Select Git revision
-
Christophe Geuzaine authored
initializing the api now sets General.Terminal=1 (to print messages by default) and General.AbortOnError=2 (to throw an exception as soon as an error happens) - cf. #1043
Christophe Geuzaine authoredinitializing the api now sets General.Terminal=1 (to print messages by default) and General.AbortOnError=2 (to throw an exception as soon as an error happens) - cf. #1043
t5.f90 9.23 KiB
! ------------------------------------------------------------------------------
!
! Gmsh Fortran tutorial 5
!
! Mesh sizes, holes in volumes
!
! ------------------------------------------------------------------------------
program t5
use, intrinsic :: iso_c_binding
use gmsh
implicit none
type(gmsh_t) :: gmsh
integer(c_int) :: ret, i, t, v
character(len=GMSH_API_MAX_STR_LEN), allocatable :: argv(:)
real(c_double), parameter :: lcar1 = .1
real(c_double), parameter :: lcar2 = .0005
real(c_double), parameter :: lcar3 = .055
real(c_double) :: x, y, z, r
integer(c_int), allocatable :: shells(:)
allocate(argv(command_argument_count() + 1))
do i = 0, size(argv) - 1
call get_command_argument(i, argv(i+1))
argv(i+1) = trim(argv(i+1))
end do
call gmsh%initialize(argv)
call gmsh%model%add("t5")
! If we wanted to change these mesh sizes globally (without changing the above
! definitions), we could give a global scaling factor for all mesh sizes with
! e.g.
!
! gmsh%option%setNumber("mesh%MeshSizeFactor", 0.1);
!
! Since we pass `argc' and `argv' to `gmsh%initialize()', we can also give the
! option on the command line with the `-clscale' switch. For example, with:
!
! > ./t5.exe -clscale 1
!
! this tutorial produces a mesh of approximately 3000 nodes and 14,000
! tetrahedra. With
!
! > ./t5.exe -clscale 0.2
!
! the mesh counts approximately 231,000 nodes and 1,360,000 tetrahedra. You can
! check mesh statistics in the graphical user interface (gmsh%fltk.run()) with
! the `Tools->Statistics' menu.
!
! See `t10.f90' for more information about mesh sizes.
! We proceed by defining some elementary entities describing a truncated cube:
ret = gmsh%model%geo%addPoint(0.5d0, 0.5d0, 0.5d0, lcar2, 1)
ret = gmsh%model%geo%addPoint(0.5d0, 0.5d0, 0.0d0, lcar1, 2)
ret = gmsh%model%geo%addPoint(0.0d0, 0.5d0, 0.5d0, lcar1, 3)
ret = gmsh%model%geo%addPoint(0.0d0, 0.0d0, 0.5d0, lcar1, 4)
ret = gmsh%model%geo%addPoint(0.5d0, 0.0d0, 0.5d0, lcar1, 5)
ret = gmsh%model%geo%addPoint(0.5d0, 0.0d0, 0.0d0, lcar1, 6)
ret = gmsh%model%geo%addPoint(0.0d0, 0.5d0, 0.0d0, lcar1, 7)
ret = gmsh%model%geo%addPoint(0.0d0, 1.0d0, 0.0d0, lcar1, 8)
ret = gmsh%model%geo%addPoint(1.0d0, 1.0d0, 0.0d0, lcar1, 9)
ret = gmsh%model%geo%addPoint(0.0d0, 0.0d0, 1.0d0, lcar1, 10)
ret = gmsh%model%geo%addPoint(0.0d0, 1.0d0, 1.0d0, lcar1, 11)
ret = gmsh%model%geo%addPoint(1.0d0, 1.0d0, 1.0d0, lcar1, 12)
ret = gmsh%model%geo%addPoint(1.0d0, 0.0d0, 1.0d0, lcar1, 13)
ret = gmsh%model%geo%addPoint(1.0d0, 0.0d0, 0.0d0, lcar1, 14)
ret = gmsh%model%geo%addLine(8, 9, 1)
ret = gmsh%model%geo%addLine(9, 12, 2)
ret = gmsh%model%geo%addLine(12, 11, 3)
ret = gmsh%model%geo%addLine(11, 8, 4)
ret = gmsh%model%geo%addLine(9, 14, 5)
ret = gmsh%model%geo%addLine(14, 13, 6)
ret = gmsh%model%geo%addLine(13, 12, 7)
ret = gmsh%model%geo%addLine(11, 10, 8)
ret = gmsh%model%geo%addLine(10, 13, 9)
ret = gmsh%model%geo%addLine(10, 4, 10)
ret = gmsh%model%geo%addLine(4, 5, 11)
ret = gmsh%model%geo%addLine(5, 6, 12)
ret = gmsh%model%geo%addLine(6, 2, 13)
ret = gmsh%model%geo%addLine(2, 1, 14)
ret = gmsh%model%geo%addLine(1, 3, 15)
ret = gmsh%model%geo%addLine(3, 7, 16)
ret = gmsh%model%geo%addLine(7, 2, 17)
ret = gmsh%model%geo%addLine(3, 4, 18)
ret = gmsh%model%geo%addLine(5, 1, 19)
ret = gmsh%model%geo%addLine(7, 8, 20)
ret = gmsh%model%geo%addLine(6, 14, 21)
ret = gmsh%model%geo%addCurveLoop([-11, -19, -15, -18], 22)
ret = gmsh%model%geo%addPlaneSurface([22], 23)
ret = gmsh%model%geo%addCurveLoop([16, 17, 14, 15], 24)
ret = gmsh%model%geo%addPlaneSurface([24], 25)
ret = gmsh%model%geo%addCurveLoop([-17, 20, 1, 5, -21, 13], 26)
ret = gmsh%model%geo%addPlaneSurface([26], 27)
ret = gmsh%model%geo%addCurveLoop([-4, -1, -2, -3], 28)
ret = gmsh%model%geo%addPlaneSurface([28], 29)
ret = gmsh%model%geo%addCurveLoop([-7, 2, -5, -6], 30)
ret = gmsh%model%geo%addPlaneSurface([30], 31)
ret = gmsh%model%geo%addCurveLoop([6, -9, 10, 11, 12, 21], 32)
ret = gmsh%model%geo%addPlaneSurface([32], 33)
ret = gmsh%model%geo%addCurveLoop([7, 3, 8, 9], 34)
ret = gmsh%model%geo%addPlaneSurface([34], 35)
ret = gmsh%model%geo%addCurveLoop([-10, 18, -16, -20, 4, -8], 36)
ret = gmsh%model%geo%addPlaneSurface([36], 37)
ret = gmsh%model%geo%addCurveLoop([-14, -13, -12, 19], 38)
ret = gmsh%model%geo%addPlaneSurface([38], 39)
shells = [gmsh%model%geo%addSurfaceLoop([35, 31, 29, 37, 33, 23, 39, 25, 27])]
! We create five holes in the cube:
x = 0
y = 0.75
z = 0
r = 0.09
do t = 1, 5
x = x + 0.166
z = z + 0.166
v = cheeseHole(x, y, z, r, lcar3, shells)
ret = gmsh%model%geo%addPhysicalGroup(3, [v], t)
end do
! The volume of the cube, without the 5 holes, is defined by 6 surface loops:
! the first surface loop defines the exterior surface; the surface loops other
! than the first one define holes:
ret = gmsh%model%geo%addVolume(shells, 186)
print*, repeat("-", 80)
call gmsh%model%geo%synchronize()
! Note that using solid modelling with the OpenCASCADE CAD kernel, the same
! geometry could be built quite differently: see `t16.f90'.
! We finally define a physical volume for the elements discretizing the cube,
! without the holes (for which physical groups were already defined in the
! `cheeseHole()' function):
ret = gmsh%model%addPhysicalGroup(3, [186], 10)
! We could make only part of the model visible to only mesh this subset:
! ent = gmsh%model%getEntities()
! gmsh%model%setVisibility(ent, False)
! gmsh%model%setVisibility([(3, 5(], True, True)
! gmsh%option%setNumber("mesh%MeshOnlyVisible", 1)
! Meshing algorithms can changed globally using options:
call gmsh%option%setNumber("Mesh.Algorithm", 6d0) ! Frontal-Delaunay for 2D meshes
! They can also be set for individual surfaces, e.g. for using `MeshAdapt' on
! surface 1:
call gmsh%model%mesh%setAlgorithm(2, 33, 1)
! To generate a curvilinear mesh and optimize it to produce provably valid
! curved elements (see A. Johnen, J.-F. Remacle and C. Geuzaine. Geometric
! validity of curvilinear finite elements. Journal of Computational Physics
! 233, pp. 359-372, 2013; and T. Toulorge, C. Geuzaine, J.-F. Remacle,
! J. Lambrechts. Robust untangling of curvilinear meshes. Journal of
! Computational Physics 254, pp. 8-26, 2013), you can uncomment the following
! lines:
!
! gmsh%option%setNumber("mesh%ElementOrder", 2)
! gmsh%option%setNumber("mesh%HighOrderOptimize", 2)
call gmsh%model%mesh%generate(3)
call gmsh%write("t5.msh")
! Launch the GUI to see the results:
if (.not. any(argv == "-nopopup")) call gmsh%fltk%run()
call gmsh%finalize()
contains
integer(c_int) function cheeseHole(x, y, z, r, lc, shells) result(v)
real(c_double), intent(in) :: x, y, z, r, lc
integer(c_int), allocatable, intent(inout) :: shells(:)
integer(c_int) :: sl
integer(c_int) :: p1, p2, p3, p4, p5, p6, p7
integer(c_int) :: c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12
integer(c_int) :: l1, l2, l3, l4, l5, l6, l7, l8
integer(c_int) :: s1, s2, s3, s4, s5, s6, s7, s8
! This function will create a spherical hole in a volume. We don't specify
! tags manually, and let the functions return them automatically:
p1 = gmsh%model%geo%addPoint(x, y, z, lc)
p2 = gmsh%model%geo%addPoint(x + r, y, z, lc)
p3 = gmsh%model%geo%addPoint(x, y + r, z, lc)
p4 = gmsh%model%geo%addPoint(x, y, z + r, lc)
p5 = gmsh%model%geo%addPoint(x - r, y, z, lc)
p6 = gmsh%model%geo%addPoint(x, y - r, z, lc)
p7 = gmsh%model%geo%addPoint(x, y, z - r, lc)
c1 = gmsh%model%geo%addCircleArc(p2, p1, p7)
c2 = gmsh%model%geo%addCircleArc(p7, p1, p5)
c3 = gmsh%model%geo%addCircleArc(p5, p1, p4)
c4 = gmsh%model%geo%addCircleArc(p4, p1, p2)
c5 = gmsh%model%geo%addCircleArc(p2, p1, p3)
c6 = gmsh%model%geo%addCircleArc(p3, p1, p5)
c7 = gmsh%model%geo%addCircleArc(p5, p1, p6)
c8 = gmsh%model%geo%addCircleArc(p6, p1, p2)
c9 = gmsh%model%geo%addCircleArc(p7, p1, p3)
c10 = gmsh%model%geo%addCircleArc(p3, p1, p4)
c11 = gmsh%model%geo%addCircleArc(p4, p1, p6)
c12 = gmsh%model%geo%addCircleArc(p6, p1, p7)
l1 = gmsh%model%geo%addCurveLoop([c5, c10, c4])
l2 = gmsh%model%geo%addCurveLoop([c9, -c5, c1])
l3 = gmsh%model%geo%addCurveLoop([c12, -c8, -c1])
l4 = gmsh%model%geo%addCurveLoop([c8, -c4, c11])
l5 = gmsh%model%geo%addCurveLoop([-c10, c6, c3])
l6 = gmsh%model%geo%addCurveLoop([-c11, -c3, c7])
l7 = gmsh%model%geo%addCurveLoop([-c2, -c7, -c12])
l8 = gmsh%model%geo%addCurveLoop([-c6, -c9, c2])
! We need non-plane surfaces to define the spherical holes. Here we use the
! `gmsh%model%geo%addSurfaceFilling()' function, which can be used for
! surfaces with 3 or 4 curves on their boundary. If the curves are circle arcs
! with the same center, a spherical patch is created; otherwise transfinite
! interpolation is used. With the OpenCASCADE kernel,
! `gmsh%model%occ.addSurfaceFilling()' can be used with an arbitrary number of
! boundary curves, and will fit a BSpline patch through them.
s1 = gmsh%model%geo%addSurfaceFilling([l1])
s2 = gmsh%model%geo%addSurfaceFilling([l2])
s3 = gmsh%model%geo%addSurfaceFilling([l3])
s4 = gmsh%model%geo%addSurfaceFilling([l4])
s5 = gmsh%model%geo%addSurfaceFilling([l5])
s6 = gmsh%model%geo%addSurfaceFilling([l6])
s7 = gmsh%model%geo%addSurfaceFilling([l7])
s8 = gmsh%model%geo%addSurfaceFilling([l8])
sl = gmsh%model%geo%addSurfaceLoop([s1, s2, s3, s4, s5, s6, s7, s8])
v = gmsh%model%geo%addVolume([sl])
shells = [shells, sl]
end function cheeseHole
end program t5