Select Git revision
optionWindow.h
GEntity.h 11.23 KiB
// Gmsh - Copyright (C) 1997-2019 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
#ifndef GENTITY_H
#define GENTITY_H
#include <list>
#include <string>
#include <vector>
#include <set>
#include "Range.h"
#include "SPoint3.h"
#include "SBoundingBox3d.h"
#include "SOrientedBoundingBox.h"
#include "affineTransformation.h"
#define MAX_LC 1.e22
class GModel;
class GVertex;
class GEdge;
class GFace;
class GRegion;
class MVertex;
class MElement;
class VertexArray;
// A geometric model entity.
class GEntity {
private:
// all entities are owned by a GModel
GModel *_model;
// the tag (the number) of this entity
int _tag;
// points to the master entity in periodic mesh, or 'this' if non-periodic
GEntity *_meshMaster;
// the visibility and the selection flag
char _visible, _selection;
// flag storing if all mesh elements are visible
char _allElementsVisible;
// the color of the entity (ignored if set to transparent blue)
unsigned int _color;
protected:
SOrientedBoundingBox *_obb;
public: // these will become protected at some point
// the mesh vertices uniquely owned by the entity
std::vector<MVertex *> mesh_vertices;
// a list of geometrical entities that form a compound mesh
std::vector<GEntity *> compound;
// corresponding principal vertices
std::map<GVertex *, GVertex *> vertexCounterparts;
// the physical entities (if any) that contain this entity
std::vector<int> physicals;
// vertex arrays to draw the mesh efficiently
VertexArray *va_lines, *va_triangles;
// Set of high-order elements fixed by "fast curving"
std::set<MElement *> curvedBLElements;
public:
// make a set of all the vertices in the entity, with/without closure
void addVerticesInSet(std::set<MVertex *> &, bool closure) const;
public:
// all known native model types
enum ModelType {
UnknownModel,
GmshModel,
OpenCascadeModel,
AcisModel
};
// all known entity types
enum GeomType {
Unknown,
Point,
BoundaryLayerPoint,
Line,
Circle,
Ellipse,
Conic,
Parabola,
Hyperbola,
TrimmedCurve,
OffsetCurve,
BSpline,
Bezier,
ParametricCurve,
BoundaryLayerCurve,
DiscreteCurve,
Plane,
Nurb,
Cylinder,
Sphere,
Cone,
Torus,
RuledSurface,
ParametricSurface,
BSplineSurface,
BezierSurface,
SurfaceOfRevolution,
BoundaryLayerSurface,
DiscreteSurface,
DiscreteDiskSurface,
Volume,
DiscreteVolume,
PartitionPoint,
PartitionCurve,
PartitionSurface,
PartitionVolume,
GhostCurve,
GhostSurface,
GhostVolume
};
enum MeshGenerationStatus { PENDING, DONE, FAILED };
// return a string describing the entity type
virtual std::string getTypeString()
{
const char *name[] = {
"Unknown",
"Point",
"Boundary layer point",
"Line",
"Circle",
"Ellipse",
"Conic",
"Parabola",
"Hyperbola",
"TrimmedCurve",
"OffsetCurve",
"BSpline",
"Bezier",
"Parametric curve",
"Boundary layer curve",
"Discrete curve",
"Plane",
"Nurb",
"Cylinder",
"Sphere",
"Cone",
"Torus",
"Surface",
"Parametric surface",
"BSpline surface",
"Bezier surface",
"Surface of Revolution",
"Boundary layer surface",
"Discrete surface",
"Discrete surface (parametrizable, isomorphic to a disk)",
"Volume",
"Discrete volume",
"Partition vertex",
"Partition curve",
"Partition surface",
"Partition volume",
"Ghost curve",
"Ghost surface",
"Ghost volume"};
unsigned int type = (unsigned int)geomType();
if(type >= sizeof(name) / sizeof(name[0]))
return "Undefined";
else
return name[type];
}
GEntity(GModel *m, int t);
virtual ~GEntity() {}
// mesh generation of the entity
virtual void mesh(bool verbose) {}
// delete the mesh data
virtual void deleteMesh(bool onlyDeleteElements = false) {}
// delete the vertex arrays, used to to draw the mesh efficiently
void deleteVertexArrays();
// spatial dimension of the entity
virtual int dim() const { return -1; }
// returns the parent entity for partitioned entities
virtual GEntity *getParentEntity() { return 0; }
// regions that bound this entity or that this entity bounds.
virtual std::list<GRegion *> regions() const
{
return std::list<GRegion *>();
}
// faces that bound this entity or that this entity bounds.
virtual std::vector<GFace *> faces() const { return std::vector<GFace *>(); }
// edges that bound this entity or that this entity bounds.
virtual std::vector<GEdge *> const &edges() const
{
static std::vector<GEdge *> i;
return i;
}
// vertices that bound this entity.
virtual std::vector<GVertex *> vertices() const
{
return std::vector<GVertex *>();
}
// for Python, temporary solution while iterator are not binded
std::vector<GRegion *> bindingsGetRegions()
{
// NOTE: two-line to not create two different lists with diff pointers
std::list<GRegion *> r = regions();
return std::vector<GRegion *>(r.begin(), r.end());
}
std::vector<GFace *> bindingsGetFaces() { return faces(); }
std::vector<GEdge *> bindingsGetEdges() const { return edges(); }
std::vector<GVertex *> bindingsGetVertices() { return vertices(); }
// underlying geometric representation of this entity.
virtual GeomType geomType() const { return Unknown; }
// true if parametric space is continuous in the "dim" direction.
virtual bool continuous(int dim) const { return true; }
// true if entity is periodic in the "dim" direction.
virtual bool periodic(int dim) const { return false; }
virtual double period(int dim) const { return 0.0; }
// true if there are parametric degeneracies in the "dim" direction.
virtual bool degenerate(int dim) const { return false; }
// does the entity have a parametrization?
virtual bool haveParametrization() { return true; }
// parametric bounds of the entity in the "i" direction.
virtual Range<double> parBounds(int i) const { return Range<double>(0., 0.); }
// modeler tolerance for the entity.
virtual double tolerance() const { return 1.e-14; }
// true if the entity contains the given point to within tolerance.
virtual bool containsPoint(const SPoint3 &pt) const { return false; }
// get the native type of the particular representation
virtual ModelType getNativeType() const { return UnknownModel; }
// get the native pointer of the particular representation
virtual void *getNativePtr() const { return 0; }
// get the native id (int) of the particular representation
virtual int getNativeInt() const { return 0; }
// the model owning this entity
GModel *model() const { return _model; }
// get/set the tag of the entity
int tag() const { return _tag; }
void setTag(int tag) { _tag = tag; }
// get/set physical entities
virtual void addPhysicalEntity(int physicalTag)
{
physicals.push_back(physicalTag);
}
virtual std::vector<int> getPhysicalEntities() { return physicals; }
// handle the master entity for periodic meshes
GEntity *getMeshMaster() const { return _meshMaster; }
void setMeshMaster(GEntity *);
void setMeshMaster(GEntity *, const std::vector<double> &,
bool updateCorrespondingVertices = true);
void updateCorrespondingVertices();
void copyMasterCoordinates();
virtual void alignElementsWithMaster() {}
// get the bounding box
virtual SBoundingBox3d bounds(bool fast = false) const
{
return SBoundingBox3d();
}
// get the oriented bounding box
virtual SOrientedBoundingBox getOBB() { return SOrientedBoundingBox(); }
// get/set the visibility flag
virtual char getVisibility();
virtual void setVisibility(char val, bool recursive = false)
{
_visible = val;
}
// get/set the selection flag
virtual char getSelection() { return _selection; }
virtual void setSelection(char val) { _selection = val; }
// get/set the color
virtual unsigned int getColor() { return _color; }
virtual void setColor(unsigned color, bool recursive = false)
{
_color = color;
}
// return true if we should use this color to represent the entity
virtual bool useColor();
// return an information string for the entity
virtual std::string getInfoString(bool additional = true,
bool multiline = false);
// return a type-specific additional information string
virtual std::string getAdditionalInfoString(bool multline = false)
{
return "";
}
// reset the mesh attributes to default values
virtual void resetMeshAttributes() { return; }
// global mesh size constraint for the entity
virtual double getMeshSize() const { return MAX_LC; }
// number of types of elements
virtual int getNumElementTypes() const { return 0; }
// get the number of mesh elements (total and by type) in the entity
virtual std::size_t getNumMeshElements() const { return 0; }
virtual std::size_t getNumMeshElementsByType(const int familyType) const
{
return 0;
}
virtual std::size_t getNumMeshParentElements() { return 0; }
virtual void getNumMeshElements(unsigned *const c) const {}
// get the start of the array of a type of element
virtual MElement *const *getStartElementType(int type) const { return 0; }
// get the element at the given index
virtual MElement *getMeshElement(std::size_t index) const { return 0; }
// get the element at the given index for a given familyType
virtual MElement *getMeshElementByType(const int familyType,
const std::size_t index) const
{
return 0;
}
// get/set all mesh element visibility flag
bool getAllElementsVisible() { return _allElementsVisible ? true : false; }
void setAllElementsVisible(bool val) { _allElementsVisible = val ? 1 : 0; }
// get the number of mesh vertices in the entity
std::size_t getNumMeshVertices() { return mesh_vertices.size(); }
// get the mesh vertex at the given index
MVertex *getMeshVertex(std::size_t index) { return mesh_vertices[index]; }
// add a MeshVertex
void addMeshVertex(MVertex *v) { mesh_vertices.push_back(v); }
// delete a MeshVertex
void removeMeshVertex(MVertex *v);
// add an element
virtual void addElement(int type, MElement *e) {}
// remove an element
virtual void removeElement(int type, MElement *e) {}
// relocate mesh vertices using their parametric coordinates
virtual void relocateMeshVertices() {}
// clean downcasts
GVertex *cast2Vertex();
GEdge *cast2Edge();
GFace *cast2Face();
GRegion *cast2Region();
// transformation from master
std::vector<double> affineTransform;
// corresponding mesh vertices
std::map<MVertex *, MVertex *> correspondingVertices;
// corresponding high order control points
std::map<MVertex *, MVertex *> correspondingHOPoints;
// reorder the mesh elements of the given type, according to ordering
virtual bool reorder(const int elementType, const std::vector<std::size_t> &ordering)
{
return false;
}
};
struct GEntityLessThan {
bool operator()(GEntity const *const ent1, GEntity const *const ent2) const
{
return ent1->tag() < ent2->tag();
}
};
#endif