Skip to content
Snippets Groups Projects
Select Git revision
  • e21ce17752e0255a3e40f2fa06a8f90176e282eb
  • master default protected
  • hierarchical-basis
  • alphashapes
  • bl
  • relaying
  • new_export_boris
  • oras_vs_osm
  • reassign_partitions
  • distributed_fwi
  • rename-classes
  • fix/fortran-api-example-t4
  • robust_partitions
  • reducing_files
  • fix_overlaps
  • 3115-issue-fix
  • 3023-Fillet2D-Update
  • convert_fdivs
  • tmp_jcjc24
  • fixedMeshIF
  • save_edges
  • gmsh_4_14_0
  • gmsh_4_13_1
  • gmsh_4_13_0
  • gmsh_4_12_2
  • gmsh_4_12_1
  • gmsh_4_12_0
  • gmsh_4_11_1
  • gmsh_4_11_0
  • gmsh_4_10_5
  • gmsh_4_10_4
  • gmsh_4_10_3
  • gmsh_4_10_2
  • gmsh_4_10_1
  • gmsh_4_10_0
  • gmsh_4_9_5
  • gmsh_4_9_4
  • gmsh_4_9_3
  • gmsh_4_9_2
  • gmsh_4_9_1
  • gmsh_4_9_0
41 results

crack.py

Blame
  • GEdgeCompound.cpp 9.69 KiB
    // Gmsh - Copyright (C) 1997-2016 C. Geuzaine, J.-F. Remacle
    //
    // See the LICENSE.txt file for license information. Please report all
    // bugs and problems to the public mailing list <gmsh@onelab.info>.
    //
    // Contributor(s):
    //   Emilie Marchandise
    //
    
    #include <stdlib.h>
    #include "GmshConfig.h"
    #include "GEdgeCompound.h"
    #include "discreteEdge.h"
    #include "Numeric.h"
    #include "Curvature.h"
    
    static bool looksOk(int tag, std::vector<GEdge*> &compound)
    {
      if(compound.empty()){
        Msg::Error("Empty edge compound %d", tag);
        return false;
      }
      for(unsigned int i = 0; i < compound.size(); i++){
        if(!compound[i]->getBeginVertex() || !compound[i]->getEndVertex()){
          Msg::Error("Edge compound %d with missing begin/end vertex", tag);
          return false;
        }
        if(compound.size() > 1 && compound[i]->getBeginVertex() == compound[i]->getEndVertex()){
          Msg::Warning("Edge compound %d with subloop", tag);
          return true;
        }
      }
      return true;
    }
    
    GEdgeCompound::GEdgeCompound(GModel *m, int tag, std::vector<GEdge*> &compound,
                                 std::vector<int> &orientation)
      : GEdge(m, tag, 0, 0), _compound(compound), _orientation(orientation)
    {
      if(!looksOk(tag, compound)) return;
    
      int N = _compound.size();
      if(N == (int)_orientation.size()){
        v0 = _orientation[0] ? _compound[0]->getBeginVertex() : _compound[0]->getEndVertex();
        v1 = _orientation[N-1] ? _compound[N-1]->getEndVertex() : _compound[N-1]->getBeginVertex();
        v0->addEdge(this);
        v1->addEdge(this);
      }
      else{
        Msg::Error("Wrong input data for compound edge %d", tag);
        return;
      }
    
      for (unsigned int i = 0; i < _compound.size(); i++){
        _compound[i]->setCompound(this);
        discreteEdge *de = dynamic_cast<discreteEdge*> (_compound[i]);
        if(de) de->createGeometry();
      }
    
      for(std::vector<GEdge*>::iterator it = _compound.begin(); it != _compound.end(); ++it){
        if(!(*it)){
          Msg::Error("Incorrect edge in compound edge %d", tag);
          return;
        }
      }
    
      parametrize();
    }
    
    GEdgeCompound::GEdgeCompound(GModel *m, int tag, std::vector<GEdge*> &compound)
      : GEdge(m, tag, 0 , 0), _compound(compound)
    {
      if(!looksOk(tag, compound)) return;
    
      orderEdges();
      int N = _compound.size();
      if(N == (int)_orientation.size()){
        v0 = _orientation[0] ? _compound[0]->getBeginVertex() : _compound[0]->getEndVertex();
        v1 = _orientation[N-1] ? _compound[N-1]->getEndVertex() : _compound[N-1]->getBeginVertex();
        v0->addEdge(this);
        v1->addEdge(this);
      }
      else{
        Msg::Error("Wrong input data for compound edge %d", tag);
        return;
      }
    
      for (unsigned int i = 0; i < _compound.size(); i++){
        _compound[i]->setCompound(this);
        discreteEdge *de = dynamic_cast<discreteEdge*> (_compound[i]);
        if(de) de->createGeometry();
      }
      parametrize();
    }
    
    void GEdgeCompound::orderEdges()
    {
      std::vector<GEdge*> _c ;
      std::list<GEdge*> edges ;
    
      for (unsigned int i = 0; i < _compound.size(); i++){
        edges.push_back(_compound[i]);
      }
    
      // find a lonely edge
      std::map<GVertex*, GEdge*> tempv;
      for (std::list<GEdge*>::iterator it = edges.begin() ; it != edges.end() ; ++it){
        GVertex *v1 = (*it)->getBeginVertex();
        GVertex *v2 = (*it)->getEndVertex();
        if(!v1 || !v2){
          Msg::Error("Compounds don't support curves without two bounding vertices");
          return;
        }
        std::map<GVertex*, GEdge*>::iterator it1 = tempv.find(v1);
        if (it1 == tempv.end()) {
          tempv.insert(std::make_pair(v1, *it));
        }
        else tempv.erase(it1);
        std::map<GVertex*, GEdge*>::iterator it2 = tempv.find(v2);
        if (it2 == tempv.end()){
          tempv.insert(std::make_pair(v2, *it));
        }
        else tempv.erase(it2);
      }
    
      // find the first GEdge and erase it from the list edges
      GEdge *firstEdge;
      if (tempv.size() == 2){ // non periodic
        firstEdge = (tempv.begin())->second;
        for (std::list<GEdge*>::iterator it = edges.begin() ; it != edges.end() ; ++it){
          if (*it == firstEdge){
            edges.erase(it);
            break;
          }
        }
      }
      else if (tempv.size() == 0){ // periodic
        firstEdge = *(edges.begin());
        edges.erase(edges.begin());
      }
      else{
        Msg::Error("EdgeCompound %d is wrong (it has %d end points)", tag(), tempv.size());
        return;
      }
    
      // loop over all segments to order segments and store it in the list _c
      _c.push_back(firstEdge);
      _orientation.push_back(1);
      GVertex *first = _c[0]->getBeginVertex();
      GVertex *last = _c[0]->getEndVertex();
    
      while (first != last){
        if (edges.empty())break;
        bool found = false;
        for (std::list<GEdge*>::iterator it = edges.begin() ; it != edges.end() ; ++it){
          GEdge *e = *it;
          std::list<GEdge*>::iterator itp;
         if (e->getBeginVertex() == last){
            _c.push_back(e);
            itp = it;
            it++;
            edges.erase(itp);
            _orientation.push_back(1);
            last = e->getEndVertex();
            found = true;
            break;
          }
          else if (e->getEndVertex() == last){
            _c.push_back(e);
            itp = it;
            it++;
            edges.erase(itp);
            _orientation.push_back(0);
            last = e->getBeginVertex();
            found = true;
            break;
          }
        }
        if (!found){
          if (_c.size() == 1 && _orientation[0]){
            GVertex *temp = first;
            first = last;
            last = temp;
            _orientation[0] = 0;
          }
          else {
            Msg::Error("Compound Edge %d is wrong", tag());
            return;
          }
        }
      }
    
      //edges is now a list of ordered GEdges
      _compound = _c;
    
      // special case reverse orientation
      if (_compound.size() < 2) return;
      if (_orientation[0] && _compound[0]->getEndVertex() != _compound[1]->getEndVertex()
          && _compound[0]->getEndVertex() != _compound[1]->getBeginVertex()){
        for (unsigned int i = 0; i < _compound.size(); i++){
          _orientation[i] = !_orientation[i] ;
        }
      }
    }
    
    int GEdgeCompound::minimumMeshSegments() const
    {
      // int N = 0;
      // for (unsigned int i = 0; i < _compound.size(); i++)
      //   N += _compound[i]->minimumMeshSegments();
      return 3;
    }
    
    int GEdgeCompound::minimumDrawSegments() const
    {
      int N = 0;
      for (unsigned int i = 0; i < _compound.size(); i++)
        N += _compound[i]->minimumDrawSegments();
      return N;
    }
    
    GEdgeCompound::~GEdgeCompound()
    {
    }
    
    Range<double> GEdgeCompound::parBounds(int i) const
    {
      if(_pars.empty()){
        Msg::Error("Edge compound has no parametrization");
        return Range<double>(0, 1);
      }
      return Range<double>(0, _pars[_compound.size()]);
    }
    
    /*
      +--------+-----------+----------- ... ----+
      0      _pars[1]     _pars[2]              _pars[N-1]
    
    */
    
    bool GEdgeCompound::getLocalParameter(const double &t,
                                          int &iEdge,
                                          double &tLoc) const
    {
      if(_pars.empty()){
        Msg::Error("Edge compound has no parametrization");
        return false;
      }
      for (iEdge = 0; iEdge < (int)_compound.size(); iEdge++){
        double tmin = _pars[iEdge];
        double tmax = _pars[iEdge+1];
        if (t >= tmin && t <= tmax){
          Range<double> b = _compound[iEdge]->parBounds(0);
          tLoc = _orientation[iEdge] ?
            b.low()  + (t-tmin)/(tmax-tmin) * (b.high()-b.low()) :
            b.high() - (t-tmin)/(tmax-tmin) * (b.high()-b.low()) ;
          return true;
        }
      }
      return false;
    }
    
    void GEdgeCompound::parametrize()
    {
      _pars.clear();
      _pars.push_back(0.0);
      for (unsigned int i = 0; i < _compound.size(); i++){
        Range<double> b = _compound[i]->parBounds(0);
        _pars.push_back(_pars[_pars.size()-1] + (b.high() - b.low()));
      }
    }
    
    double GEdgeCompound::curvature(double par) const
    {
      double tLoc;
      int iEdge;
      if(!getLocalParameter(par, iEdge, tLoc))
        return 0.;
      return _compound[iEdge]->curvature(tLoc);
    }
    
    double GEdgeCompound::curvatures(const double par, SVector3 *dirMax, SVector3 *dirMin,
                                     double *curvMax, double *curvMin) const
    {
      double tLoc = -1.0;
      int iEdge;
      if(!getLocalParameter(par, iEdge, tLoc))
        return 0;
    
      if( _compound[iEdge]->geomType() == GEntity::DiscreteCurve){
        Curvature& curvature = Curvature::getInstance();
        if( !Curvature::valueAlreadyComputed() ){
          Msg::Info("Need to compute discrete curvature for anisotropic remesh (in GFace)");
          Curvature::typeOfCurvature type = Curvature::RUSIN; //RBF
          curvature.computeCurvature(model(), type);
        }
        double tLocMLine;
        int iMLine;
        discreteEdge* ptrEdge = dynamic_cast<discreteEdge*>(_compound[iEdge]);
        ptrEdge->getLocalParameter(tLoc, iMLine, tLocMLine);
    
        //vector of MLines
        MLine* mline = ptrEdge->lines[iMLine];
    
        double cMin[2];
        double cMax[2];
        SVector3 dMin[2];
        SVector3 dMax[2];
        curvature.edgeNodalValuesAndDirections(mline, dMax, dMin, cMax, cMin, 1);
    
        *dirMax = (1-tLocMLine)*dMax[0] + tLocMLine*dMax[1];
        *dirMin = (1-tLocMLine)*dMin[0] + tLocMLine*dMin[1];
        *curvMax = (1-tLocMLine)*cMax[0] + tLocMLine*cMax[1];
        *curvMin = (1-tLocMLine)*cMin[0] + tLocMLine*cMin[1];
    
        return *curvMax;
      }
      else{
        Msg::Error("Case of CAD Geometry, don't know what to do here...");
      }
      return 0.0;
    }
    
    GPoint GEdgeCompound::point(double par) const
    {
      double tLoc;
      int iEdge;
      if(!getLocalParameter(par, iEdge, tLoc))
        return GPoint();
      return _compound[iEdge]->point(tLoc);
    }
    
    SVector3 GEdgeCompound::firstDer(double par) const
    {
      double tLoc;
      int iEdge;
      if(!getLocalParameter(par, iEdge, tLoc))
        return SVector3();
      return _compound[iEdge]->firstDer(tLoc);
    }
    
    void replaceMeshCompound(GFace *gf, std::list<GEdge*> &edges)
    {
      std::list<GEdge*> e = gf->edges();
      // replace edges by their compounds
      std::set<GEdge*> mySet;
      std::list<GEdge*>::iterator it = e.begin();
      while(it != e.end()){
        if((*it)->getCompound()){
          mySet.insert((*it)->getCompound());
        }
        else{
          mySet.insert(*it);
        }
        ++it;
      }
      edges.clear();
      edges.insert(edges.begin(), mySet.begin(), mySet.end());
    }