERS:
        State   -   structure stores algorithm state
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleiccreate(const ae_int_t n, const real_1d_array &x, minbleicstate &state);
    void minbleiccreate(const real_1d_array &x, minbleicstate &state);
    
    
    /*************************************************************************
    The subroutine is finite difference variant of MinBLEICCreate().  It  uses
    finite differences in order to differentiate target function.
    
    Description below contains information which is specific to  this function
    only. We recommend to read comments on MinBLEICCreate() in  order  to  get
    more information about creation of BLEIC optimizer.
    
    INPUT PARAMETERS:
        N       -   problem dimension, N>0:
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size of X
        X       -   starting point, array[0..N-1].
        DiffStep-   differentiation step, >0
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTES:
    1. algorithm uses 4-point central formula for differentiation.
    2. differentiation step along I-th axis is equal to DiffStep*S[I] where
       S[] is scaling vector which can be set by MinBLEICSetScale() call.
    3. we recommend you to use moderate values of  differentiation  step.  Too
       large step will result in too large truncation  errors, while too small
       step will result in too large numerical  errors.  1.0E-6  can  be  good
       value to start with.
    4. Numerical  differentiation  is   very   inefficient  -   one   gradient
       calculation needs 4*N function evaluations. This function will work for
       any N - either small (1...10), moderate (10...100) or  large  (100...).
       However, performance penalty will be too severe for any N's except  for
       small ones.
       We should also say that code which relies on numerical  differentiation
       is  less  robust and precise. CG needs exact gradient values. Imprecise
       gradient may slow  down  convergence, especially  on  highly  nonlinear
       problems.
       Thus  we  recommend to use this function for fast prototyping on small-
       dimensional problems only, and to implement analytical gradient as soon
       as possible.
    
      -- ALGLIB --
         Copyright 16.05.2011 by Bochkanov Sergey
    *************************************************************************/
    void minbleiccreatef(const ae_int_t n, const real_1d_array &x, const double diffstep, minbleicstate &state);
    void minbleiccreatef(const real_1d_array &x, const double diffstep, minbleicstate &state);
    
    
    /*************************************************************************
    This function sets boundary constraints for BLEIC optimizer.
    
    Boundary constraints are inactive by default (after initial creation).
    They are preserved after algorithm restart with MinBLEICRestartFrom().
    
    INPUT PARAMETERS:
        State   -   structure stores algorithm state
        BndL    -   lower bounds, array[N].
                    If some (all) variables are unbounded, you may specify
                    very small number or -INF.
        BndU    -   upper bounds, array[N].
                    If some (all) variables are unbounded, you may specify
                    very large number or +INF.
    
    NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
    variable will be "frozen" at X[i]=BndL[i]=BndU[i].
    
    NOTE 2: this solver has following useful properties:
    * bound constraints are always satisfied exactly
    * function is evaluated only INSIDE area specified by  bound  constraints,
      even  when  numerical  differentiation is used (algorithm adjusts  nodes
      according to boundary constraints)
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetbc(const minbleicstate &state, const real_1d_array &bndl, const real_1d_array &bndu);
    
    
    /*************************************************************************
    This function sets linear constraints for BLEIC optimizer.
    
    Linear constraints are inactive by default (after initial creation).
    They are preserved after algorithm restart with MinBLEICRestartFrom().
    
    INPUT PARAMETERS:
        State   -   structure previously allocated with MinBLEICCreate call.
        C       -   linear constraints, array[K,N+1].
                    Each row of C represents one constraint, either equality
                    or inequality (see below):
                    * first N elements correspond to coefficients,
                    * last element corresponds to the right part.
                    All elements of C (including right part) must be finite.
        CT      -   type of constraints, array[K]:
                    * if CT[i]>0, then I-th constraint is C[i,*]*x >= C[i,n+1]
                    * if CT[i]=0, then I-th constraint is C[i,*]*x  = C[i,n+1]
                    * if CT[i]<0, then I-th constraint is C[i,*]*x <= C[i,n+1]
        K       -   number of equality/inequality constraints, K>=0:
                    * if given, only leading K elements of C/CT are used
                    * if not given, automatically determined from sizes of C/CT
    
    NOTE 1: linear (non-bound) constraints are satisfied only approximately:
    * there always exists some minor violation (about Epsilon in magnitude)
      due to rounding errors
    * numerical differentiation, if used, may  lead  to  function  evaluations
      outside  of the feasible  area,   because   algorithm  does  NOT  change
      numerical differentiation formula according to linear constraints.
    If you want constraints to be  satisfied  exactly, try to reformulate your
    problem  in  such  manner  that  all constraints will become boundary ones
    (this kind of constraints is always satisfied exactly, both in  the  final
    solution and in all intermediate points).
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetlc(const minbleicstate &state, const real_2d_array &c, const integer_1d_array &ct, const ae_int_t k);
    void minbleicsetlc(const minbleicstate &state, const real_2d_array &c, const integer_1d_array &ct);
    
    
    /*************************************************************************
    This function sets stopping conditions for the underlying nonlinear CG
    optimizer. It controls overall accuracy of solution. These conditions
    should be strict enough in order for algorithm to converge.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        EpsG    -   >=0
                    The  subroutine  finishes  its  work   if   the  condition
                    |v|<EpsG is satisfied, where:
                    * |.| means Euclidian norm
                    * v - scaled gradient vector, v[i]=g[i]*s[i]
                    * g - gradient
                    * s - scaling coefficients set by MinBLEICSetScale()
        EpsF    -   >=0
                    The  subroutine  finishes  its work if on k+1-th iteration
                    the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                    is satisfied.
        EpsX    -   >=0
                    The subroutine finishes its work if  on  k+1-th  iteration
                    the condition |v|<=EpsX is fulfilled, where:
                    * |.| means Euclidian norm
                    * v - scaled step vector, v[i]=dx[i]/s[i]
                    * dx - ste pvector, dx=X(k+1)-X(k)
                    * s - scaling coefficients set by MinBLEICSetScale()
    
    Passing EpsG=0, EpsF=0 and EpsX=0 (simultaneously) will lead to
    automatic stopping criterion selection.
    
    These conditions are used to terminate inner iterations. However, you
    need to tune termination conditions for outer iterations too.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetinnercond(const minbleicstate &state, const double epsg, const double epsf, const double epsx);
    
    
    /*************************************************************************
    This function sets stopping conditions for outer iteration of BLEIC algo.
    
    These conditions control accuracy of constraint handling and amount of
    infeasibility allowed in the solution.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        EpsX    -   >0, stopping condition on outer iteration step length
        EpsI    -   >0, stopping condition on infeasibility
    
    Both EpsX and EpsI must be non-zero.
    
    MEANING OF EpsX
    
    EpsX  is  a  stopping  condition for outer iterations. Algorithm will stop
    when  solution  of  the  current  modified  subproblem will be within EpsX
    (using 2-norm) of the previous solution.
    
    MEANING OF EpsI
    
    EpsI controls feasibility properties -  algorithm  won't  stop  until  all
    inequality constraints will be satisfied with error (distance from current
    point to the feasible area) at most EpsI.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetoutercond(const minbleicstate &state, const double epsx, const double epsi);
    
    
    /*************************************************************************
    This function sets scaling coefficients for BLEIC optimizer.
    
    ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
    size and gradient are scaled before comparison with tolerances).  Scale of
    the I-th variable is a translation invariant measure of:
    a) "how large" the variable is
    b) how large the step should be to make significant changes in the function
    
    Scaling is also used by finite difference variant of the optimizer  - step
    along I-th axis is equal to DiffStep*S[I].
    
    In  most  optimizers  (and  in  the  BLEIC  too)  scaling is NOT a form of
    preconditioning. It just  affects  stopping  conditions.  You  should  set
    preconditioner  by  separate  call  to  one  of  the  MinBLEICSetPrec...()
    functions.
    
    There is a special  preconditioning  mode, however,  which  uses   scaling
    coefficients to form diagonal preconditioning matrix. You  can  turn  this
    mode on, if you want.   But  you should understand that scaling is not the
    same thing as preconditioning - these are two different, although  related
    forms of tuning solver.
    
    INPUT PARAMETERS:
        State   -   structure stores algorithm state
        S       -   array[N], non-zero scaling coefficients
                    S[i] may be negative, sign doesn't matter.
    
      -- ALGLIB --
         Copyright 14.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetscale(const minbleicstate &state, const real_1d_array &s);
    
    
    /*************************************************************************
    Modification of the preconditioner: preconditioning is turned off.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetprecdefault(const minbleicstate &state);
    
    
    /*************************************************************************
    Modification  of  the  preconditioner:  diagonal of approximate Hessian is
    used.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        D       -   diagonal of the approximate Hessian, array[0..N-1],
                    (if larger, only leading N elements are used).
    
    NOTE 1: D[i] should be positive. Exception will be thrown otherwise.
    
    NOTE 2: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetprecdiag(const minbleicstate &state, const real_1d_array &d);
    
    
    /*************************************************************************
    Modification of the preconditioner: scale-based diagonal preconditioning.
    
    This preconditioning mode can be useful when you  don't  have  approximate
    diagonal of Hessian, but you know that your  variables  are  badly  scaled
    (for  example,  one  variable is in [1,10], and another in [1000,100000]),
    and most part of the ill-conditioning comes from different scales of vars.
    
    In this case simple  scale-based  preconditioner,  with H[i] = 1/(s[i]^2),
    can greatly improve convergence.
    
    IMPRTANT: you should set scale of your variables  with  MinBLEICSetScale()
    call  (before  or after MinBLEICSetPrecScale() call). Without knowledge of
    the scale of your variables scale-based preconditioner will be  just  unit
    matrix.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetprecscale(const minbleicstate &state);
    
    
    /*************************************************************************
    This function allows to stop algorithm after specified number of inner
    iterations.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        MaxIts  -   maximum number of inner iterations.
                    If MaxIts=0, the number of iterations is unlimited.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetmaxits(const minbleicstate &state, const ae_int_t maxits);
    
    
    /*************************************************************************
    This function turns on/off reporting.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        NeedXRep-   whether iteration reports are needed or not
    
    If NeedXRep is True, algorithm will call rep() callback function if  it is
    provided to MinBLEICOptimize().
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetxrep(const minbleicstate &state, const bool needxrep);
    
    
    /*************************************************************************
    This function sets maximum step length
    
    IMPORTANT: this feature is hard to combine with preconditioning. You can't
    set upper limit on step length, when you solve optimization  problem  with
    linear (non-boundary) constraints AND preconditioner turned on.
    
    When  non-boundary  constraints  are  present,  you  have to either a) use
    preconditioner, or b) use upper limit on step length.  YOU CAN'T USE BOTH!
    In this case algorithm will terminate with appropriate error code.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                    want to limit step length.
    
    Use this subroutine when you optimize target function which contains exp()
    or  other  fast  growing  functions,  and optimization algorithm makes too
    large  steps  which  lead   to overflow. This function allows us to reject
    steps  that  are  too  large  (and  therefore  expose  us  to the possible
    overflow) without actually calculating function value at the x+stp*d.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetstpmax(const minbleicstate &state, const double stpmax);
    
    
    /*************************************************************************
    This function provides reverse communication interface
    Reverse communication interface is not documented or recommended to use.
    See below for functions which provide better documented API
    *************************************************************************/
    bool minbleiciteration(const minbleicstate &state);
    
    
    /*************************************************************************
    This family of functions is used to launcn iterations of nonlinear optimizer
    
    These functions accept following parameters:
        state   -   algorithm state
        func    -   callback which calculates function (or merit function)
                    value func at given point x
        grad    -   callback which calculates function (or merit function)
                    value func and gradient grad at given point x
        rep     -   optional callback which is called after each iteration
                    can be NULL
        ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                    can be NULL
    
    NOTES:
    
    1. This function has two different implementations: one which  uses  exact
       (analytical) user-supplied gradient,  and one which uses function value
       only  and  numerically  differentiates  function  in  order  to  obtain
       gradient.
    
       Depending  on  the  specific  function  used to create optimizer object
       (either  MinBLEICCreate() for analytical gradient or  MinBLEICCreateF()
       for numerical differentiation) you should choose appropriate variant of
       MinBLEICOptimize() - one  which  accepts  function  AND gradient or one
       which accepts function ONLY.
    
       Be careful to choose variant of MinBLEICOptimize() which corresponds to
       your optimization scheme! Table below lists different  combinations  of
       callback (function/gradient) passed to MinBLEICOptimize()  and specific
       function used to create optimizer.
    
    
                         |         USER PASSED TO MinBLEICOptimize()
       CREATED WITH      |  function only   |  function and gradient
       ------------------------------------------------------------
       MinBLEICCreateF() |     work                FAIL
       MinBLEICCreate()  |     FAIL                work
    
       Here "FAIL" denotes inappropriate combinations  of  optimizer  creation
       function  and  MinBLEICOptimize()  version.   Attemps   to   use   such
       combination (for  example,  to  create optimizer with MinBLEICCreateF()
       and  to  pass  gradient  information  to  MinCGOptimize()) will lead to
       exception being thrown. Either  you  did  not pass gradient when it WAS
       needed or you passed gradient when it was NOT needed.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    
    *************************************************************************/
    void minbleicoptimize(minbleicstate &state,
        void (*func)(const real_1d_array &x, double &func, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    void minbleicoptimize(minbleicstate &state,
        void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    
    
    /*************************************************************************
    BLEIC results
    
    INPUT PARAMETERS:
        State   -   algorithm state
    
    OUTPUT PARAMETERS:
        X       -   array[0..N-1], solution
        Rep     -   optimization report. You should check Rep.TerminationType
                    in  order  to  distinguish  successful  termination  from
                    unsuccessful one.
                    More information about fields of this  structure  can  be
                    found in the comments on MinBLEICReport datatype.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicresults(const minbleicstate &state, real_1d_array &x, minbleicreport &rep);
    
    
    /*************************************************************************
    BLEIC results
    
    Buffered implementation of MinBLEICResults() which uses pre-allocated buffer
    to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
    intended to be used in the inner cycles of performance critical algorithms
    where array reallocation penalty is too large to be ignored.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicresultsbuf(const minbleicstate &state, real_1d_array &x, minbleicreport &rep);
    
    
    /*************************************************************************
    This subroutine restarts algorithm from new point.
    All optimization parameters (including constraints) are left unchanged.
    
    This  function  allows  to  solve multiple  optimization  problems  (which
    must have  same number of dimensions) without object reallocation penalty.
    
    INPUT PARAMETERS:
        State   -   structure previously allocated with MinBLEICCreate call.
        X       -   new starting point.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicrestartfrom(const minbleicstate &state, const real_1d_array &x);
    
    /*************************************************************************
            LIMITED MEMORY BFGS METHOD FOR LARGE SCALE OPTIMIZATION
    
    DESCRIPTION:
    The subroutine minimizes function F(x) of N arguments by  using  a  quasi-
    Newton method (LBFGS scheme) which is optimized to use  a  minimum  amount
    of memory.
    The subroutine generates the approximation of an inverse Hessian matrix by
    using information about the last M steps of the algorithm  (instead of N).
    It lessens a required amount of memory from a value  of  order  N^2  to  a
    value of order 2*N*M.
    
    
    REQUIREMENTS:
    Algorithm will request following information during its operation:
    * function value F and its gradient G (simultaneously) at given point X
    
    
    USAGE:
    1. User initializes algorithm state with MinLBFGSCreate() call
    2. User tunes solver parameters with MinLBFGSSetCond() MinLBFGSSetStpMax()
       and other functions
    3. User calls MinLBFGSOptimize() function which takes algorithm  state and
       pointer (delegate, etc.) to callback function which calculates F/G.
    4. User calls MinLBFGSResults() to get solution
    5. Optionally user may call MinLBFGSRestartFrom() to solve another problem
       with same N/M but another starting point and/or another function.
       MinLBFGSRestartFrom() allows to reuse already initialized structure.
    
    
    INPUT PARAMETERS:
        N       -   problem dimension. N>0
        M       -   number of corrections in the BFGS scheme of Hessian
                    approximation update. Recommended value:  3<=M<=7. The smaller
                    value causes worse convergence, the bigger will  not  cause  a
                    considerably better convergence, but will cause a fall in  the
                    performance. M<=N.
        X       -   initial solution approximation, array[0..N-1].
    
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    
    NOTES:
    1. you may tune stopping conditions with MinLBFGSSetCond() function
    2. if target function contains exp() or other fast growing functions,  and
       optimization algorithm makes too large steps which leads  to  overflow,
       use MinLBFGSSetStpMax() function to bound algorithm's  steps.  However,
       L-BFGS rarely needs such a tuning.
    
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgscreate(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlbfgsstate &state);
    void minlbfgscreate(const ae_int_t m, const real_1d_array &x, minlbfgsstate &state);
    
    
    /*************************************************************************
    The subroutine is finite difference variant of MinLBFGSCreate().  It  uses
    finite differences in order to differentiate target function.
    
    Description below contains information which is specific to  this function
    only. We recommend to read comments on MinLBFGSCreate() in  order  to  get
    more information about creation of LBFGS optimizer.
    
    INPUT PARAMETERS:
        N       -   problem dimension, N>0:
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size of X
        M       -   number of corrections in the BFGS scheme of Hessian
                    approximation update. Recommended value:  3<=M<=7. The smaller
                    value causes worse convergence, the bigger will  not  cause  a
                    considerably better convergence, but will cause a fall in  the
                    performance. M<=N.
        X       -   starting point, array[0..N-1].
        DiffStep-   differentiation step, >0
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTES:
    1. algorithm uses 4-point central formula for differentiation.
    2. differentiation step along I-th axis is equal to DiffStep*S[I] where
       S[] is scaling vector which can be set by MinLBFGSSetScale() call.
    3. we recommend you to use moderate values of  differentiation  step.  Too
       large step will result in too large truncation  errors, while too small
       step will result in too large numerical  errors.  1.0E-6  can  be  good
       value to start with.
    4. Numerical  differentiation  is   very   inefficient  -   one   gradient
       calculation needs 4*N function evaluations. This function will work for
       any N - either small (1...10), moderate (10...100) or  large  (100...).
       However, performance penalty will be too severe for any N's except  for
       small ones.
       We should also say that code which relies on numerical  differentiation
       is   less  robust  and  precise.  LBFGS  needs  exact  gradient values.
       Imprecise gradient may slow  down  convergence,  especially  on  highly
       nonlinear problems.
       Thus  we  recommend to use this function for fast prototyping on small-
       dimensional problems only, and to implement analytical gradient as soon
       as possible.
    
      -- ALGLIB --
         Copyright 16.05.2011 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgscreatef(const ae_int_t n, const ae_int_t m, const real_1d_array &x, const double diffstep, minlbfgsstate &state);
    void minlbfgscreatef(const ae_int_t m, const real_1d_array &x, const double diffstep, minlbfgsstate &state);
    
    
    /*************************************************************************
    This function sets stopping conditions for L-BFGS optimization algorithm.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        EpsG    -   >=0
                    The  subroutine  finishes  its  work   if   the  condition
                    |v|<EpsG is satisfied, where:
                    * |.| means Euclidian norm
                    * v - scaled gradient vector, v[i]=g[i]*s[i]
                    * g - gradient
                    * s - scaling coefficients set by MinLBFGSSetScale()
        EpsF    -   >=0
                    The  subroutine  finishes  its work if on k+1-th iteration
                    the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                    is satisfied.
        EpsX    -   >=0
                    The subroutine finishes its work if  on  k+1-th  iteration
                    the condition |v|<=EpsX is fulfilled, where:
                    * |.| means Euclidian norm
                    * v - scaled step vector, v[i]=dx[i]/s[i]
                    * dx - ste pvector, dx=X(k+1)-X(k)
                    * s - scaling coefficients set by MinLBFGSSetScale()
        MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                    iterations is unlimited.
    
    Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
    automatic stopping criterion selection (small EpsX).
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetcond(const minlbfgsstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);
    
    
    /*************************************************************************
    This function turns on/off reporting.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        NeedXRep-   whether iteration reports are needed or not
    
    If NeedXRep is True, algorithm will call rep() callback function if  it is
    provided to MinLBFGSOptimize().
    
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetxrep(const minlbfgsstate &state, const bool needxrep);
    
    
    /*************************************************************************
    This function sets maximum step length
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        StpMax  -   maximum step length, >=0. Set StpMax to 0.0 (default),  if
                    you don't want to limit step length.
    
    Use this subroutine when you optimize target function which contains exp()
    or  other  fast  growing  functions,  and optimization algorithm makes too
    large  steps  which  leads  to overflow. This function allows us to reject
    steps  that  are  too  large  (and  therefore  expose  us  to the possible
    overflow) without actually calculating function value at the x+stp*d.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetstpmax(const minlbfgsstate &state, const double stpmax);
    
    
    /*************************************************************************
    This function sets scaling coefficients for LBFGS optimizer.
    
    ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
    size and gradient are scaled before comparison with tolerances).  Scale of
    the I-th variable is a translation invariant measure of:
    a) "how large" the variable is
    b) how large the step should be to make significant changes in the function
    
    Scaling is also used by finite difference variant of the optimizer  - step
    along I-th axis is equal to DiffStep*S[I].
    
    In  most  optimizers  (and  in  the  LBFGS  too)  scaling is NOT a form of
    preconditioning. It just  affects  stopping  conditions.  You  should  set
    preconditioner  by  separate  call  to  one  of  the  MinLBFGSSetPrec...()
    functions.
    
    There  is  special  preconditioning  mode, however,  which  uses   scaling
    coefficients to form diagonal preconditioning matrix. You  can  turn  this
    mode on, if you want.   But  you should understand that scaling is not the
    same thing as preconditioning - these are two different, although  related
    forms of tuning solver.
    
    INPUT PARAMETERS:
        State   -   structure stores algorithm state
        S       -   array[N], non-zero scaling coefficients
                    S[i] may be negative, sign doesn't matter.
    
      -- ALGLIB --
         Copyright 14.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetscale(const minlbfgsstate &state, const real_1d_array &s);
    
    
    /*************************************************************************
    Modification  of  the  preconditioner:  default  preconditioner    (simple
    scaling, same for all elements of X) is used.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
    iterations.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetprecdefault(const minlbfgsstate &state);
    
    
    /*************************************************************************
    Modification of the preconditioner: Cholesky factorization of  approximate
    Hessian is used.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        P       -   triangular preconditioner, Cholesky factorization of
                    the approximate Hessian. array[0..N-1,0..N-1],
                    (if larger, only leading N elements are used).
        IsUpper -   whether upper or lower triangle of P is given
                    (other triangle is not referenced)
    
    After call to this function preconditioner is changed to P  (P  is  copied
    into the internal buffer).
    
    NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
    iterations.
    
    NOTE 2:  P  should  be nonsingular. Exception will be thrown otherwise.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetpreccholesky(const minlbfgsstate &state, const real_2d_array &p, const bool isupper);
    
    
    /*************************************************************************
    Modification  of  the  preconditioner:  diagonal of approximate Hessian is
    used.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        D       -   diagonal of the approximate Hessian, array[0..N-1],
                    (if larger, only leading N elements are used).
    
    NOTE:  you  can  change  preconditioner  "on  the  fly",  during algorithm
    iterations.
    
    NOTE 2: D[i] should be positive. Exception will be thrown otherwise.
    
    NOTE 3: you should pass diagonal of approximate Hessian - NOT ITS INVERSE.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetprecdiag(const minlbfgsstate &state, const real_1d_array &d);
    
    
    /*************************************************************************
    Modification of the preconditioner: scale-based diagonal preconditioning.
    
    This preconditioning mode can be useful when you  don't  have  approximate
    diagonal of Hessian, but you know that your  variables  are  badly  scaled
    (for  example,  one  variable is in [1,10], and another in [1000,100000]),
    and most part of the ill-conditioning comes from different scales of vars.
    
    In this case simple  scale-based  preconditioner,  with H[i] = 1/(s[i]^2),
    can greatly improve convergence.
    
    IMPRTANT: you should set scale of your variables  with  MinLBFGSSetScale()
    call  (before  or after MinLBFGSSetPrecScale() call). Without knowledge of
    the scale of your variables scale-based preconditioner will be  just  unit
    matrix.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetprecscale(const minlbfgsstate &state);
    
    
    /*************************************************************************
    This function provides reverse communication interface
    Reverse communication interface is not documented or recommended to use.
    See below for functions which provide better documented API
    *************************************************************************/
    bool minlbfgsiteration(const minlbfgsstate &state);
    
    
    /*************************************************************************
    This family of functions is used to launcn iterations of nonlinear optimizer
    
    These functions accept following parameters:
        state   -   algorithm state
        func    -   callback which calculates function (or merit function)
                    value func at given point x
        grad    -   callback which calculates function (or merit function)
                    value func and gradient grad at given point x
        rep     -   optional callback which is called after each iteration
                    can be NULL
        ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                    can be NULL
    
    NOTES:
    
    1. This function has two different implementations: one which  uses  exact
       (analytical) user-supplied gradient,  and one which uses function value
       only  and  numerically  differentiates  function  in  order  to  obtain
       gradient.
    
       Depending  on  the  specific  function  used to create optimizer object
       (either MinLBFGSCreate() for analytical gradient  or  MinLBFGSCreateF()
       for numerical differentiation) you should choose appropriate variant of
       MinLBFGSOptimize() - one  which  accepts  function  AND gradient or one
       which accepts function ONLY.
    
       Be careful to choose variant of MinLBFGSOptimize() which corresponds to
       your optimization scheme! Table below lists different  combinations  of
       callback (function/gradient) passed to MinLBFGSOptimize()  and specific
       function used to create optimizer.
    
    
                         |         USER PASSED TO MinLBFGSOptimize()
       CREATED WITH      |  function only   |  function and gradient
       ------------------------------------------------------------
       MinLBFGSCreateF() |     work                FAIL
       MinLBFGSCreate()  |     FAIL                work
    
       Here "FAIL" denotes inappropriate combinations  of  optimizer  creation
       function  and  MinLBFGSOptimize()  version.   Attemps   to   use   such
       combination (for example, to create optimizer with MinLBFGSCreateF() and
       to pass gradient information to MinCGOptimize()) will lead to exception
       being thrown. Either  you  did  not pass gradient when it WAS needed or
       you passed gradient when it was NOT needed.
    
      -- ALGLIB --
         Copyright 20.03.2009 by Bochkanov Sergey
    
    *************************************************************************/
    void minlbfgsoptimize(minlbfgsstate &state,
        void (*func)(const real_1d_array &x, double &func, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    void minlbfgsoptimize(minlbfgsstate &state,
        void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    
    
    /*************************************************************************
    L-BFGS algorithm results
    
    INPUT PARAMETERS:
        State   -   algorithm state
    
    OUTPUT PARAMETERS:
        X       -   array[0..N-1], solution
        Rep     -   optimization report:
                    * Rep.TerminationType completetion code:
                        * -2    rounding errors prevent further improvement.
                                X contains best point found.
                        * -1    incorrect parameters were specified
                        *  1    relative function improvement is no more than
                                EpsF.
                        *  2    relative step is no more than EpsX.
                        *  4    gradient norm is no more than EpsG
                        *  5    MaxIts steps was taken
                        *  7    stopping conditions are too stringent,
                                further improvement is impossible
                    * Rep.IterationsCount contains iterations count
                    * NFEV countains number of function calculations
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgsresults(const minlbfgsstate &state, real_1d_array &x, minlbfgsreport &rep);
    
    
    /*************************************************************************
    L-BFGS algorithm results
    
    Buffered implementation of MinLBFGSResults which uses pre-allocated buffer
    to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
    intended to be used in the inner cycles of performance critical algorithms
    where array reallocation penalty is too large to be ignored.
    
      -- ALGLIB --
         Copyright 20.08.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgsresultsbuf(const minlbfgsstate &state, real_1d_array &x, minlbfgsreport &rep);
    
    
    /*************************************************************************
    This  subroutine restarts LBFGS algorithm from new point. All optimization
    parameters are left unchanged.
    
    This  function  allows  to  solve multiple  optimization  problems  (which
    must have same number of dimensions) without object reallocation penalty.
    
    INPUT PARAMETERS:
        State   -   structure used to store algorithm state
        X       -   new starting point.
    
      -- ALGLIB --
         Copyright 30.07.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgsrestartfrom(const minlbfgsstate &state, const real_1d_array &x);
    
    /*************************************************************************
                        CONSTRAINED QUADRATIC PROGRAMMING
    
    The subroutine creates QP optimizer. After initial creation,  it  contains
    default optimization problem with zero quadratic and linear terms  and  no
    constraints. You should set quadratic/linear terms with calls to functions
    provided by MinQP subpackage.
    
    INPUT PARAMETERS:
        N       -   problem size
    
    OUTPUT PARAMETERS:
        State   -   optimizer with zero quadratic/linear terms
                    and no constraints
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpcreate(const ae_int_t n, minqpstate &state);
    
    
    /*************************************************************************
    This function sets linear term for QP solver.
    
    By default, linear term is zero.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        B       -   linear term, array[N].
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpsetlinearterm(const minqpstate &state, const real_1d_array &b);
    
    
    /*************************************************************************
    This function sets quadratic term for QP solver.
    
    By default quadratic term is zero.
    
    IMPORTANT: this solver minimizes following  function:
        f(x) = 0.5*x'*A*x + b'*x.
    Note that quadratic term has 0.5 before it. So if  you  want  to  minimize
        f(x) = x^2 + x
    you should rewrite your problem as follows:
        f(x) = 0.5*(2*x^2) + x
    and your matrix A will be equal to [[2.0]], not to [[1.0]]
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        A       -   matrix, array[N,N]
        IsUpper -   (optional) storage type:
                    * if True, symmetric matrix  A  is  given  by  its  upper
                      triangle, and the lower triangle isnt used
                    * if False, symmetric matrix  A  is  given  by  its lower
                      triangle, and the upper triangle isnt used
                    * if not given, both lower and upper  triangles  must  be
                      filled.
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpsetquadraticterm(const minqpstate &state, const real_2d_array &a, const bool isupper);
    void minqpsetquadraticterm(const minqpstate &state, const real_2d_array &a);
    
    
    /*************************************************************************
    This function sets starting point for QP solver. It is useful to have
    good initial approximation to the solution, because it will increase
    speed of convergence and identification of active constraints.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        X       -   starting point, array[N].
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpsetstartingpoint(const minqpstate &state, const real_1d_array &x);
    
    
    /*************************************************************************
    This  function sets origin for QP solver. By default, following QP program
    is solved:
    
        min(0.5*x'*A*x+b'*x)
    
    This function allows to solve different problem:
    
        min(0.5*(x-x_origin)'*A*(x-x_origin)+b'*(x-x_origin))
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        XOrigin -   origin, array[N].
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpsetorigin(const minqpstate &state, const real_1d_array &xorigin);
    
    
    /*************************************************************************
    This function tells solver to use Cholesky-based algorithm.
    
    Cholesky-based algorithm can be used when:
    * problem is convex
    * there is no constraints or only boundary constraints are present
    
    This algorithm has O(N^3) complexity for unconstrained problem and  is  up
    to several times slower on bound constrained  problems  (these  additional
    iterations are needed to identify active constraints).
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpsetalgocholesky(const minqpstate &state);
    
    
    /*************************************************************************
    This function sets boundary constraints for QP solver
    
    Boundary constraints are inactive by default (after initial creation).
    After  being  set,  they  are  preserved  until explicitly turned off with
    another SetBC() call.
    
    INPUT PARAMETERS:
        State   -   structure stores algorithm state
        BndL    -   lower bounds, array[N].
                    If some (all) variables are unbounded, you may specify
                    very small number or -INF (latter is recommended because
                    it will allow solver to use better algorithm).
        BndU    -   upper bounds, array[N].
                    If some (all) variables are unbounded, you may specify
                    very large number or +INF (latter is recommended because
                    it will allow solver to use better algorithm).
    
    NOTE: it is possible to specify BndL[i]=BndU[i]. In this case I-th
    variable will be "frozen" at X[i]=BndL[i]=BndU[i].
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpsetbc(const minqpstate &state, const real_1d_array &bndl, const real_1d_array &bndu);
    
    
    /*************************************************************************
    This function solves quadratic programming problem.
    You should call it after setting solver options with MinQPSet...() calls.
    
    INPUT PARAMETERS:
        State   -   algorithm state
    
    You should use MinQPResults() function to access results after calls
    to this function.
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpoptimize(const minqpstate &state);
    
    
    /*************************************************************************
    QP solver results
    
    INPUT PARAMETERS:
        State   -   algorithm state
    
    OUTPUT PARAMETERS:
        X       -   array[0..N-1], solution
        Rep     -   optimization report. You should check Rep.TerminationType,
                    which contains completion code, and you may check  another
                    fields which contain another information  about  algorithm
                    functioning.
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpresults(const minqpstate &state, real_1d_array &x, minqpreport &rep);
    
    
    /*************************************************************************
    QP results
    
    Buffered implementation of MinQPResults() which uses pre-allocated  buffer
    to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
    intended to be used in the inner cycles of performance critical algorithms
    where array reallocation penalty is too large to be ignored.
    
      -- ALGLIB --
         Copyright 11.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minqpresultsbuf(const minqpstate &state, real_1d_array &x, minqpreport &rep);
    
    /*************************************************************************
                    IMPROVED LEVENBERG-MARQUARDT METHOD FOR
                     NON-LINEAR LEAST SQUARES OPTIMIZATION
    
    DESCRIPTION:
    This function is used to find minimum of function which is represented  as
    sum of squares:
        F(x) = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
    using value of function vector f[] and Jacobian of f[].
    
    
    REQUIREMENTS:
    This algorithm will request following information during its operation:
    
    * function vector f[] at given point X
    * function vector f[] and Jacobian of f[] (simultaneously) at given point
    
    There are several overloaded versions of  MinLMOptimize()  function  which
    correspond  to  different LM-like optimization algorithms provided by this
    unit. You should choose version which accepts fvec()  and jac() callbacks.
    First  one  is used to calculate f[] at given point, second one calculates
    f[] and Jacobian df[i]/dx[j].
    
    You can try to initialize MinLMState structure with VJ  function and  then
    use incorrect version  of  MinLMOptimize()  (for  example,  version  which
    works  with  general  form function and does not provide Jacobian), but it
    will  lead  to  exception  being  thrown  after first attempt to calculate
    Jacobian.
    
    
    USAGE:
    1. User initializes algorithm state with MinLMCreateVJ() call
    2. User tunes solver parameters with MinLMSetCond(),  MinLMSetStpMax() and
       other functions
    3. User calls MinLMOptimize() function which  takes algorithm  state   and
       callback functions.
    4. User calls MinLMResults() to get solution
    5. Optionally, user may call MinLMRestartFrom() to solve  another  problem
       with same N/M but another starting point and/or another function.
       MinLMRestartFrom() allows to reuse already initialized structure.
    
    
    INPUT PARAMETERS:
        N       -   dimension, N>1
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size of X
        M       -   number of functions f[i]
        X       -   initial solution, array[0..N-1]
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTES:
    1. you may tune stopping conditions with MinLMSetCond() function
    2. if target function contains exp() or other fast growing functions,  and
       optimization algorithm makes too large steps which leads  to  overflow,
       use MinLMSetStpMax() function to bound algorithm's steps.
    
      -- ALGLIB --
         Copyright 30.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmcreatevj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
    void minlmcreatevj(const ae_int_t m, const real_1d_array &x, minlmstate &state);
    
    
    /*************************************************************************
                    IMPROVED LEVENBERG-MARQUARDT METHOD FOR
                     NON-LINEAR LEAST SQUARES OPTIMIZATION
    
    DESCRIPTION:
    This function is used to find minimum of function which is represented  as
    sum of squares:
        F(x) = f[0]^2(x[0],...,x[n-1]) + ... + f[m-1]^2(x[0],...,x[n-1])
    using value of function vector f[] only. Finite differences  are  used  to
    calculate Jacobian.
    
    
    REQUIREMENTS:
    This algorithm will request following information during its operation:
    * function vector f[] at given point X
    
    There are several overloaded versions of  MinLMOptimize()  function  which
    correspond  to  different LM-like optimization algorithms provided by this
    unit. You should choose version which accepts fvec() callback.
    
    You can try to initialize MinLMState structure with VJ  function and  then
    use incorrect version  of  MinLMOptimize()  (for  example,  version  which
    works with general form function and does not accept function vector), but
    it will  lead  to  exception being thrown after first attempt to calculate
    Jacobian.
    
    
    USAGE:
    1. User initializes algorithm state with MinLMCreateV() call
    2. User tunes solver parameters with MinLMSetCond(),  MinLMSetStpMax() and
       other functions
    3. User calls MinLMOptimize() function which  takes algorithm  state   and
       callback functions.
    4. User calls MinLMResults() to get solution
    5. Optionally, user may call MinLMRestartFrom() to solve  another  problem
       with same N/M but another starting point and/or another function.
       MinLMRestartFrom() allows to reuse already initialized structure.
    
    
    INPUT PARAMETERS:
        N       -   dimension, N>1
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size of X
        M       -   number of functions f[i]
        X       -   initial solution, array[0..N-1]
        DiffStep-   differentiation step, >0
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    See also MinLMIteration, MinLMResults.
    
    NOTES:
    1. you may tune stopping conditions with MinLMSetCond() function
    2. if target function contains exp() or other fast growing functions,  and
       optimization algorithm makes too large steps which leads  to  overflow,
       use MinLMSetStpMax() function to bound algorithm's steps.
    
      -- ALGLIB --
         Copyright 30.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmcreatev(const ae_int_t n, const ae_int_t m, const real_1d_array &x, const double diffstep, minlmstate &state);
    void minlmcreatev(const ae_int_t m, const real_1d_array &x, const double diffstep, minlmstate &state);
    
    
    /*************************************************************************
        LEVENBERG-MARQUARDT-LIKE METHOD FOR NON-LINEAR OPTIMIZATION
    
    DESCRIPTION:
    This  function  is  used  to  find  minimum  of general form (not "sum-of-
    -squares") function
        F = F(x[0], ..., x[n-1])
    using  its  gradient  and  Hessian.  Levenberg-Marquardt modification with
    L-BFGS pre-optimization and internal pre-conditioned  L-BFGS  optimization
    after each Levenberg-Marquardt step is used.
    
    
    REQUIREMENTS:
    This algorithm will request following information during its operation:
    
    * function value F at given point X
    * F and gradient G (simultaneously) at given point X
    * F, G and Hessian H (simultaneously) at given point X
    
    There are several overloaded versions of  MinLMOptimize()  function  which
    correspond  to  different LM-like optimization algorithms provided by this
    unit. You should choose version which accepts func(),  grad()  and  hess()
    function pointers. First pointer is used to calculate F  at  given  point,
    second  one  calculates  F(x)  and  grad F(x),  third one calculates F(x),
    grad F(x), hess F(x).
    
    You can try to initialize MinLMState structure with FGH-function and  then
    use incorrect version of MinLMOptimize() (for example, version which  does
    not provide Hessian matrix), but it will lead to  exception  being  thrown
    after first attempt to calculate Hessian.
    
    
    USAGE:
    1. User initializes algorithm state with MinLMCreateFGH() call
    2. User tunes solver parameters with MinLMSetCond(),  MinLMSetStpMax() and
       other functions
    3. User calls MinLMOptimize() function which  takes algorithm  state   and
       pointers (delegates, etc.) to callback functions.
    4. User calls MinLMResults() to get solution
    5. Optionally, user may call MinLMRestartFrom() to solve  another  problem
       with same N but another starting point and/or another function.
       MinLMRestartFrom() allows to reuse already initialized structure.
    
    
    INPUT PARAMETERS:
        N       -   dimension, N>1
                    * if given, only leading N elements of X are used
                    * if not given, automatically determined from size of X
        X       -   initial solution, array[0..N-1]
    
    OUTPUT PARAMETERS:
        State   -   structure which stores algorithm state
    
    NOTES:
    1. you may tune stopping conditions with MinLMSetCond() function
    2. if target function contains exp() or other fast growing functions,  and
       optimization algorithm makes too large steps which leads  to  overflow,
       use MinLMSetStpMax() function to bound algorithm's steps.
    
      -- ALGLIB --
         Copyright 30.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmcreatefgh(const ae_int_t n, const real_1d_array &x, minlmstate &state);
    void minlmcreatefgh(const real_1d_array &x, minlmstate &state);
    
    
    /*************************************************************************
    This function sets stopping conditions for Levenberg-Marquardt optimization
    algorithm.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        EpsG    -   >=0
                    The  subroutine  finishes  its  work   if   the  condition
                    |v|<EpsG is satisfied, where:
                    * |.| means Euclidian norm
                    * v - scaled gradient vector, v[i]=g[i]*s[i]
                    * g - gradient
                    * s - scaling coefficients set by MinLMSetScale()
        EpsF    -   >=0
                    The  subroutine  finishes  its work if on k+1-th iteration
                    the  condition  |F(k+1)-F(k)|<=EpsF*max{|F(k)|,|F(k+1)|,1}
                    is satisfied.
        EpsX    -   >=0
                    The subroutine finishes its work if  on  k+1-th  iteration
                    the condition |v|<=EpsX is fulfilled, where:
                    * |.| means Euclidian norm
                    * v - scaled step vector, v[i]=dx[i]/s[i]
                    * dx - ste pvector, dx=X(k+1)-X(k)
                    * s - scaling coefficients set by MinLMSetScale()
        MaxIts  -   maximum number of iterations. If MaxIts=0, the  number  of
                    iterations   is    unlimited.   Only   Levenberg-Marquardt
                    iterations  are  counted  (L-BFGS/CG  iterations  are  NOT
                    counted because their cost is very low compared to that of
                    LM).
    
    Passing EpsG=0, EpsF=0, EpsX=0 and MaxIts=0 (simultaneously) will lead to
    automatic stopping criterion selection (small EpsX).
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlmsetcond(const minlmstate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);
    
    
    /*************************************************************************
    This function turns on/off reporting.
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        NeedXRep-   whether iteration reports are needed or not
    
    If NeedXRep is True, algorithm will call rep() callback function if  it is
    provided to MinLMOptimize(). Both Levenberg-Marquardt and internal  L-BFGS
    iterations are reported.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlmsetxrep(const minlmstate &state, const bool needxrep);
    
    
    /*************************************************************************
    This function sets maximum step length
    
    INPUT PARAMETERS:
        State   -   structure which stores algorithm state
        StpMax  -   maximum step length, >=0. Set StpMax to 0.0,  if you don't
                    want to limit step length.
    
    Use this subroutine when you optimize target function which contains exp()
    or  other  fast  growing  functions,  and optimization algorithm makes too
    large  steps  which  leads  to overflow. This function allows us to reject
    steps  that  are  too  large  (and  therefore  expose  us  to the possible
    overflow) without actually calculating function value at the x+stp*d.
    
    NOTE: non-zero StpMax leads to moderate  performance  degradation  because
    intermediate  step  of  preconditioned L-BFGS optimization is incompatible
    with limits on step size.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlmsetstpmax(const minlmstate &state, const double stpmax);
    
    
    /*************************************************************************
    This function sets scaling coefficients for LM optimizer.
    
    ALGLIB optimizers use scaling matrices to test stopping  conditions  (step
    size and gradient are scaled before comparison with tolerances).  Scale of
    the I-th variable is a translation invariant measure of:
    a) "how large" the variable is
    b) how large the step should be to make significant changes in the function
    
    Generally, scale is NOT considered to be a form of preconditioner.  But LM
    optimizer is unique in that it uses scaling matrix both  in  the  stopping
    condition tests and as Marquardt damping factor.
    
    Proper scaling is very important for the algorithm performance. It is less
    important for the quality of results, but still has some influence (it  is
    easier  to  converge  when  variables  are  properly  scaled, so premature
    stopping is possible when very badly scalled variables are  combined  with
    relaxed stopping conditions).
    
    INPUT PARAMETERS:
        State   -   structure stores algorithm state
        S       -   array[N], non-zero scaling coefficients
                    S[i] may be negative, sign doesn't matter.
    
      -- ALGLIB --
         Copyright 14.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minlmsetscale(const minlmstate &state, const real_1d_array &s);
    
    
    /*************************************************************************
    This function sets boundary constraints for LM optimizer
    
    Boundary constraints are inactive by default (after initial creation).
    They are preserved until explicitly turned off with another SetBC() call.
    
    INPUT PARAMETERS:
        State   -   structure stores algorithm state
        BndL    -   lower bounds, array[N].
                    If some (all) variables are unbounded, you may specify
                    very small number or -INF (latter is recommended because
                    it will allow solver to use better algorithm).
        BndU    -   upper bounds, array[N].
                    If some (all) variables are unbounded, you may specify
                    very large number or +INF (latter is recommended because
                    it will allow solver to use better algorithm).
    
    NOTE 1: it is possible to specify BndL[i]=BndU[i]. In this case I-th
    variable will be "frozen" at X[i]=BndL[i]=BndU[i].
    
    NOTE 2: this solver has following useful properties:
    * bound constraints are always satisfied exactly
    * function is evaluated only INSIDE area specified by bound constraints
      or at its boundary
    
      -- ALGLIB --
         Copyright 14.01.2011 by Bochkanov Sergey
    *************************************************************************/
    void minlmsetbc(const minlmstate &state, const real_1d_array &bndl, const real_1d_array &bndu);
    
    
    /*************************************************************************
    This function is used to change acceleration settings
    
    You can choose between three acceleration strategies:
    * AccType=0, no acceleration.
    * AccType=1, secant updates are used to update quadratic model after  each
      iteration. After fixed number of iterations (or after  model  breakdown)
      we  recalculate  quadratic  model  using  analytic  Jacobian  or  finite
      differences. Number of secant-based iterations depends  on  optimization
      settings: about 3 iterations - when we have analytic Jacobian, up to 2*N
      iterations - when we use finite differences to calculate Jacobian.
    
    AccType=1 is recommended when Jacobian  calculation  cost  is  prohibitive
    high (several Mx1 function vector calculations  followed  by  several  NxN
    Cholesky factorizations are faster than calculation of one M*N  Jacobian).
    It should also be used when we have no Jacobian, because finite difference
    approximation takes too much time to compute.
    
    Table below list  optimization  protocols  (XYZ  protocol  corresponds  to
    MinLMCreateXYZ) and acceleration types they support (and use by  default).
    
    ACCELERATION TYPES SUPPORTED BY OPTIMIZATION PROTOCOLS:
    
    protocol    0   1   comment
    V           +   +
    VJ          +   +
    FGH         +
    
    DAFAULT VALUES:
    
    protocol    0   1   comment
    V               x   without acceleration it is so slooooooooow
    VJ          x
    FGH         x
    
    NOTE: this  function should be called before optimization. Attempt to call
    it during algorithm iterations may result in unexpected behavior.
    
    NOTE: attempt to call this function with unsupported protocol/acceleration
    combination will result in exception being thrown.
    
      -- ALGLIB --
         Copyright 14.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlmsetacctype(const minlmstate &state, const ae_int_t acctype);
    
    
    /*************************************************************************
    This function provides reverse communication interface
    Reverse communication interface is not documented or recommended to use.
    See below for functions which provide better documented API
    *************************************************************************/
    bool minlmiteration(const minlmstate &state);
    
    
    /*************************************************************************
    This family of functions is used to launcn iterations of nonlinear optimizer
    
    These functions accept following parameters:
        state   -   algorithm state
        func    -   callback which calculates function (or merit function)
                    value func at given point x
        grad    -   callback which calculates function (or merit function)
                    value func and gradient grad at given point x
        hess    -   callback which calculates function (or merit function)
                    value func, gradient grad and Hessian hess at given point x
        fvec    -   callback which calculates function vector fi[]
                    at given point x
        jac     -   callback which calculates function vector fi[]
                    and Jacobian jac at given point x
        rep     -   optional callback which is called after each iteration
                    can be NULL
        ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                    can be NULL
    
    NOTES:
    
    1. Depending on function used to create state  structure,  this  algorithm
       may accept Jacobian and/or Hessian and/or gradient.  According  to  the
       said above, there ase several versions of this function,  which  accept
       different sets of callbacks.
    
       This flexibility opens way to subtle errors - you may create state with
       MinLMCreateFGH() (optimization using Hessian), but call function  which
       does not accept Hessian. So when algorithm will request Hessian,  there
       will be no callback to call. In this case exception will be thrown.
    
       Be careful to avoid such errors because there is no way to find them at
       compile time - you can see them at runtime only.
    
      -- ALGLIB --
         Copyright 10.03.2009 by Bochkanov Sergey
    
    *************************************************************************/
    void minlmoptimize(minlmstate &state,
        void (*fvec)(const real_1d_array &x, real_1d_array &fi, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    void minlmoptimize(minlmstate &state,
        void (*fvec)(const real_1d_array &x, real_1d_array &fi, void *ptr),
        void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    void minlmoptimize(minlmstate &state,
        void (*func)(const real_1d_array &x, double &func, void *ptr),
        void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
        void (*hess)(const real_1d_array &x, double &func, real_1d_array &grad, real_2d_array &hess, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    void minlmoptimize(minlmstate &state,
        void (*func)(const real_1d_array &x, double &func, void *ptr),
        void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    void minlmoptimize(minlmstate &state,
        void (*func)(const real_1d_array &x, double &func, void *ptr),
        void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
        void  (*jac)(const real_1d_array &x, real_1d_array &fi, real_2d_array &jac, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    
    
    /*************************************************************************
    Levenberg-Marquardt algorithm results
    
    INPUT PARAMETERS:
        State   -   algorithm state
    
    OUTPUT PARAMETERS:
        X       -   array[0..N-1], solution
        Rep     -   optimization report;
                    see comments for this structure for more info.
    
      -- ALGLIB --
         Copyright 10.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmresults(const minlmstate &state, real_1d_array &x, minlmreport &rep);
    
    
    /*************************************************************************
    Levenberg-Marquardt algorithm results
    
    Buffered implementation of MinLMResults(), which uses pre-allocated buffer
    to store X[]. If buffer size is  too  small,  it  resizes  buffer.  It  is
    intended to be used in the inner cycles of performance critical algorithms
    where array reallocation penalty is too large to be ignored.
    
      -- ALGLIB --
         Copyright 10.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmresultsbuf(const minlmstate &state, real_1d_array &x, minlmreport &rep);
    
    
    /*************************************************************************
    This  subroutine  restarts  LM  algorithm from new point. All optimization
    parameters are left unchanged.
    
    This  function  allows  to  solve multiple  optimization  problems  (which
    must have same number of dimensions) without object reallocation penalty.
    
    INPUT PARAMETERS:
        State   -   structure used for reverse communication previously
                    allocated with MinLMCreateXXX call.
        X       -   new starting point.
    
      -- ALGLIB --
         Copyright 30.07.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlmrestartfrom(const minlmstate &state, const real_1d_array &x);
    
    
    /*************************************************************************
    This is obsolete function.
    
    Since ALGLIB 3.3 it is equivalent to MinLMCreateVJ().
    
      -- ALGLIB --
         Copyright 30.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmcreatevgj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
    void minlmcreatevgj(const ae_int_t m, const real_1d_array &x, minlmstate &state);
    
    
    /*************************************************************************
    This is obsolete function.
    
    Since ALGLIB 3.3 it is equivalent to MinLMCreateFJ().
    
      -- ALGLIB --
         Copyright 30.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmcreatefgj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
    void minlmcreatefgj(const ae_int_t m, const real_1d_array &x, minlmstate &state);
    
    
    /*************************************************************************
    This function is considered obsolete since ALGLIB 3.1.0 and is present for
    backward  compatibility  only.  We  recommend  to use MinLMCreateVJ, which
    provides similar, but more consistent and feature-rich interface.
    
      -- ALGLIB --
         Copyright 30.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minlmcreatefj(const ae_int_t n, const ae_int_t m, const real_1d_array &x, minlmstate &state);
    void minlmcreatefj(const ae_int_t m, const real_1d_array &x, minlmstate &state);
    
    /*************************************************************************
    Obsolete function, use MinLBFGSSetPrecDefault() instead.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetdefaultpreconditioner(const minlbfgsstate &state);
    
    
    /*************************************************************************
    Obsolete function, use MinLBFGSSetCholeskyPreconditioner() instead.
    
      -- ALGLIB --
         Copyright 13.10.2010 by Bochkanov Sergey
    *************************************************************************/
    void minlbfgssetcholeskypreconditioner(const minlbfgsstate &state, const real_2d_array &p, const bool isupper);
    
    
    /*************************************************************************
    This is obsolete function which was used by previous version of the  BLEIC
    optimizer. It does nothing in the current version of BLEIC.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetbarrierwidth(const minbleicstate &state, const double mu);
    
    
    /*************************************************************************
    This is obsolete function which was used by previous version of the  BLEIC
    optimizer. It does nothing in the current version of BLEIC.
    
      -- ALGLIB --
         Copyright 28.11.2010 by Bochkanov Sergey
    *************************************************************************/
    void minbleicsetbarrierdecay(const minbleicstate &state, const double mudecay);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 25.03.2010 by Bochkanov Sergey
    *************************************************************************/
    void minasacreate(const ae_int_t n, const real_1d_array &x, const real_1d_array &bndl, const real_1d_array &bndu, minasastate &state);
    void minasacreate(const real_1d_array &x, const real_1d_array &bndl, const real_1d_array &bndu, minasastate &state);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minasasetcond(const minasastate &state, const double epsg, const double epsf, const double epsx, const ae_int_t maxits);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minasasetxrep(const minasastate &state, const bool needxrep);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minasasetalgorithm(const minasastate &state, const ae_int_t algotype);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 02.04.2010 by Bochkanov Sergey
    *************************************************************************/
    void minasasetstpmax(const minasastate &state, const double stpmax);
    
    
    /*************************************************************************
    This function provides reverse communication interface
    Reverse communication interface is not documented or recommended to use.
    See below for functions which provide better documented API
    *************************************************************************/
    bool minasaiteration(const minasastate &state);
    
    
    /*************************************************************************
    This family of functions is used to launcn iterations of nonlinear optimizer
    
    These functions accept following parameters:
        state   -   algorithm state
        grad    -   callback which calculates function (or merit function)
                    value func and gradient grad at given point x
        rep     -   optional callback which is called after each iteration
                    can be NULL
        ptr     -   optional pointer which is passed to func/grad/hess/jac/rep
                    can be NULL
    
    
      -- ALGLIB --
         Copyright 20.03.2009 by Bochkanov Sergey
    
    *************************************************************************/
    void minasaoptimize(minasastate &state,
        void (*grad)(const real_1d_array &x, double &func, real_1d_array &grad, void *ptr),
        void  (*rep)(const real_1d_array &x, double func, void *ptr) = NULL,
        void *ptr = NULL);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 20.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minasaresults(const minasastate &state, real_1d_array &x, minasareport &rep);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 20.03.2009 by Bochkanov Sergey
    *************************************************************************/
    void minasaresultsbuf(const minasastate &state, real_1d_array &x, minasareport &rep);
    
    
    /*************************************************************************
    Obsolete optimization algorithm.
    Was replaced by MinBLEIC subpackage.
    
      -- ALGLIB --
         Copyright 30.07.2010 by Bochkanov Sergey
    *************************************************************************/
    void minasarestartfrom(const minasastate &state, const real_1d_array &x, const real_1d_array &bndl, const real_1d_array &bndu);
    }
    
    /////////////////////////////////////////////////////////////////////////
    //
    // THIS SECTION CONTAINS COMPUTATIONAL CORE DECLARATIONS (FUNCTIONS)
    //
    /////////////////////////////////////////////////////////////////////////
    namespace alglib_impl
    {
    void mincgcreate(ae_int_t n,
         /* Real    */ ae_vector* x,
         mincgstate* state,
         ae_state *_state);
    void mincgcreatef(ae_int_t n,
         /* Real    */ ae_vector* x,
         double diffstep,
         mincgstate* state,
         ae_state *_state);
    void mincgsetcond(mincgstate* state,
         double epsg,
         double epsf,
         double epsx,
         ae_int_t maxits,
         ae_state *_state);
    void mincgsetscale(mincgstate* state,
         /* Real    */ ae_vector* s,
         ae_state *_state);
    void mincgsetxrep(mincgstate* state, ae_bool needxrep, ae_state *_state);
    void mincgsetdrep(mincgstate* state, ae_bool needdrep, ae_state *_state);
    void mincgsetcgtype(mincgstate* state, ae_int_t cgtype, ae_state *_state);
    void mincgsetstpmax(mincgstate* state, double stpmax, ae_state *_state);
    void mincgsuggeststep(mincgstate* state, double stp, ae_state *_state);
    void mincgsetprecdefault(mincgstate* state, ae_state *_state);
    void mincgsetprecdiag(mincgstate* state,
         /* Real    */ ae_vector* d,
         ae_state *_state);
    void mincgsetprecscale(mincgstate* state, ae_state *_state);
    ae_bool mincgiteration(mincgstate* state, ae_state *_state);
    void mincgresults(mincgstate* state,
         /* Real    */ ae_vector* x,
         mincgreport* rep,
         ae_state *_state);
    void mincgresultsbuf(mincgstate* state,
         /* Real    */ ae_vector* x,
         mincgreport* rep,
         ae_state *_state);
    void mincgrestartfrom(mincgstate* state,
         /* Real    */ ae_vector* x,
         ae_state *_state);
    void mincgsetprecdiagfast(mincgstate* state,
         /* Real    */ ae_vector* d,
         ae_state *_state);
    void mincgsetpreclowrankfast(mincgstate* state,
         /* Real    */ ae_vector* d1,
         /* Real    */ ae_vector* c,
         /* Real    */ ae_matrix* v,
         ae_int_t vcnt,
         ae_state *_state);
    void mincgsetprecvarpart(mincgstate* state,
         /* Real    */ ae_vector* d2,
         ae_state *_state);
    ae_bool _mincgstate_init(mincgstate* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _mincgstate_init_copy(mincgstate* dst, mincgstate* src, ae_state *_state, ae_bool make_automatic);
    void _mincgstate_clear(mincgstate* p);
    ae_bool _mincgreport_init(mincgreport* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _mincgreport_init_copy(mincgreport* dst, mincgreport* src, ae_state *_state, ae_bool make_automatic);
    void _mincgreport_clear(mincgreport* p);
    void minbleiccreate(ae_int_t n,
         /* Real    */ ae_vector* x,
         minbleicstate* state,
         ae_state *_state);
    void minbleiccreatef(ae_int_t n,
         /* Real    */ ae_vector* x,
         double diffstep,
         minbleicstate* state,
         ae_state *_state);
    void minbleicsetbc(minbleicstate* state,
         /* Real    */ ae_vector* bndl,
         /* Real    */ ae_vector* bndu,
         ae_state *_state);
    void minbleicsetlc(minbleicstate* state,
         /* Real    */ ae_matrix* c,
         /* Integer */ ae_vector* ct,
         ae_int_t k,
         ae_state *_state);
    void minbleicsetinnercond(minbleicstate* state,
         double epsg,
         double epsf,
         double epsx,
         ae_state *_state);
    void minbleicsetoutercond(minbleicstate* state,
         double epsx,
         double epsi,
         ae_state *_state);
    void minbleicsetscale(minbleicstate* state,
         /* Real    */ ae_vector* s,
         ae_state *_state);
    void minbleicsetprecdefault(minbleicstate* state, ae_state *_state);
    void minbleicsetprecdiag(minbleicstate* state,
         /* Real    */ ae_vector* d,
         ae_state *_state);
    void minbleicsetprecscale(minbleicstate* state, ae_state *_state);
    void minbleicsetmaxits(minbleicstate* state,
         ae_int_t maxits,
         ae_state *_state);
    void minbleicsetxrep(minbleicstate* state,
         ae_bool needxrep,
         ae_state *_state);
    void minbleicsetstpmax(minbleicstate* state,
         double stpmax,
         ae_state *_state);
    ae_bool minbleiciteration(minbleicstate* state, ae_state *_state);
    void minbleicresults(minbleicstate* state,
         /* Real    */ ae_vector* x,
         minbleicreport* rep,
         ae_state *_state);
    void minbleicresultsbuf(minbleicstate* state,
         /* Real    */ ae_vector* x,
         minbleicreport* rep,
         ae_state *_state);
    void minbleicrestartfrom(minbleicstate* state,
         /* Real    */ ae_vector* x,
         ae_state *_state);
    ae_bool _minbleicstate_init(minbleicstate* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minbleicstate_init_copy(minbleicstate* dst, minbleicstate* src, ae_state *_state, ae_bool make_automatic);
    void _minbleicstate_clear(minbleicstate* p);
    ae_bool _minbleicreport_init(minbleicreport* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minbleicreport_init_copy(minbleicreport* dst, minbleicreport* src, ae_state *_state, ae_bool make_automatic);
    void _minbleicreport_clear(minbleicreport* p);
    void minlbfgscreate(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         minlbfgsstate* state,
         ae_state *_state);
    void minlbfgscreatef(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         double diffstep,
         minlbfgsstate* state,
         ae_state *_state);
    void minlbfgssetcond(minlbfgsstate* state,
         double epsg,
         double epsf,
         double epsx,
         ae_int_t maxits,
         ae_state *_state);
    void minlbfgssetxrep(minlbfgsstate* state,
         ae_bool needxrep,
         ae_state *_state);
    void minlbfgssetstpmax(minlbfgsstate* state,
         double stpmax,
         ae_state *_state);
    void minlbfgssetscale(minlbfgsstate* state,
         /* Real    */ ae_vector* s,
         ae_state *_state);
    void minlbfgscreatex(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         ae_int_t flags,
         double diffstep,
         minlbfgsstate* state,
         ae_state *_state);
    void minlbfgssetprecdefault(minlbfgsstate* state, ae_state *_state);
    void minlbfgssetpreccholesky(minlbfgsstate* state,
         /* Real    */ ae_matrix* p,
         ae_bool isupper,
         ae_state *_state);
    void minlbfgssetprecdiag(minlbfgsstate* state,
         /* Real    */ ae_vector* d,
         ae_state *_state);
    void minlbfgssetprecscale(minlbfgsstate* state, ae_state *_state);
    ae_bool minlbfgsiteration(minlbfgsstate* state, ae_state *_state);
    void minlbfgsresults(minlbfgsstate* state,
         /* Real    */ ae_vector* x,
         minlbfgsreport* rep,
         ae_state *_state);
    void minlbfgsresultsbuf(minlbfgsstate* state,
         /* Real    */ ae_vector* x,
         minlbfgsreport* rep,
         ae_state *_state);
    void minlbfgsrestartfrom(minlbfgsstate* state,
         /* Real    */ ae_vector* x,
         ae_state *_state);
    ae_bool _minlbfgsstate_init(minlbfgsstate* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minlbfgsstate_init_copy(minlbfgsstate* dst, minlbfgsstate* src, ae_state *_state, ae_bool make_automatic);
    void _minlbfgsstate_clear(minlbfgsstate* p);
    ae_bool _minlbfgsreport_init(minlbfgsreport* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minlbfgsreport_init_copy(minlbfgsreport* dst, minlbfgsreport* src, ae_state *_state, ae_bool make_automatic);
    void _minlbfgsreport_clear(minlbfgsreport* p);
    void minqpcreate(ae_int_t n, minqpstate* state, ae_state *_state);
    void minqpsetlinearterm(minqpstate* state,
         /* Real    */ ae_vector* b,
         ae_state *_state);
    void minqpsetquadraticterm(minqpstate* state,
         /* Real    */ ae_matrix* a,
         ae_bool isupper,
         ae_state *_state);
    void minqpsetstartingpoint(minqpstate* state,
         /* Real    */ ae_vector* x,
         ae_state *_state);
    void minqpsetorigin(minqpstate* state,
         /* Real    */ ae_vector* xorigin,
         ae_state *_state);
    void minqpsetalgocholesky(minqpstate* state, ae_state *_state);
    void minqpsetbc(minqpstate* state,
         /* Real    */ ae_vector* bndl,
         /* Real    */ ae_vector* bndu,
         ae_state *_state);
    void minqpoptimize(minqpstate* state, ae_state *_state);
    void minqpresults(minqpstate* state,
         /* Real    */ ae_vector* x,
         minqpreport* rep,
         ae_state *_state);
    void minqpresultsbuf(minqpstate* state,
         /* Real    */ ae_vector* x,
         minqpreport* rep,
         ae_state *_state);
    void minqpsetlineartermfast(minqpstate* state,
         /* Real    */ ae_vector* b,
         ae_state *_state);
    void minqpsetquadratictermfast(minqpstate* state,
         /* Real    */ ae_matrix* a,
         ae_bool isupper,
         double s,
         ae_state *_state);
    void minqprewritediagonal(minqpstate* state,
         /* Real    */ ae_vector* s,
         ae_state *_state);
    void minqpsetstartingpointfast(minqpstate* state,
         /* Real    */ ae_vector* x,
         ae_state *_state);
    void minqpsetoriginfast(minqpstate* state,
         /* Real    */ ae_vector* xorigin,
         ae_state *_state);
    ae_bool _minqpstate_init(minqpstate* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minqpstate_init_copy(minqpstate* dst, minqpstate* src, ae_state *_state, ae_bool make_automatic);
    void _minqpstate_clear(minqpstate* p);
    ae_bool _minqpreport_init(minqpreport* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minqpreport_init_copy(minqpreport* dst, minqpreport* src, ae_state *_state, ae_bool make_automatic);
    void _minqpreport_clear(minqpreport* p);
    void minlmcreatevj(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         minlmstate* state,
         ae_state *_state);
    void minlmcreatev(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         double diffstep,
         minlmstate* state,
         ae_state *_state);
    void minlmcreatefgh(ae_int_t n,
         /* Real    */ ae_vector* x,
         minlmstate* state,
         ae_state *_state);
    void minlmsetcond(minlmstate* state,
         double epsg,
         double epsf,
         double epsx,
         ae_int_t maxits,
         ae_state *_state);
    void minlmsetxrep(minlmstate* state, ae_bool needxrep, ae_state *_state);
    void minlmsetstpmax(minlmstate* state, double stpmax, ae_state *_state);
    void minlmsetscale(minlmstate* state,
         /* Real    */ ae_vector* s,
         ae_state *_state);
    void minlmsetbc(minlmstate* state,
         /* Real    */ ae_vector* bndl,
         /* Real    */ ae_vector* bndu,
         ae_state *_state);
    void minlmsetacctype(minlmstate* state,
         ae_int_t acctype,
         ae_state *_state);
    ae_bool minlmiteration(minlmstate* state, ae_state *_state);
    void minlmresults(minlmstate* state,
         /* Real    */ ae_vector* x,
         minlmreport* rep,
         ae_state *_state);
    void minlmresultsbuf(minlmstate* state,
         /* Real    */ ae_vector* x,
         minlmreport* rep,
         ae_state *_state);
    void minlmrestartfrom(minlmstate* state,
         /* Real    */ ae_vector* x,
         ae_state *_state);
    void minlmcreatevgj(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         minlmstate* state,
         ae_state *_state);
    void minlmcreatefgj(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         minlmstate* state,
         ae_state *_state);
    void minlmcreatefj(ae_int_t n,
         ae_int_t m,
         /* Real    */ ae_vector* x,
         minlmstate* state,
         ae_state *_state);
    ae_bool _minlmstate_init(minlmstate* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minlmstate_init_copy(minlmstate* dst, minlmstate* src, ae_state *_state, ae_bool make_automatic);
    void _minlmstate_clear(minlmstate* p);
    ae_bool _minlmreport_init(minlmreport* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minlmreport_init_copy(minlmreport* dst, minlmreport* src, ae_state *_state, ae_bool make_automatic);
    void _minlmreport_clear(minlmreport* p);
    void minlbfgssetdefaultpreconditioner(minlbfgsstate* state,
         ae_state *_state);
    void minlbfgssetcholeskypreconditioner(minlbfgsstate* state,
         /* Real    */ ae_matrix* p,
         ae_bool isupper,
         ae_state *_state);
    void minbleicsetbarrierwidth(minbleicstate* state,
         double mu,
         ae_state *_state);
    void minbleicsetbarrierdecay(minbleicstate* state,
         double mudecay,
         ae_state *_state);
    void minasacreate(ae_int_t n,
         /* Real    */ ae_vector* x,
         /* Real    */ ae_vector* bndl,
         /* Real    */ ae_vector* bndu,
         minasastate* state,
         ae_state *_state);
    void minasasetcond(minasastate* state,
         double epsg,
         double epsf,
         double epsx,
         ae_int_t maxits,
         ae_state *_state);
    void minasasetxrep(minasastate* state, ae_bool needxrep, ae_state *_state);
    void minasasetalgorithm(minasastate* state,
         ae_int_t algotype,
         ae_state *_state);
    void minasasetstpmax(minasastate* state, double stpmax, ae_state *_state);
    ae_bool minasaiteration(minasastate* state, ae_state *_state);
    void minasaresults(minasastate* state,
         /* Real    */ ae_vector* x,
         minasareport* rep,
         ae_state *_state);
    void minasaresultsbuf(minasastate* state,
         /* Real    */ ae_vector* x,
         minasareport* rep,
         ae_state *_state);
    void minasarestartfrom(minasastate* state,
         /* Real    */ ae_vector* x,
         /* Real    */ ae_vector* bndl,
         /* Real    */ ae_vector* bndu,
         ae_state *_state);
    ae_bool _minasastate_init(minasastate* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minasastate_init_copy(minasastate* dst, minasastate* src, ae_state *_state, ae_bool make_automatic);
    void _minasastate_clear(minasastate* p);
    ae_bool _minasareport_init(minasareport* p, ae_state *_state, ae_bool make_automatic);
    ae_bool _minasareport_init_copy(minasareport* dst, minasareport* src, ae_state *_state, ae_bool make_automatic);
    void _minasareport_clear(minasareport* p);
    
    }
    #endif