Select Git revision
custom_gui.py
-
Christophe Geuzaine authored
(cherry picked from commit 384a3e2c)
Christophe Geuzaine authored(cherry picked from commit 384a3e2c)
GModel.cpp 82.91 KiB
// Gmsh - Copyright (C) 1997-2011 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to <gmsh@geuz.org>.
#include <stdlib.h>
#include <sstream>
#include "GmshConfig.h"
#include "GmshMessage.h"
#include "GModel.h"
#include "GModelFactory.h"
#include "GFaceCompound.h"
#include "MPoint.h"
#include "MLine.h"
#include "MTriangle.h"
#include "MQuadrangle.h"
#include "MTetrahedron.h"
#include "MHexahedron.h"
#include "MPrism.h"
#include "MPyramid.h"
#include "MElementCut.h"
#include "MElementOctree.h"
#include "discreteRegion.h"
#include "discreteFace.h"
#include "discreteEdge.h"
#include "discreteVertex.h"
#include "gmshSurface.h"
#include "Geo.h"
#include "SmoothData.h"
#include "Context.h"
#include "OS.h"
#include "GEdgeLoop.h"
#include "MVertexPositionSet.h"
#include "OpenFile.h"
#include "CreateFile.h"
#if defined(HAVE_MESH)
#include "Field.h"
#include "Generator.h"
#include "meshGFaceOptimize.h"
#include "meshPartition.h"
#include "HighOrder.h"
#endif
std::vector<GModel*> GModel::list;
int GModel::_current = -1;
GModel::GModel(std::string name)
: _name(name), _visible(1), _octree(0),
_geo_internals(0), _occ_internals(0), _acis_internals(0), _fm_internals(0),
_factory(0), _fields(0), _currentMeshEntity(0), normals(0)
{
partitionSize[0] = 0; partitionSize[1] = 0;
list.push_back(this);
// at the moment we always create (at least an empty) GEO model
_createGEOInternals();
#if defined(HAVE_OCC)
setFactory("OpenCASCADE");
#else
setFactory("Gmsh");
#endif
#if defined(HAVE_MESH)
_fields = new FieldManager();
#endif
}
GModel::~GModel()
{
std::vector<GModel*>::iterator it = std::find(list.begin(), list.end(), this);
if(it != list.end()) list.erase(it);
destroy();
_deleteGEOInternals();
_deleteOCCInternals();
#if defined(HAVE_MESH)
delete _fields;
#endif
}
GModel *GModel::current(int index)
{
if(list.empty()){
Msg::Warning("No current model available: creating one");
new GModel();
}
if(index >= 0) _current = index;
if(_current < 0 || _current >= (int)list.size()) return list.back();
return list[_current];
}
int GModel::setCurrent(GModel *m)
{
for (unsigned int i = 0; i < list.size(); i++){
if (list[i] == m){
_current = i;
break;
}
}
return _current;
}
void GModel::setFactory(std::string name)
{
if(_factory) delete _factory;
if(name == "OpenCASCADE"){
#if defined(HAVE_OCC)
_factory = new OCCFactory();
#else
Msg::Error("Missing OpenCASCADE support: using Gmsh GEO factory instead");
_factory = new GeoFactory();
#endif
}
else{
_factory = new GeoFactory();
}
}
GModel *GModel::findByName(std::string name)
{
// return last mesh with given name
for(int i = list.size() - 1; i >= 0; i--)
if(list[i]->getName() == name) return list[i];
return 0;
}
void GModel::destroy()
{
_name.clear();
for(riter it = firstRegion(); it != lastRegion(); ++it)
delete *it;
regions.clear();
std::vector<GFace*> to_keep;
for(fiter it = firstFace(); it != lastFace(); ++it){
// projection faces are persistent
if((*it)->getNativeType() == GEntity::UnknownModel &&
(*it)->geomType() == GEntity::ProjectionFace)
to_keep.push_back(*it);
else
delete *it;
}
faces.clear();
faces.insert(to_keep.begin(), to_keep.end());
for(eiter it = firstEdge(); it != lastEdge(); ++it)
delete *it;
edges.clear();
for(viter it = firstVertex(); it != lastVertex(); ++it)
delete *it;
vertices.clear();
destroyMeshCaches();
MVertex::resetGlobalNumber();
MElement::resetGlobalNumber();
if(normals) delete normals;
normals = 0;
#if defined(HAVE_MESH)
_fields->reset();
#endif
gmshSurface::reset();
}
void GModel::destroyMeshCaches()
{
_vertexVectorCache.clear();
_vertexMapCache.clear();
_elementVectorCache.clear();
_elementMapCache.clear();
_elementIndexCache.clear();
delete _octree;
_octree = 0;
}
void GModel::deleteMesh()
{
for(riter it = firstRegion(); it != lastRegion();++it)
(*it)->deleteMesh();
for(fiter it = firstFace(); it != lastFace();++it)
(*it)->deleteMesh();
for(eiter it = firstEdge(); it != lastEdge();++it)
(*it)->deleteMesh();
for(viter it = firstVertex(); it != lastVertex();++it)
(*it)->deleteMesh();
destroyMeshCaches();
}
bool GModel::empty() const
{
return vertices.empty() && edges.empty() && faces.empty() && regions.empty();
}
std::vector<GRegion*> GModel::bindingsGetRegions()
{
return std::vector<GRegion*> (regions.begin(), regions.end());
}
std::vector<GFace*> GModel::bindingsGetFaces()
{
return std::vector<GFace*> (faces.begin(), faces.end());
}
std::vector<GEdge*> GModel::bindingsGetEdges()
{
return std::vector<GEdge*> (edges.begin(), edges.end());
}
std::vector<GVertex*> GModel::bindingsGetVertices()
{
return std::vector<GVertex*> (vertices.begin(), vertices.end());
}
GRegion *GModel::getRegionByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GRegion*, GEntityLessThan>::const_iterator it = regions.find((GRegion*)&tmp);
if(it != regions.end())
return *it;
else
return 0;
}
GFace *GModel::getFaceByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GFace*, GEntityLessThan>::const_iterator it = faces.find((GFace*)&tmp);
if(it != faces.end())
return *it;
else
return 0;
}
GEdge *GModel::getEdgeByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GEdge*, GEntityLessThan>::const_iterator it = edges.find((GEdge*)&tmp);
if(it != edges.end())
return *it;
else
return 0;
}
GVertex *GModel::getVertexByTag(int n) const
{
GEntity tmp((GModel*)this, n);
std::set<GVertex*, GEntityLessThan>::const_iterator it = vertices.find((GVertex*)&tmp);
if(it != vertices.end())
return *it;
else
return 0;
}
std::vector<int> GModel::getEdgesByStringTag(const std::string tag)
{
std::vector<int> nums;
std::map<int, std::vector<GEntity*> > physicalGroups[4];
getPhysicalGroups(physicalGroups);
std::vector<GEntity*> allEdges = physicalGroups[1][this->getPhysicalNumber(1,tag)];
for ( std::vector<GEntity*>::iterator it = allEdges.begin(); it != allEdges.end(); it++){
GEntity *ge = *it;
nums.push_back(ge->tag());
}
return nums;
}
void GModel::remove(GRegion *r)
{
riter it = std::find(firstRegion(), lastRegion(), r);
if(it != (riter)regions.end()) regions.erase(it);
}
void GModel::remove(GFace *f)
{
fiter it = std::find(firstFace(), lastFace(), f);
if(it != faces.end()) faces.erase(it);
}
void GModel::remove(GEdge *e)
{
eiter it = std::find(firstEdge(), lastEdge(), e);
if(it != edges.end()) edges.erase(it);
}
void GModel::remove(GVertex *v)
{
viter it = std::find(firstVertex(), lastVertex(), v);
if(it != vertices.end()) vertices.erase(it);
}
void GModel::snapVertices()
{
viter vit = firstVertex();
double tol = CTX::instance()->geom.tolerance;
while (vit != lastVertex()){
std::list<GEdge*> edges = (*vit)->edges();
for (std::list<GEdge*>::iterator it = edges.begin(); it != edges.end(); ++it){
Range<double> parb = (*it)->parBounds(0);
double t;
if ((*it)->getBeginVertex() == *vit){
t = parb.low();
}
else if ((*it)->getEndVertex() == *vit){
t = parb.high();
}
else{
Msg::Error("Weird vertex: impossible to snap");
break;
}
GPoint gp = (*it)->point(t);
double d = sqrt((gp.x() - (*vit)->x()) * (gp.x() - (*vit)->x()) +
(gp.y() - (*vit)->y()) * (gp.y() - (*vit)->y()) +
(gp.z() - (*vit)->z()) * (gp.z() - (*vit)->z()));
if (d > tol){
(*vit)->setPosition(gp);
Msg::Warning("Geom Vertex %d Corrupted (%12.5E)... Snap performed",
(*vit)->tag(), d);
}
}
vit++;
}
}
void GModel::getEntities(std::vector<GEntity*> &entities)
{
entities.clear();
entities.insert(entities.end(), vertices.begin(), vertices.end());
entities.insert(entities.end(), edges.begin(), edges.end());
entities.insert(entities.end(), faces.begin(), faces.end());
entities.insert(entities.end(), regions.begin(), regions.end());
}
int GModel::getMaxElementaryNumber(int dim)
{
std::vector<GEntity*> entities;
getEntities(entities);
int num = 0;
for(unsigned int i = 0; i < entities.size(); i++)
if(dim < 0 || entities[i]->dim() == dim)
num = std::max(num, std::abs(entities[i]->tag()));
return num;
}
bool GModel::noPhysicalGroups()
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
if(entities[i]->physicals.size()) return false;
return true;
}
void GModel::getPhysicalGroups(std::map<int, std::vector<GEntity*> > groups[4])
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
std::map<int, std::vector<GEntity*> > &group(groups[entities[i]->dim()]);
for(unsigned int j = 0; j < entities[i]->physicals.size(); j++){
// physicals can be stored with negative signs when the entity
// should be "reversed"
int p = std::abs(entities[i]->physicals[j]);
if(std::find(group[p].begin(), group[p].end(), entities[i]) == group[p].end())
group[p].push_back(entities[i]);
}
}
}
void GModel::deletePhysicalGroups()
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
entities[i]->physicals.clear();
}
void GModel::deletePhysicalGroup(int dim, int num)
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
if(dim == entities[i]->dim()){
std::vector<int> p;
for(unsigned int j = 0; j < entities[i]->physicals.size(); j++)
if(entities[i]->physicals[j] != num)
p.push_back(entities[i]->physicals[j]);
entities[i]->physicals = p;
}
}
}
int GModel::getMaxPhysicalNumber(int dim)
{
std::vector<GEntity*> entities;
getEntities(entities);
int num = 0;
for(unsigned int i = 0; i < entities.size(); i++)
if(entities[i]->dim() == dim)
for(unsigned int j = 0; j < entities[i]->physicals.size(); j++)
num = std::max(num, std::abs(entities[i]->physicals[j]));
return num;
}
int GModel::setPhysicalName(std::string name, int dim, int number)
{
// check if the name is already used
piter it = physicalNames.begin();
while(it != physicalNames.end()){
if(name == it->second && dim == it->first.first) return it->first.second;
++it;
}
// if no number is given, find the next available one
if(!number) number = getMaxPhysicalNumber(dim) + 1;
physicalNames[std::pair<int, int>(dim, number)] = name;
return number;
}
std::string GModel::getPhysicalName(int dim, int number)
{
//Emi debug here
// printf("getPhysName size %d \n", physicalNames.size());
// std::map<std::pair<int, int>, std::string>::iterator itt = physicalNames.begin();
// for (; itt != physicalNames.end(); itt++){
// printf("name %s \n", itt->second.c_str());
// printf("par (%d,%d) \n", itt->first.first, itt->first.second);
// }
std::map<std::pair<int, int>, std::string>::iterator it =
physicalNames.find(std::pair<int, int>(dim, number));
if(it != physicalNames.end()) return it->second;
return "";
}
int GModel::getPhysicalNumber(const int &dim, const std::string &name)
{
for(piter physIt = firstPhysicalName(); physIt != lastPhysicalName(); ++physIt)
if(dim == physIt->first.first && name == physIt->second)
return physIt->first.second;
Msg::Warning("No physical group found with the name '%s'", name.c_str());
return -1;
}
int GModel::getDim()
{
if(getNumRegions() > 0) return 3;
if(getNumFaces() > 0) return 2;
if(getNumEdges() > 0) return 1;
if(getNumVertices() > 0) return 0;
Msg::Warning("The model is empty, dim = -1");
return -1;
}
std::string GModel::getElementaryName(int dim, int number)
{
std::map<std::pair<int, int>, std::string>::iterator it =
elementaryNames.find(std::pair<int, int>(dim, number));
if(it != elementaryNames.end()) return it->second;
return "";
}
void GModel::setSelection(int val)
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
entities[i]->setSelection(val);
// reset selection in elements (stored in the visibility flag to
// save space)
if(val == 0){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
if(entities[i]->getMeshElement(j)->getVisibility() == 2)
entities[i]->getMeshElement(j)->setVisibility(1);
}
}
}
SBoundingBox3d GModel::bounds(bool aroundVisible)
{
std::vector<GEntity*> entities;
getEntities(entities);
// using the mesh vertices for now; should use entities[i]->bounds() instead
SBoundingBox3d bb;
for(unsigned int i = 0; i < entities.size(); i++)
if(!aroundVisible || entities[i]->getVisibility()){
if(entities[i]->dim() == 0)
bb += static_cast<GVertex*>(entities[i])->xyz();
else
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
bb += entities[i]->mesh_vertices[j]->point();
}
return bb;
}
int GModel::mesh(int dimension)
{
#if defined(HAVE_MESH)
GenerateMesh(this, dimension);
return true;
#else
Msg::Error("Mesh module not compiled");
return false;
#endif
}
int GModel::refineMesh(int linear)
{
#if defined(HAVE_MESH)
RefineMesh(this, linear);
return true;
#else
Msg::Error("Mesh module not compiled");
return false;
#endif
}
int GModel::setOrderN(int order, int linear, int incomplete)
{
#if defined(HAVE_MESH)
SetOrderN(this, order, linear, incomplete);
return true;
#else
Msg::Error("Mesh module not compiled");
return false;
#endif
}
int GModel::getMeshStatus(bool countDiscrete)
{
for(riter it = firstRegion(); it != lastRegion(); ++it)
if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteVolume &&
(*it)->meshAttributes.Method != MESH_NONE)) &&
((*it)->tetrahedra.size() ||(*it)->hexahedra.size() ||
(*it)->prisms.size() || (*it)->pyramids.size() ||
(*it)->polyhedra.size())) return 3;
for(fiter it = firstFace(); it != lastFace(); ++it)
if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteSurface &&
(*it)->meshAttributes.Method != MESH_NONE)) &&
((*it)->triangles.size() || (*it)->quadrangles.size() ||
(*it)->polygons.size())) return 2;
for(eiter it = firstEdge(); it != lastEdge(); ++it)
if((countDiscrete || ((*it)->geomType() != GEntity::DiscreteCurve &&
(*it)->meshAttributes.Method != MESH_NONE)) &&
(*it)->lines.size()) return 1;
for(viter it = firstVertex(); it != lastVertex(); ++it)
if((*it)->mesh_vertices.size()) return 0;
return -1;
}
int GModel::getNumMeshVertices()
{
std::vector<GEntity*> entities;
getEntities(entities);
unsigned int n = 0;
for(unsigned int i = 0; i < entities.size(); i++)
n += entities[i]->mesh_vertices.size();
return n;
}
int GModel::getNumMeshElements()
{
std::vector<GEntity*> entities;
getEntities(entities);
unsigned int n = 0;
for(unsigned int i = 0; i < entities.size(); i++)
n += entities[i]->getNumMeshElements();
return n;
}
int GModel::getNumMeshParentElements()
{
std::vector<GEntity*> entities;
getEntities(entities);
unsigned int n = 0;
for(unsigned int i = 0; i < entities.size(); i++)
n += entities[i]->getNumMeshParentElements();
return n;
}
int GModel::getNumMeshElements(unsigned c[5])
{
c[0] = 0; c[1] = 0; c[2] = 0; c[3] = 0; c[4] = 0;
for(riter it = firstRegion(); it != lastRegion(); ++it)
(*it)->getNumMeshElements(c);
if(c[0] + c[1] + c[2] + c[3] + c[4]) return 3;
for(fiter it = firstFace(); it != lastFace(); ++it)
(*it)->getNumMeshElements(c);
if(c[0] + c[1] + c[2]) return 2;
for(eiter it = firstEdge(); it != lastEdge(); ++it)
(*it)->getNumMeshElements(c);
if(c[0]) return 1;
return 0;
}
MElement *GModel::getMeshElementByCoord(SPoint3 &p, int dim)
{
if(!_octree){
Msg::Debug("Rebuilding mesh element octree");
_octree = new MElementOctree(this);
}
return _octree->find(p.x(), p.y(), p.z(), dim);
}
MVertex *GModel::getMeshVertexByTag(int n)
{
if(_vertexVectorCache.empty() && _vertexMapCache.empty()){
Msg::Debug("Rebuilding mesh vertex cache");
_vertexVectorCache.clear();
_vertexMapCache.clear();
bool dense = (getNumMeshVertices() == MVertex::getGlobalNumber());
std::vector<GEntity*> entities;
getEntities(entities);
if(dense){
Msg::Debug("Good: we have a dense vertex numbering in the cache");
// numbering starts at 1
_vertexVectorCache.resize(MVertex::getGlobalNumber() + 1);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
_vertexVectorCache[entities[i]->mesh_vertices[j]->getNum()] =
entities[i]->mesh_vertices[j];
}
else{
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
_vertexMapCache[entities[i]->mesh_vertices[j]->getNum()] =
entities[i]->mesh_vertices[j];
}
}
if(n < (int)_vertexVectorCache.size())
return _vertexVectorCache[n];
else
return _vertexMapCache[n];
}
void GModel::getMeshVerticesForPhysicalGroup(int dim, int num, std::vector<MVertex*> &v)
{
v.clear();
std::map<int, std::vector<GEntity*> > groups[4];
getPhysicalGroups(groups);
std::map<int, std::vector<GEntity*> >::const_iterator it = groups[dim].find(num);
if(it == groups[dim].end()) return;
const std::vector<GEntity *> &entities = it->second;
std::set<MVertex*> sv;
for(unsigned int i = 0; i < entities.size(); i++){
if(dim == 0){
GVertex *g = (GVertex*)entities[i];
sv.insert(g->mesh_vertices[0]);
}
else{
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
for(int k = 0; k < e->getNumVertices(); k++)
sv.insert(e->getVertex(k));
}
}
}
v.insert(v.begin(), sv.begin(), sv.end());
}
MElement *GModel::getMeshElementByTag(int n)
{
if(_elementVectorCache.empty() && _elementMapCache.empty()){
Msg::Debug("Rebuilding mesh element cache");
_elementVectorCache.clear();
_elementMapCache.clear();
bool dense = (getNumMeshElements() == MElement::getGlobalNumber());
std::vector<GEntity*> entities;
getEntities(entities);
if(dense){
Msg::Debug("Good: we have a dense element numbering in the cache");
// numbering starts at 1
_elementVectorCache.resize(MElement::getGlobalNumber() + 1);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
_elementVectorCache[e->getNum()] = e;
}
}
else{
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
_elementMapCache[e->getNum()] = e;
}
}
}
if(n < (int)_elementVectorCache.size())
return _elementVectorCache[n];
else
return _elementMapCache[n];
}
int GModel::getMeshElementIndex(MElement *e)
{
if(!e) return 0;
std::map<int, int>::iterator it = _elementIndexCache.find(e->getNum());
if(it != _elementIndexCache.end()) return it->second;
return e->getNum();
}
void GModel::setMeshElementIndex(MElement *e, int index)
{
_elementIndexCache[e->getNum()] = index;
}
template <class T>
static void removeInvisible(std::vector<T*> &elements, bool all)
{
std::vector<T*> tmp;
for(unsigned int i = 0; i < elements.size(); i++){
if(all || !elements[i]->getVisibility())
delete elements[i];
else
tmp.push_back(elements[i]);
}
elements.clear();
elements = tmp;
}
void GModel::removeInvisibleElements()
{
for(riter it = firstRegion(); it != lastRegion(); ++it){
bool all = !(*it)->getVisibility();
removeInvisible((*it)->tetrahedra, all);
removeInvisible((*it)->hexahedra, all);
removeInvisible((*it)->prisms, all);
removeInvisible((*it)->pyramids, all);
removeInvisible((*it)->polyhedra, all);
(*it)->deleteVertexArrays();
}
for(fiter it = firstFace(); it != lastFace(); ++it){
bool all = !(*it)->getVisibility();
removeInvisible((*it)->triangles, all);
removeInvisible((*it)->quadrangles, all);
removeInvisible((*it)->polygons, all);
(*it)->deleteVertexArrays();
}
for(eiter it = firstEdge(); it != lastEdge(); ++it){
bool all = !(*it)->getVisibility();
removeInvisible((*it)->lines, all);
(*it)->deleteVertexArrays();
}
destroyMeshCaches();
}
int GModel::indexMeshVertices(bool all, int singlePartition)
{
std::vector<GEntity*> entities;
getEntities(entities);
// tag all mesh vertices with -1 (negative vertices will not be
// saved)
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
entities[i]->mesh_vertices[j]->setIndex(-1);
// tag all mesh vertices belonging to elements that need to be saved
// with 0, or with -2 if they need to be taken into account in the
// numbering but need not to be saved (because we save a single
// partition and they are not used in that partition)
for(unsigned int i = 0; i < entities.size(); i++){
if(all || entities[i]->physicals.size()){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
for(int k = 0; k < e->getNumVertices(); k++){
if(!singlePartition || e->getPartition() == singlePartition)
e->getVertex(k)->setIndex(0);
else if(e->getVertex(k)->getIndex() == -1)
e->getVertex(k)->setIndex(-2);
}
}
}
}
// renumber all the mesh vertices tagged with 0
int numVertices = 0, index = 0;
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++)
if(!entities[i]->mesh_vertices[j]->getIndex()){
index++;
numVertices++;
entities[i]->mesh_vertices[j]->setIndex(index);
}
else if(entities[i]->mesh_vertices[j]->getIndex() == -2)
index++;
return numVertices;
}
void GModel::scaleMesh(double factor)
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
MVertex *v = entities[i]->mesh_vertices[j];
v->x() *= factor;
v->y() *= factor;
v->z() *= factor;
}
}
void GModel::recomputeMeshPartitions()
{
meshPartitions.clear();
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
int part = entities[i]->getMeshElement(j)->getPartition();
if(part) meshPartitions.insert(part);
}
}
}
void GModel::deleteMeshPartitions()
{
std::vector<GEntity*> entities;
getEntities(entities);
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++)
entities[i]->getMeshElement(j)->setPartition(0);
meshPartitions.clear();
}
template<class T>
static void _addElements(std::vector<T*> &dst, const std::vector<MElement*> &src)
{
for(unsigned int i = 0; i < src.size(); i++) dst.push_back((T*)src[i]);
}
void GModel::_storeElementsInEntities(std::map<int, std::vector<MElement*> > &map)
{
std::map<int, std::vector<MElement*> >::const_iterator it = map.begin();
for(; it != map.end(); ++it){
if(!it->second.size()) continue;
int type = it->second[0]->getType();
switch(type){
case TYPE_PNT:
{
GVertex *v = getVertexByTag(it->first);
if(!v){
v = new discreteVertex(this, it->first);
add(v);
}
if(!v->points.empty()) { // CAD points already have one by default
v->points.clear();
v->mesh_vertices.clear();
}
_addElements(v->points, it->second);
}
break;
case TYPE_LIN:
{
GEdge *e = getEdgeByTag(it->first);
if(!e){
e = new discreteEdge(this, it->first, 0, 0);
add(e);
}
_addElements(e->lines, it->second);
}
break;
case TYPE_TRI: case TYPE_QUA: case TYPE_POLYG:
{
GFace *f = getFaceByTag(it->first);
if(!f){
f = new discreteFace(this, it->first);
add(f);
}
if(type == TYPE_TRI) _addElements(f->triangles, it->second);
else if(type == TYPE_QUA) _addElements(f->quadrangles, it->second);
else _addElements(f->polygons, it->second);
}
break;
case TYPE_TET: case TYPE_HEX: case TYPE_PYR: case TYPE_PRI: case TYPE_POLYH:
{
GRegion *r = getRegionByTag(it->first);
if(!r){
r = new discreteRegion(this, it->first);
add(r);
}
if(type == TYPE_TET) _addElements(r->tetrahedra, it->second);
else if(type == TYPE_HEX) _addElements(r->hexahedra, it->second);
else if(type == TYPE_PRI) _addElements(r->prisms, it->second);
else if(type == TYPE_PYR) _addElements(r->pyramids, it->second);
else _addElements(r->polyhedra, it->second);
}
break;
}
}
}
template<class T>
static void _associateEntityWithElementVertices(GEntity *ge, std::vector<T*> &elements)
{
for(unsigned int i = 0; i < elements.size(); i++){
for(int j = 0; j < elements[i]->getNumVertices(); j++){
if (!elements[i]->getVertex(j)->onWhat() ||
elements[i]->getVertex(j)->onWhat()->dim() > ge->dim())
elements[i]->getVertex(j)->setEntity(ge);
}
}
}
void GModel::_associateEntityWithMeshVertices()
{
// loop on regions, then on faces, edges and vertices and store the
// entity pointer in the the elements' vertices (this way we
// associate the entity of lowest geometrical degree with each
// vertex)
for(riter it = firstRegion(); it != lastRegion(); ++it){
_associateEntityWithElementVertices(*it, (*it)->tetrahedra);
_associateEntityWithElementVertices(*it, (*it)->hexahedra);
_associateEntityWithElementVertices(*it, (*it)->prisms);
_associateEntityWithElementVertices(*it, (*it)->pyramids);
_associateEntityWithElementVertices(*it, (*it)->polyhedra);
}
for(fiter it = firstFace(); it != lastFace(); ++it){
_associateEntityWithElementVertices(*it, (*it)->triangles);
_associateEntityWithElementVertices(*it, (*it)->quadrangles);
_associateEntityWithElementVertices(*it, (*it)->polygons);
}
for(eiter it = firstEdge(); it != lastEdge(); ++it){
_associateEntityWithElementVertices(*it, (*it)->lines);
}
for(viter it = firstVertex(); it != lastVertex(); ++it){
_associateEntityWithElementVertices(*it, (*it)->points);
}
}
void GModel::_storeVerticesInEntities(std::map<int, MVertex*> &vertices)
{
std::map<int, MVertex*>::iterator it = vertices.begin();
for(; it != vertices.end(); ++it){
MVertex *v = it->second;
GEntity *ge = v->onWhat();
if(ge) ge->mesh_vertices.push_back(v);
else{
delete v; // we delete all unused vertices
it->second = 0;
}
}
}
void GModel::_storeVerticesInEntities(std::vector<MVertex*> &vertices)
{
for(unsigned int i = 0; i < vertices.size(); i++){
MVertex *v = vertices[i];
if(v){ // the vector is allowed to have null entries
GEntity *ge = v->onWhat();
if(ge) ge->mesh_vertices.push_back(v);
else{
delete v; // we delete all unused vertices
vertices[i] = 0;
}
}
}
}
void GModel::checkMeshCoherence(double tolerance)
{
int numEle = getNumMeshElements();
if(!numEle) return;
Msg::StatusBar(2, true, "Checking mesh coherence (%d elements)...", numEle);
SBoundingBox3d bbox = bounds();
double lc = bbox.empty() ? 1. : norm(SVector3(bbox.max(), bbox.min()));
double eps = lc * tolerance;
std::vector<GEntity*> entities;
getEntities(entities);
// check for duplicate mesh vertices
{
Msg::Info("Checking for duplicate vertices...");
std::vector<MVertex*> vertices;
for(unsigned int i = 0; i < entities.size(); i++)
vertices.insert(vertices.end(), entities[i]->mesh_vertices.begin(),
entities[i]->mesh_vertices.end());
MVertexPositionSet pos(vertices);
for(unsigned int i = 0; i < vertices.size(); i++)
pos.find(vertices[i]->x(), vertices[i]->y(), vertices[i]->z(), eps);
int num = 0;
for(unsigned int i = 0; i < vertices.size(); i++)
if(!vertices[i]->getIndex()){
Msg::Info("Duplicate vertex at (%.16g,%.16g,%.16g)",
vertices[i]->x(), vertices[i]->y(), vertices[i]->z());
num++;
}
if(num) Msg::Error("%d duplicate vert%s", num, num > 1 ? "ices" : "ex");
}
// check for duplicate elements
{
Msg::Info("Checking for duplicate elements...");
std::vector<MVertex*> vertices;
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
SPoint3 p = entities[i]->getMeshElement(j)->barycenter();
vertices.push_back(new MVertex(p.x(), p.y(), p.z()));
}
MVertexPositionSet pos(vertices);
for(unsigned int i = 0; i < vertices.size(); i++)
pos.find(vertices[i]->x(), vertices[i]->y(), vertices[i]->z(), eps);
int num = 0;
for(unsigned int i = 0; i < vertices.size(); i++){
if(!vertices[i]->getIndex()){
Msg::Info("Duplicate element with barycenter (%.16g,%.16g,%.16g)",
vertices[i]->x(), vertices[i]->y(), vertices[i]->z());
num++;
}
delete vertices[i];
}
if(num) Msg::Error("%d duplicate element%s", num, num > 1 ? "s" : "");
}
Msg::StatusBar(2, true, "Done checking mesh coherence");
}
int GModel::removeDuplicateMeshVertices(double tolerance)
{
Msg::StatusBar(2, true, "Removing duplicate mesh vertices...");
SBoundingBox3d bbox = bounds();
double lc = bbox.empty() ? 1. : norm(SVector3(bbox.max(), bbox.min()));
double eps = lc * tolerance;
std::vector<GEntity*> entities;
getEntities(entities);
std::vector<MVertex*> vertices;
for(unsigned int i = 0; i < entities.size(); i++)
for(unsigned int j = 0; j < entities[i]->mesh_vertices.size(); j++){
MVertex *v = entities[i]->mesh_vertices[j];
vertices.push_back(new MVertex(v->x(), v->y(), v->z()));
}
MVertexPositionSet pos(vertices);
for(unsigned int i = 0; i < vertices.size(); i++)
pos.find(vertices[i]->x(), vertices[i]->y(), vertices[i]->z(), eps);
int num = 0;
for(unsigned int i = 0; i < vertices.size(); i++)
if(!vertices[i]->getIndex()) num++;
if(!num){
for(unsigned int i = 0; i < vertices.size(); i++)
delete vertices[i];
Msg::Info("No duplicate vertices found");
return 0;
}
std::map<int, std::vector<MElement*> > elements[10];
for(unsigned int i = 0; i < entities.size(); i++){
for(unsigned int j = 0; j < entities[i]->getNumMeshElements(); j++){
MElement *e = entities[i]->getMeshElement(j);
std::vector<MVertex*> verts;
for(int k = 0; k < e->getNumVertices(); k++){
MVertex *v = e->getVertex(k);
MVertex *v2 = pos.find(v->x(), v->y(), v->z(), eps);
if(v2) verts.push_back(v2);
}
if((int)verts.size() == e->getNumVertices()){
MElementFactory factory;
MElement *e2 = factory.create(e->getTypeForMSH(), verts, e->getNum(),
e->getPartition());
switch(e2->getType()){
case TYPE_PNT: elements[0][entities[i]->tag()].push_back(e2); break;
case TYPE_LIN: elements[1][entities[i]->tag()].push_back(e2); break;
case TYPE_TRI: elements[2][entities[i]->tag()].push_back(e2); break;
case TYPE_QUA: elements[3][entities[i]->tag()].push_back(e2); break;
case TYPE_TET: elements[4][entities[i]->tag()].push_back(e2); break;
case TYPE_HEX: elements[5][entities[i]->tag()].push_back(e2); break;
case TYPE_PRI: elements[6][entities[i]->tag()].push_back(e2); break;
case TYPE_PYR: elements[7][entities[i]->tag()].push_back(e2); break;
case TYPE_POLYG: elements[8][entities[i]->tag()].push_back(e2); break;
case TYPE_POLYH: elements[9][entities[i]->tag()].push_back(e2); break;
}
}
else
Msg::Error("Could not recreate element %d", e->getNum());
}
}
for(unsigned int i = 0; i < entities.size(); i++)
entities[i]->deleteMesh();
for(int i = 0; i < (int)(sizeof(elements) / sizeof(elements[0])); i++)
_storeElementsInEntities(elements[i]);
_associateEntityWithMeshVertices();
_storeVerticesInEntities(vertices);
if(num)
Msg::Info("Removed %d duplicate mesh %s", num, num > 1 ? "vertices" : "vertex");
Msg::StatusBar(2, true, "Done removing duplicate mesh vertices");
return num;
}
static void recurConnectMElementsByMFace(const MFace &f,
std::multimap<MFace, MElement*, Less_Face> &e2f,
std::set<MElement*> &group,
std::set<MFace, Less_Face> &touched)
{
if (touched.find(f) != touched.end()) return;
touched.insert(f);
for (std::multimap<MFace, MElement*, Less_Face>::iterator it = e2f.lower_bound(f);
it != e2f.upper_bound(f); ++it){
group.insert(it->second);
for (int i = 0; i < it->second->getNumFaces(); ++i){
recurConnectMElementsByMFace(it->second->getFace(i), e2f, group, touched);
}
}
}
static int connectedVolumes(std::vector<MElement*> &elements,
std::vector<std::vector<MElement*> > ®s)
{
std::multimap<MFace, MElement*, Less_Face> e2f;
for(unsigned int i = 0; i < elements.size(); ++i){
for(int j = 0; j < elements[i]->getNumFaces(); j++){
e2f.insert(std::make_pair(elements[i]->getFace(j), elements[i]));
}
}
while(!e2f.empty()){
std::set<MElement*> group;
std::set<MFace, Less_Face> touched;
recurConnectMElementsByMFace(e2f.begin()->first, e2f, group, touched);
std::vector<MElement*> temp;
temp.insert(temp.begin(), group.begin(), group.end());
regs.push_back(temp);
for(std::set<MFace, Less_Face>::iterator it = touched.begin();
it != touched.end(); ++it)
e2f.erase(*it);
}
return regs.size();
}
static void recurConnectMElementsByMEdge(const MEdge &e,
std::multimap<MEdge, MElement*, Less_Edge> &e2e,
std::set<MElement*> &group,
std::set<MEdge, Less_Edge> &touched)
{
if (touched.find(e) != touched.end()) return;
touched.insert(e);
for (std::multimap <MEdge, MElement*, Less_Edge>::iterator it = e2e.lower_bound(e);
it != e2e.upper_bound(e); ++it){
group.insert(it->second);
for (int i = 0; i < it->second->getNumEdges(); ++i){
recurConnectMElementsByMEdge(it->second->getEdge(i), e2e, group, touched);
}
}
}
static int connectedSurfaces(std::vector<MElement*> &elements,
std::vector<std::vector<MElement*> > &faces)
{
std::multimap<MEdge, MElement*, Less_Edge> e2e;
for(unsigned int i = 0; i < elements.size(); ++i){
for(int j = 0; j < elements[i]->getNumEdges(); j++){
e2e.insert(std::make_pair(elements[i]->getEdge(j), elements[i]));
}
}
while(!e2e.empty()){
std::set<MElement*> group;
std::set<MEdge, Less_Edge> touched;
recurConnectMElementsByMEdge(e2e.begin()->first, e2e, group, touched);
std::vector<MElement*> temp;
temp.insert(temp.begin(), group.begin(), group.end());
faces.push_back(temp);
for(std::set<MEdge, Less_Edge>::iterator it = touched.begin();
it != touched.end(); ++it)
e2e.erase(*it);
}
return faces.size();
}
static void recurConnectMEdgesByMVertex(MVertex *v,
std::multimap<MVertex*, MEdge> &v2e,
std::set<MEdge, Less_Edge> &group,
std::set<MVertex*> &touched)
{
if (touched.find(v) != touched.end()) return;
touched.insert(v);
for (std::multimap <MVertex*, MEdge>::iterator it = v2e.lower_bound(v);
it != v2e.upper_bound(v) ; ++it){
group.insert(it->second);
for (int i = 0; i < it->second.getNumVertices(); ++i){
recurConnectMEdgesByMVertex(it->second.getVertex(i), v2e, group, touched);
}
}
}
static int connectedSurfaceBoundaries(std::set<MEdge, Less_Edge> &edges,
std::vector<std::vector<MEdge> > &boundaries)
{
std::multimap<MVertex*,MEdge> v2e;
for(std::set<MEdge, Less_Edge>::iterator it = edges.begin(); it != edges.end(); it++){
for (int j = 0; j < it->getNumVertices(); j++){
v2e.insert(std::make_pair(it->getVertex(j), *it));
}
}
while (!v2e.empty()){
std::set<MEdge, Less_Edge> group;
std::set<MVertex*> touched;
recurConnectMEdgesByMVertex(v2e.begin()->first, v2e, group, touched);
std::vector<MEdge> temp;
temp.insert(temp.begin(), group.begin(), group.end());
boundaries.push_back(temp);
for (std::set<MVertex*>::iterator it = touched.begin() ; it != touched.end();++it)
v2e.erase(*it);
}
return boundaries.size();
}
void GModel::makeDiscreteRegionsSimplyConnected()
{
Msg::Debug("Making discrete regions simply connected...");
std::vector<discreteRegion*> discRegions;
for(riter it = firstRegion(); it != lastRegion(); it++)
if((*it)->geomType() == GEntity::DiscreteVolume)
discRegions.push_back((discreteRegion*) *it);
std::set<MVertex*> touched;
for(std::vector<discreteRegion*>::iterator itR = discRegions.begin();
itR != discRegions.end(); itR++){
std::vector<MElement*> allElements((*itR)->getNumMeshElements());
for(unsigned int i = 0; i < (*itR)->getNumMeshElements(); i++)
allElements[i] = (*itR)->getMeshElement(i);
std::vector<std::vector<MElement*> > conRegions;
int nbRegions = connectedVolumes(allElements, conRegions);
remove(*itR);
for(int ire = 0; ire < nbRegions; ire++){
int numR = (nbRegions == 1) ? (*itR)->tag() : getMaxElementaryNumber(3) + 1;
discreteRegion *r = new discreteRegion(this, numR);
add(r);
std::vector<MElement*> myElements = conRegions[ire];
std::set<MVertex*> myVertices;
for(unsigned int i = 0; i < myElements.size(); i++) {
MElement *e = myElements[i];
std::vector<MVertex*> verts;
e->getVertices(verts);
for(unsigned int k = 0; k < verts.size(); k++){
if(verts[k]->onWhat() && verts[k]->onWhat()->dim() == 3){
if(touched.find(verts[k]) == touched.end()){
verts[k]->setEntity(r);
myVertices.insert(verts[k]);
touched.insert(verts[k]);
}
}
}
MElementFactory factory;
MElement *e2 = factory.create(e->getTypeForMSH(), verts, e->getNum(),
e->getPartition());
switch(e2->getType()){
case TYPE_TET: r->tetrahedra.push_back((MTetrahedron*)e2); break;
case TYPE_HEX: r->hexahedra.push_back((MHexahedron*)e2); break;
case TYPE_PRI: r->prisms.push_back((MPrism*)e2); break;
case TYPE_PYR: r->pyramids.push_back((MPyramid*)e2); break;
}
}
r->mesh_vertices.insert
(r->mesh_vertices.begin(), myVertices.begin(), myVertices.end());
}
}
Msg::Debug("Done making discrete regions simply connected");
}
void GModel::makeDiscreteFacesSimplyConnected()
{
Msg::Debug("Making discrete faces simply connected...");
std::vector<discreteFace*> discFaces;
for(fiter it = firstFace(); it != lastFace(); it++)
if((*it)->geomType() == GEntity::DiscreteSurface)
discFaces.push_back((discreteFace*) *it);
std::set<MVertex*> touched;
for(std::vector<discreteFace*>::iterator itF = discFaces.begin();
itF != discFaces.end(); itF++){
std::vector<MElement*> allElements((*itF)->getNumMeshElements());
for(unsigned int i = 0; i < (*itF)->getNumMeshElements(); i++)
allElements[i] = (*itF)->getMeshElement(i);
std::vector<std::vector<MElement*> > conFaces;
int nbFaces = connectedSurfaces(allElements, conFaces);
remove(*itF);
for(int ifa = 0; ifa < nbFaces; ifa++){
int numF = (nbFaces == 1) ? (*itF)->tag() : getMaxElementaryNumber(2) + 1;
discreteFace *f = new discreteFace(this, numF);
add(f);
std::vector<MElement*> myElements = conFaces[ifa];
std::set<MVertex*> myVertices;
for(unsigned int i = 0; i < myElements.size(); i++) {
MElement *e = myElements[i];
std::vector<MVertex*> verts;
e->getVertices(verts);
for(unsigned int k = 0; k < verts.size(); k++){
if(verts[k]->onWhat() && verts[k]->onWhat()->dim() == 2){
if(touched.find(verts[k]) == touched.end()){
verts[k]->setEntity(f);
myVertices.insert(verts[k]);
touched.insert(verts[k]);
}
}
}
MElementFactory factory;
MElement *e2 = factory.create(e->getTypeForMSH(), verts, e->getNum(),
e->getPartition());
if(e2->getType() == TYPE_TRI)
f->triangles.push_back((MTriangle*)e2);
else
f->quadrangles.push_back((MQuadrangle*)e2);
}
f->mesh_vertices.insert
(f->mesh_vertices.begin(), myVertices.begin(), myVertices.end());
}
}
Msg::Debug("Done making discrete faces simply connected");
}
void GModel::createTopologyFromMesh(int ignoreHoles)
{
Msg::StatusBar(2, true, "Creating topology from mesh...");
double t1 = Cpu();
removeDuplicateMeshVertices(CTX::instance()->geom.tolerance);
makeDiscreteRegionsSimplyConnected();
makeDiscreteFacesSimplyConnected();
// create topology for all discrete regions
std::vector<discreteRegion*> discRegions;
for(riter it = firstRegion(); it != lastRegion(); it++)
if((*it)->geomType() == GEntity::DiscreteVolume)
discRegions.push_back((discreteRegion*) *it);
createTopologyFromRegions(discRegions);
// create topology for all discrete faces
std::vector<discreteFace*> discFaces;
for(fiter it = firstFace(); it != lastFace(); it++)
if((*it)->geomType() == GEntity::DiscreteSurface)
discFaces.push_back((discreteFace*) *it);
createTopologyFromFaces(discFaces, ignoreHoles);
//create old format (necessary for boundary layers)
exportDiscreteGEOInternals();
double t2 = Cpu();
Msg::StatusBar(2, true, "Done creating topology from mesh (%g s)", t2 - t1);
}
void GModel::createTopologyFromRegions(std::vector<discreteRegion*> &discRegions)
{
Msg::Debug("Creating topology from regions...");
// find boundary mesh faces of each discrete region and put them in
// map_faces, which associates each MFace with the tags of the
// adjacent regions
std::map<MFace, std::vector<int>, Less_Face > map_faces;
for (std::vector<discreteRegion*>::iterator it = discRegions.begin();
it != discRegions.end(); it++)
(*it)->findFaces(map_faces);
// get currently defined discrete faces
std::vector<discreteFace*> discFaces;
for(fiter it = firstFace(); it != lastFace(); it++)
if((*it)->geomType() == GEntity::DiscreteSurface)
discFaces.push_back((discreteFace*) *it);
// create reverse map storing for each discrete region the list of
// discrete faces on its boundary
std::map<int, std::set<int> > region2Faces;
std::set<MVertex*> touched;
while (!map_faces.empty()){
Msg::Debug("... %d mesh faces left to process", map_faces.size());
// get mesh faces with identical region connections (i.e., a part
// of region boundaries that can be later defined as a discrete
// face)
std::set<MFace, Less_Face> myFaces;
std::vector<int> tagRegions = map_faces.begin()->second;
myFaces.insert(map_faces.begin()->first);
map_faces.erase(map_faces.begin());
std::map<MFace, std::vector<int>, Less_Face>::iterator itmap = map_faces.begin();
while (itmap != map_faces.end()){
std::vector<int> tagRegions2 = itmap->second;
if (tagRegions2 == tagRegions){
myFaces.insert(itmap->first);
map_faces.erase(itmap++);
}
else
itmap++;
}
// if the mesh already contains discrete faces, check if the
// candidate discrete face does contain any of those; if not,
// create a new discreteFace. Then create populate the
// region2Faces map that associates for each region the (old or
// new) boundary discrete faces
for (std::vector<discreteFace*>::iterator itF = discFaces.begin();
itF != discFaces.end(); itF++){
bool candidate = true;
for (unsigned int i = 0; i < (*itF)->getNumMeshElements(); i++){
MFace mf = (*itF)->getMeshElement(i)->getFace(0);
std::set<MFace, Less_Face>::iterator itset = myFaces.find(mf);
if (itset == myFaces.end()){
candidate = false;
break;
}
}
if(candidate){
std::set<int> tagFaces;
tagFaces.insert((*itF)->tag());
for (unsigned int i = 0; i < (*itF)->getNumMeshElements(); i++){
MFace mf = (*itF)->getMeshElement(i)->getFace(0);
std::set<MFace, Less_Face>::iterator itset = myFaces.find(mf);
myFaces.erase(itset);
}
for(std::vector<int>::iterator itReg = tagRegions.begin();
itReg != tagRegions.end(); itReg++) {
std::map<int, std::set<int> >::iterator it = region2Faces.find(*itReg);
if (it == region2Faces.end())
region2Faces.insert(std::make_pair(*itReg, tagFaces));
else{
std::set<int> allFaces = it->second;
allFaces.insert(tagFaces.begin(), tagFaces.end());
it->second = allFaces;
}
}
}
}
// create new discrete face
if(myFaces.size()){
int numF = getMaxElementaryNumber(2) + 1;
discreteFace *f = new discreteFace(this, numF);
add(f);
discFaces.push_back(f);
std::set<MVertex*> myVertices;
for(std::set<MFace, Less_Face>::iterator it = myFaces.begin();
it != myFaces.end(); it++){
std::vector<MVertex*> verts(it->getNumVertices());
for(int i = 0; i < it->getNumVertices(); i++){
verts[i] = it->getVertex(i);
if(verts[i]->onWhat() && verts[i]->onWhat()->dim() == 3){
if(touched.find(verts[i]) != touched.end()){
myVertices.insert(verts[i]);
verts[i]->setEntity(f);
touched.insert(verts[i]);
}
}
}
if(verts.size() == 4)
f->quadrangles.push_back(new MQuadrangle(verts));
else
f->triangles.push_back(new MTriangle(verts));
}
f->mesh_vertices.insert(f->mesh_vertices.begin(),
myVertices.begin(), myVertices.end());
for (std::vector<int>::iterator itReg = tagRegions.begin();
itReg != tagRegions.end(); itReg++) {
// delete mesh vertices of new edge from adjacent regions
GRegion *dReg = getRegionByTag(*itReg);
for (std::set<MVertex*>::iterator itv = myVertices.begin();
itv != myVertices.end(); itv++) {
std::vector<MVertex*>::iterator itve =
std::find(dReg->mesh_vertices.begin(), dReg->mesh_vertices.end(), *itv);
if (itve != dReg->mesh_vertices.end()) dReg->mesh_vertices.erase(itve);
}
// fill region2Faces with the new face
std::map<int, std::set<int> >::iterator r2f = region2Faces.find(*itReg);
if (r2f == region2Faces.end()){
std::set<int> tagFaces;
tagFaces.insert(numF);
region2Faces.insert(std::make_pair(*itReg, tagFaces));
}
else{
std::set<int> tagFaces = r2f->second;
tagFaces.insert(numF);
r2f->second = tagFaces;
}
}
}
}
// set boundary faces for each region
for (std::vector<discreteRegion*>::iterator it = discRegions.begin();
it != discRegions.end(); it++){
std::map<int, std::set<int> >::iterator itr = region2Faces.find((*it)->tag());
if (itr != region2Faces.end()){
std::set<int> bcFaces = itr->second;
(*it)->setBoundFaces(bcFaces);
}
}
Msg::Debug("Done creating topology from regions");
}
void GModel::createTopologyFromFaces(std::vector<discreteFace*> &discFaces, int ignoreHoles)
{
Msg::Debug("Creating topology from faces...");
// find boundary mesh edges of each discrete face and put them in
// map_edges, which associates each MEdge with the tags of the
// adjacent faces
std::map<MEdge, std::vector<int>, Less_Edge > map_edges;
for (std::vector<discreteFace*>::iterator it = discFaces.begin();
it != discFaces.end(); it++)
(*it)->findEdges(map_edges);
// return if no boundary edges (torus, sphere, ...)
if (map_edges.empty()) return;
// get currently defined discrete edges
std::vector<discreteEdge*> discEdges;
for(eiter it = firstEdge(); it != lastEdge(); it++){
if((*it)->geomType() == GEntity::DiscreteCurve)
discEdges.push_back((discreteEdge*) *it);
}
// create reverse map storing for each discrete face the list of
// discrete edges on its boundary
std::map<int, std::vector<int> > face2Edges;
while (!map_edges.empty()){
Msg::Debug("... %d mesh edges left to process", map_edges.size());
// get mesh edges with identical face connections (i.e., a part of
// face boundaries that can be later defined as a discrete edge)
std::set<MEdge, Less_Edge> myEdges;
std::vector<int> tagFaces = map_edges.begin()->second;
myEdges.insert(map_edges.begin()->first);
map_edges.erase(map_edges.begin());
std::map<MEdge, std::vector<int>, Less_Edge>::iterator itmap = map_edges.begin();
while (itmap != map_edges.end()){
std::vector<int> tagFaces2 = itmap->second;
if (tagFaces2 == tagFaces){
myEdges.insert(itmap->first);
map_edges.erase(itmap++);
}
else
itmap++;
}
// if the mesh already contains discrete edges, check if the
// candidate discrete edge does contain any of those; if not,
// create a discreteEdge. Then populate the face2Edges map that
// associates for each face its boundary discrete edges
for (std::vector<discreteEdge*>::iterator itE = discEdges.begin();
itE != discEdges.end(); itE++){
bool candidate = true;
for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
std::set<MEdge, Less_Edge >::iterator itset = myEdges.find(me);
if (itset == myEdges.end()){
candidate = false;
break;
}
}
if (candidate){
std::vector<int> tagEdges;
tagEdges.push_back((*itE)->tag());
for (unsigned int i = 0; i < (*itE)->getNumMeshElements(); i++){
MEdge me = (*itE)->getMeshElement(i)->getEdge(0);
std::set<MEdge, Less_Edge >::iterator itset = myEdges.find(me);
myEdges.erase(itset);
}
for (std::vector<int>::iterator itFace = tagFaces.begin();
itFace != tagFaces.end(); itFace++) {
std::map<int, std::vector<int> >::iterator it = face2Edges.find(*itFace);
if (it == face2Edges.end())
face2Edges.insert(std::make_pair(*itFace, tagEdges));
else{
std::vector<int> allEdges = it->second;
allEdges.insert(allEdges.begin(), tagEdges.begin(), tagEdges.end());
it->second = allEdges;
}
}
}
}
std::vector<std::vector<MEdge> > boundaries;
int nbBounds = connectedSurfaceBoundaries(myEdges, boundaries);
//EMI RBF fix
if (ignoreHoles && nbBounds > 0){
int index = 0;
int boundSize = 0;
for (int ib = 0; ib < nbBounds; ib++){
if (boundaries[ib].size() > boundSize){
boundSize = boundaries[ib].size() ;
index = ib;
}
}
std::vector<std::vector<MEdge> > new_boundaries;
new_boundaries.push_back(boundaries[index]);
boundaries = new_boundaries;
}
// create new discrete edges
for (int ib = 0; ib < boundaries.size(); ib++){
int numE = getMaxElementaryNumber(1) + 1;
discreteEdge *e = new discreteEdge(this, numE, 0, 0);
add(e);
discEdges.push_back(e);
std::set<MVertex*> allV;
for(unsigned int i = 0; i < boundaries[ib].size(); i++) {
MVertex *v0 = boundaries[ib][i].getVertex(0);
MVertex *v1 = boundaries[ib][i].getVertex(1);
e->lines.push_back(new MLine(v0, v1));
allV.insert(v0);
allV.insert(v1);
v0->setEntity(e);
v1->setEntity(e);
}
e->mesh_vertices.insert(e->mesh_vertices.begin(), allV.begin(), allV.end());
for (std::vector<int>::iterator itFace = tagFaces.begin();
itFace != tagFaces.end(); itFace++) {
// delete mesh vertices of new edge from adjacent faces
GFace *dFace = getFaceByTag(*itFace);
for (std::set<MVertex*>::iterator itv = allV.begin(); itv != allV.end(); itv++) {
std::vector<MVertex*>::iterator itve =
std::find(dFace->mesh_vertices.begin(), dFace->mesh_vertices.end(), *itv);
if (itve != dFace->mesh_vertices.end()) dFace->mesh_vertices.erase(itve);
}
// fill face2Edges with the new edge
std::map<int, std::vector<int> >::iterator f2e = face2Edges.find(*itFace);
if (f2e == face2Edges.end()){
std::vector<int> tagEdges;
tagEdges.push_back(numE);
face2Edges.insert(std::make_pair(*itFace, tagEdges));
}
else{
std::vector<int> tagEdges = f2e->second;
tagEdges.push_back(numE);
f2e->second = tagEdges;
}
}
}
}
// set boundary edges for each face
for (std::vector<discreteFace*>::iterator it = discFaces.begin();
it != discFaces.end(); it++){
std::map<int, std::vector<int> >::iterator ite = face2Edges.find((*it)->tag());
if (ite != face2Edges.end()){
std::vector<int> bcEdges = ite->second;
(*it)->setBoundEdges(bcEdges);
}
}
Msg::Debug("Done creating topology from faces");
Msg::Debug("Creating topology for %d edges...", discEdges.size());
// for each discreteEdge, create topology
std::map<GFace*, std::map<MVertex*, MVertex*, std::less<MVertex*> > > face2Vert;
std::map<GRegion*, std::map<MVertex*, MVertex*, std::less<MVertex*> > > region2Vert;
face2Vert.clear();
region2Vert.clear();
for (std::vector<discreteEdge*>::iterator it = discEdges.begin();
it != discEdges.end(); it++){
(*it)->createTopo();
(*it)->parametrize(face2Vert, region2Vert);
}
// fill edgeLoops of Faces or correct sign of l_edges
// for (std::vector<discreteFace*>::iterator itF = discFaces.begin();
// itF != discFaces.end(); itF++){
// //EMI, TODO
// std::list<GEdgeLoop> edgeLoops = (*itF)->edgeLoops;
// edgeLoops.clear();
// GEdgeLoop el((*itF)->edges());
// edgeLoops.push_back(el);
// }
Msg::Debug("Done creating topology for edges...");
// we need to recreate all mesh elements because some mesh vertices
// might have been changed during the parametrization process
// (MVertices became MEdgeVertices)
for (std::map<GFace*, std::map<MVertex*, MVertex*, std::less<MVertex*> > >::iterator
iFace = face2Vert.begin(); iFace != face2Vert.end(); iFace++){
std::map<MVertex*, MVertex*, std::less<MVertex*> > old2new = iFace->second;
GFace *gf = iFace->first;
std::vector<MTriangle*> newTriangles;
std::vector<MQuadrangle*> newQuadrangles;
for (unsigned int i = 0; i < gf->getNumMeshElements(); ++i){
MElement *e = gf->getMeshElement(i);
std::vector<MVertex *> v;
e->getVertices(v);
for (unsigned int j = 0; j < v.size(); j++){
std::map<MVertex*, MVertex*, std::less<MVertex*> >::iterator
itmap = old2new.find(v[j]);
if (itmap != old2new.end())
v[j] = itmap->second;
}
MElementFactory factory;
MElement *e2 = factory.create(e->getTypeForMSH(), v, e->getNum(),
e->getPartition());
switch(e2->getType()){
case TYPE_TRI: newTriangles.push_back((MTriangle*)e2); break;
case TYPE_QUA: newQuadrangles.push_back((MQuadrangle*)e2); break;
}
}
gf->deleteVertexArrays();
for(unsigned int i = 0; i < gf->triangles.size(); i++) delete gf->triangles[i];
for(unsigned int i = 0; i < gf->quadrangles.size(); i++) delete gf->quadrangles[i];
gf->triangles = newTriangles;
gf->quadrangles = newQuadrangles;
}
for (std::map<GRegion*, std::map<MVertex*, MVertex*, std::less<MVertex*> > >::iterator
iRegion = region2Vert.begin(); iRegion != region2Vert.end(); iRegion++){
std::map<MVertex*, MVertex*, std::less<MVertex*> > old2new = iRegion->second;
GRegion *gr = iRegion->first;
std::vector<MTetrahedron*> newTetrahedra;
std::vector<MHexahedron*> newHexahedra;
std::vector<MPrism*> newPrisms;
std::vector<MPyramid*> newPyramids;
for (unsigned int i = 0; i < gr->getNumMeshElements(); ++i){
MElement *e = gr->getMeshElement(i);
std::vector<MVertex *> v;
e->getVertices(v);
for (unsigned int j = 0; j < v.size(); j++){
std::map<MVertex*, MVertex*, std::less<MVertex*> >::iterator
itmap = old2new.find(v[j]);
if (itmap != old2new.end())
v[j] = itmap->second;
}
MElementFactory factory;
MElement *e2 = factory.create(e->getTypeForMSH(), v, e->getNum(),
e->getPartition());
switch(e2->getType()){
case TYPE_TET: newTetrahedra.push_back((MTetrahedron*)e2); break;
case TYPE_HEX: newHexahedra.push_back((MHexahedron*)e2); break;
case TYPE_PRI: newPrisms.push_back((MPrism*)e2); break;
case TYPE_PYR: newPyramids.push_back((MPyramid*)e2); break;
}
}
gr->deleteVertexArrays();
for(unsigned int i = 0; i < gr->tetrahedra.size(); i++) delete gr->tetrahedra[i];
for(unsigned int i = 0; i < gr->hexahedra.size(); i++) delete gr->hexahedra[i];
for(unsigned int i = 0; i < gr->prisms.size(); i++) delete gr->prisms[i];
for(unsigned int i = 0; i < gr->pyramids.size(); i++) delete gr->pyramids[i];
gr->tetrahedra = newTetrahedra;
gr->hexahedra = newHexahedra;
gr->prisms = newPrisms;
gr->pyramids = newPyramids;
}
Msg::Debug("Done creating topology from edges");
}
GModel *GModel::buildCutGModel(gLevelset *ls, bool cutElem, bool saveTri)
{
if (saveTri)
CTX::instance()->mesh.saveTri = 1;
else
CTX::instance()->mesh.saveTri = 0;
std::map<int, std::vector<MElement*> > elements[10];
std::map<int, std::map<int, std::string> > physicals[4];
std::map<int, MVertex*> vertexMap;
Msg::Info("Cutting mesh...");
double t1 = Cpu();
GModel *cutGM = buildCutMesh(this, ls, elements, vertexMap, physicals, cutElem);
for(int i = 0; i < (int)(sizeof(elements) / sizeof(elements[0])); i++)
cutGM->_storeElementsInEntities(elements[i]);
cutGM->_associateEntityWithMeshVertices();
cutGM->_storeVerticesInEntities(vertexMap);
for(int i = 0; i < 4; i++){
cutGM->_storePhysicalTagsInEntities(i, physicals[i]);
std::map<int, std::map<int, std::string> >::iterator it = physicals[i].begin();
for(; it != physicals[i].end(); it++){
std::map<int, std::string>::iterator it2 = it->second.begin();
for(; it2 != it->second.end(); it2++)
if(it2->second != "")
cutGM->setPhysicalName(it2->second, i, it2->first);
}
}
Msg::Info("Mesh cutting completed (%g s)", Cpu() - t1);
return cutGM;
}
void GModel::load(std::string fileName)
{
GModel *temp = GModel::current();
GModel::setCurrent(this);
MergeFile(fileName, true);
GModel::setCurrent(temp);
}
void GModel::save(std::string fileName)
{
GModel *temp = GModel::current();
GModel::setCurrent(this);
int guess = GuessFileFormatFromFileName(fileName);
CreateOutputFile(fileName, guess);
GModel::setCurrent(temp);
}
GFaceCompound* GModel::addCompoundFace(std::vector<GFace*> faces, int typeP, int typeS)
{
int num = getMaxElementaryNumber(2) + 1;
std::list<GFace*> comp(faces.begin(), faces.end());
std::list<GEdge*> U0;
GFaceCompound::typeOfMapping typ = GFaceCompound::HARMONIC;
if (typeP == 1) typ = GFaceCompound::CONFORMAL;
if (typeP == 2) typ = GFaceCompound::RBF;
GFaceCompound *gfc = new GFaceCompound(this, num, comp, U0, typ, typeS);
add(gfc);
return gfc;
}
GVertex *GModel::addVertex(double x, double y, double z, double lc)
{
if(_factory) return _factory->addVertex(this, x, y, z, lc);
return 0;
}
GEdge *GModel::addLine(GVertex *v1, GVertex *v2)
{
if(_factory) return _factory->addLine(this, v1, v2);
return 0;
}
GEdge *GModel::addCircleArcCenter(double x, double y, double z, GVertex *start,
GVertex *end)
{
if(_factory)
return _factory->addCircleArc(this, GModelFactory::CENTER_START_END,
start, end, SPoint3(x, y, z));
return 0;
}
GEdge *GModel::addCircleArc3Points(double x, double y, double z, GVertex *start,
GVertex *end)
{
if(_factory)
return _factory->addCircleArc(this, GModelFactory::THREE_POINTS,
start, end, SPoint3(x, y, z));
return 0;
}
GEdge *GModel::addBezier(GVertex *start, GVertex *end,
std::vector<std::vector<double> > points)
{
if(_factory)
return _factory->addSpline(this, GModelFactory::BEZIER, start, end,
points);
return 0;
}
GEdge *GModel::addNURBS(GVertex *start, GVertex *end,
std::vector<std::vector<double> > points,
std::vector<double> knots,
std::vector<double> weights,
std::vector<int> mult)
{
if(_factory)
return _factory->addNURBS(this, start,end,points,knots,weights, mult);
return 0;
}
void GModel::addRuledFaces (std::vector<std::vector<GEdge *> > edges)
{
if(_factory)
_factory->addRuledFaces(this, edges);
}
GFace* GModel::addFace (std::vector<GEdge *> edges,
std::vector< std::vector<double > > points)
{
if(_factory)
return _factory->addFace(this, edges, points);
return 0;
}
GFace* GModel::addPlanarFace (std::vector<std::vector<GEdge *> > edges){
if(_factory)
return _factory->addPlanarFace(this, edges);
return 0;
}
GRegion* GModel::addVolume (std::vector<std::vector<GFace *> > faces){
if(_factory)
return _factory->addVolume(this, faces);
return 0;
}
GEntity *GModel::revolve(GEntity *e, std::vector<double> p1, std::vector<double> p2,
double angle)
{
if(_factory)
return _factory->revolve(this, e, p1, p2, angle);
return 0;
}
GEntity *GModel::extrude(GEntity *e, std::vector<double> p1, std::vector<double> p2)
{
if(_factory)
return _factory->extrude(this, e, p1, p2);
return 0;
}
GEntity *GModel::addPipe(GEntity *e, std::vector<GEdge *> edges)
{
if(_factory)
return _factory->addPipe(this,e,edges);
return 0;
}
GEntity *GModel::addSphere(double cx, double cy, double cz, double radius)
{
if(_factory) return _factory->addSphere(this, cx, cy, cz, radius);
return 0;
}
GEntity *GModel::addCylinder(std::vector<double> p1, std::vector<double> p2,
double radius)
{
if(_factory) return _factory->addCylinder(this, p1, p2, radius);
return 0;
}
GEntity *GModel::addTorus(std::vector<double> p1, std::vector<double> p2,
double radius1, double radius2)
{
if(_factory) return _factory->addTorus(this, p1, p2, radius1, radius2);
return 0;
}
GEntity *GModel::addBlock(std::vector<double> p1, std::vector<double> p2)
{
if(_factory) return _factory->addBlock(this, p1, p2);
return 0;
}
GEntity *GModel::addCone(std::vector<double> p1, std::vector<double> p2,
double radius1, double radius2)
{
if(_factory) return _factory->addCone(this, p1, p2,radius1, radius2);
return 0;
}
GModel *GModel::computeBooleanUnion(GModel *tool, int createNewModel)
{
if(_factory)
return _factory->computeBooleanUnion(this, tool, createNewModel);
return 0;
}
GModel *GModel::computeBooleanIntersection(GModel *tool, int createNewModel)
{
if(_factory)
return _factory->computeBooleanIntersection(this, tool, createNewModel);
return 0;
}
GModel *GModel::computeBooleanDifference(GModel *tool, int createNewModel)
{
if(_factory)
return _factory->computeBooleanDifference(this, tool, createNewModel);
return 0;
}
static void computeDuplicates(GModel *model,
std::multimap<GVertex*, GVertex*> &Unique2Duplicates,
std::map<GVertex*, GVertex*> &Duplicates2Unique,
const double &eps)
{
// FIXME: currently we use a greedy algorithm in n^2 (using a
// kd-tree: cf. MVertexPositionSet)
// FIXME: add option to remove orphaned entities after duplicate check
std::list<GVertex*> v;
v.insert(v.begin(), model->firstVertex(), model->lastVertex());
while(!v.empty()){
GVertex *pv = *v.begin();
v.erase(v.begin());
bool found = false;
for (std::multimap<GVertex*,GVertex*>::iterator it = Unique2Duplicates.begin();
it != Unique2Duplicates.end(); ++it){
GVertex *unique = it->first;
const double d = sqrt((unique->x() - pv->x()) * (unique->x() - pv->x()) +
(unique->y() - pv->y()) * (unique->y() - pv->y()) +
(unique->z() - pv->z()) * (unique->z() - pv->z()));
if (d <= eps && pv->geomType() == unique->geomType()) {
found = true;
Unique2Duplicates.insert(std::make_pair(unique, pv));
Duplicates2Unique[pv] = unique;
break;
}
}
if (!found) {
Unique2Duplicates.insert(std::make_pair(pv, pv));
Duplicates2Unique[pv] = pv;
}
}
}
static void glueVerticesInEdges(GModel *model,
std::multimap<GVertex*, GVertex*> &Unique2Duplicates,
std::map<GVertex*, GVertex*> &Duplicates2Unique)
{
Msg::Debug("Gluing Edges");
for (GModel::eiter it = model->firstEdge(); it != model->lastEdge(); ++it){
GEdge *e = *it;
GVertex *v1 = e->getBeginVertex();
GVertex *v2 = e->getEndVertex();
GVertex *replacementOfv1 = Duplicates2Unique[v1];
GVertex *replacementOfv2 = Duplicates2Unique[v2];
if ((v1 != replacementOfv1) || (v2 != replacementOfv2)){
Msg::Debug("Model Edge %d is re-build", e->tag());
e->replaceEndingPoints (replacementOfv1, replacementOfv2);
}
}
}
static void computeDuplicates(GModel *model,
std::multimap<GEdge*, GEdge*> &Unique2Duplicates,
std::map<GEdge*,GEdge*> &Duplicates2Unique,
const double &eps)
{
std::list<GEdge*> e;
e.insert(e.begin(), model->firstEdge(), model->lastEdge());
while(!e.empty()){
GEdge *pe = *e.begin();
e.erase(e.begin());
bool found = false;
for (std::multimap<GEdge*,GEdge*>::iterator it = Unique2Duplicates.begin();
it != Unique2Duplicates.end(); ++it ){
GEdge *unique = it->first;
// first check edges that have same endpoints
if (((unique->getBeginVertex() == pe->getBeginVertex() &&
unique->getEndVertex() == pe->getEndVertex()) ||
(unique->getEndVertex() == pe->getBeginVertex() &&
unique->getBeginVertex() == pe->getEndVertex())) &&
unique->geomType() == pe->geomType()){
if ((unique->geomType() == GEntity::Line && pe->geomType() == GEntity::Line) ||
unique->geomType() == GEntity::DiscreteCurve ||
pe->geomType() == GEntity::DiscreteCurve ||
unique->geomType() == GEntity::BoundaryLayerCurve ||
pe->geomType() == GEntity::BoundaryLayerCurve){
found = true;
Unique2Duplicates.insert(std::make_pair(unique,pe));
Duplicates2Unique[pe] = unique;
break;
}
// compute a point
Range<double> r = pe->parBounds(0);
GPoint gp = pe->point(0.5 * (r.low() + r.high()));
double t;
GPoint gp2 = pe->closestPoint(SPoint3(gp.x(),gp.y(),gp.z()),t);
const double d = sqrt((gp.x() - gp2.x()) * (gp.x() - gp2.x()) +
(gp.y() - gp2.y()) * (gp.y() - gp2.y()) +
(gp.z() - gp2.z()) * (gp.z() - gp2.z()));
if (t >= r.low() && t <= r.high() && d <= eps) {
found = true;
Unique2Duplicates.insert(std::make_pair(unique,pe));
Duplicates2Unique[pe] = unique;
break;
}
}
}
if (!found) {
Unique2Duplicates.insert(std::make_pair(pe,pe));
Duplicates2Unique[pe] = pe;
}
}
}
static void glueEdgesInFaces(GModel *model,
std::multimap<GEdge*, GEdge*> &Unique2Duplicates,
std::map<GEdge*, GEdge*> &Duplicates2Unique)
{
Msg::Debug("Gluing Model Faces");
for (GModel::fiter it = model->firstFace(); it != model->lastFace(); ++it){
GFace *f = *it;
bool aDifferenceExists = false;
std::list<GEdge*> old = f->edges(), enew;
for (std::list<GEdge*>::iterator eit = old.begin(); eit !=old.end(); eit++){
GEdge *temp = Duplicates2Unique[*eit];
enew.push_back(temp);
if (temp != *eit){
aDifferenceExists = true;
}
}
if (aDifferenceExists){
Msg::Debug("Model Face %d is re-build", f->tag());
f->replaceEdges (enew);
}
}
}
static void computeDuplicates(GModel *model,
std::multimap<GFace*, GFace*> &Unique2Duplicates,
std::map<GFace*,GFace*> &Duplicates2Unique,
const double &eps)
{
std::list<GFace*> f;
f.insert(f.begin(),model->firstFace(),model->lastFace());
while(!f.empty()){
GFace *pf = *f.begin();
Range<double> r = pf->parBounds(0);
Range<double> s = pf->parBounds(1);
f.erase(f.begin());
std::list<GEdge*> pf_edges = pf->edges();
pf_edges.sort();
bool found = false;
for (std::multimap<GFace*,GFace*>::iterator it = Unique2Duplicates.begin();
it != Unique2Duplicates.end(); ++it){
GFace *unique = it->first;
std::list<GEdge*> unique_edges = unique->edges();
if (pf->geomType() == unique->geomType() &&
unique_edges.size() == pf_edges.size()){
unique_edges.sort();
std::list<GEdge*>::iterator it_pf = pf_edges.begin();
std::list<GEdge*>::iterator it_unique = unique_edges.begin();
bool all_similar = true;
// first check faces that have same edges
for (; it_pf != pf_edges.end() ; ++it_pf,it_unique++){
if (*it_pf != *it_unique) all_similar = false;
}
if (all_similar){
if (unique->geomType() == GEntity::Plane && pf->geomType() == GEntity::Plane){
found = true;
Unique2Duplicates.insert(std::make_pair(unique,pf));
Duplicates2Unique[pf] = unique;
break;
}
double t[2]={0,0};
// FIXME: evaluate a point on the surface (use e.g. buildRepresentationCross)
const double d = 1.0;
if (t[0] >= r.low() && t[0] <= r.high() &&
t[1] >= s.low() && t[1] <= s.high() && d <= eps) {
found = true;
Unique2Duplicates.insert(std::make_pair(unique,pf));
Duplicates2Unique[pf] = unique;
break;
}
}
}
}
if (!found) {
Unique2Duplicates.insert(std::make_pair(pf,pf));
Duplicates2Unique[pf] = pf;
}
}
}
static void glueFacesInRegions(GModel *model,
std::multimap<GFace*, GFace*> &Unique2Duplicates,
std::map<GFace*, GFace*> &Duplicates2Unique)
{
Msg::Debug("Gluing Regions");
for (GModel::riter it = model->firstRegion(); it != model->lastRegion();++it){
GRegion *r = *it;
bool aDifferenceExists = false;
std::list<GFace*> old = r->faces(), fnew;
for (std::list<GFace*>::iterator fit = old.begin(); fit != old.end(); fit++){
std::map<GFace*, GFace*>::iterator itR = Duplicates2Unique.find(*fit);
if (itR == Duplicates2Unique.end()){
Msg::Fatal("Error in the gluing process");
}
GFace *temp = itR->second;;
fnew.push_back(temp);
if (temp != *fit){
aDifferenceExists = true;
}
}
if (aDifferenceExists){
Msg::Debug("Model Region %d is re-build", r->tag());
r->replaceFaces (fnew);
}
}
}
void GModel::glue(double eps)
{
{
std::multimap<GVertex*,GVertex*> Unique2Duplicates;
std::map<GVertex*,GVertex*> Duplicates2Unique;
computeDuplicates(this, Unique2Duplicates, Duplicates2Unique, eps);
glueVerticesInEdges(this, Unique2Duplicates, Duplicates2Unique);
}
{
std::multimap<GEdge*,GEdge*> Unique2Duplicates;
std::map<GEdge*,GEdge*> Duplicates2Unique;
computeDuplicates(this, Unique2Duplicates, Duplicates2Unique, eps);
glueEdgesInFaces(this, Unique2Duplicates, Duplicates2Unique);
}
{
std::multimap<GFace*,GFace*> Unique2Duplicates;
std::map<GFace*,GFace*> Duplicates2Unique;
computeDuplicates(this, Unique2Duplicates, Duplicates2Unique, eps);
glueFacesInRegions(this, Unique2Duplicates, Duplicates2Unique);
}
}
GEdge *getNewModelEdge(GFace *gf1, GFace *gf2,
std::map<std::pair<int, int>, GEdge*> &newEdges)
{
int t1 = gf1 ? gf1->tag() : -1;
int t2 = gf2 ? gf2->tag() : -1;
int i1 = std::min(t1, t2);
int i2 = std::max(t1, t2);
if(i1 == i2) return 0;
std::map<std::pair<int, int>, GEdge*>::iterator it =
newEdges.find(std::make_pair<int, int>(i1, i2));
if(it == newEdges.end()){
discreteEdge *ge = new discreteEdge
(GModel::current(), GModel::current()->getMaxElementaryNumber(1) + 1, 0, 0);
GModel::current()->add(ge);
newEdges[std::make_pair<int, int>(i1, i2)] = ge;
return ge;
}
else
return it->second;
}
#if defined(HAVE_MESH)
void recurClassifyEdges(MTri3 *t, std::map<MTriangle*, GFace*> &reverse,
std::map<MLine*, GEdge*, compareMLinePtr> &lines,
std::set<MLine*> &touched, std::set<MTri3*> &trisTouched,
std::map<std::pair<int, int>, GEdge*> &newEdges)
{
if(!t->isDeleted()){
trisTouched.erase(t);
t->setDeleted(true);
GFace *gf1 = reverse[t->tri()];
for(int i = 0; i < 3; i++){
GFace *gf2 = 0;
MTri3 *tn = t->getNeigh(i);
if(tn)
gf2 = reverse[tn->tri()];
edgeXface exf(t, i);
MLine ml(exf.v[0], exf.v[1]);
std::map<MLine*, GEdge*, compareMLinePtr>::iterator it = lines.find(&ml);
if(it != lines.end()){
if(touched.find(it->first) == touched.end()){
GEdge *ge = getNewModelEdge(gf1, gf2, newEdges);
if(ge) ge->lines.push_back(it->first);
touched.insert(it->first);
}
}
if(tn)
recurClassifyEdges(tn, reverse, lines, touched, trisTouched,newEdges);
}
}
}
void recurClassify(MTri3 *t, GFace *gf,
std::map<MLine*, GEdge*, compareMLinePtr> &lines,
std::map<MTriangle*, GFace*> &reverse)
{
if(!t->isDeleted()){
gf->triangles.push_back(t->tri());
reverse[t->tri()] = gf;
t->setDeleted(true);
for(int i = 0; i < 3; i++){
MTri3 *tn = t->getNeigh(i);
if(tn){
edgeXface exf(t, i);
MLine ml(exf.v[0], exf.v[1]);
std::map<MLine*, GEdge*, compareMLinePtr>::iterator it = lines.find(&ml);
if(it == lines.end())
recurClassify(tn, gf, lines, reverse);
}
}
}
}
#endif
void GModel::detectEdges(double _tresholdAngle)
{
#if defined(HAVE_MESH)
e2t_cont adj;
std::vector<MTriangle*> elements;
std::vector<edge_angle> edges_detected, edges_lonly;
for(GModel::fiter it = GModel::current()->firstFace();
it != GModel::current()->lastFace(); ++it)
elements.insert(elements.end(), (*it)->triangles.begin(),
(*it)->triangles.end());
buildEdgeToTriangle(elements, adj);
buildListOfEdgeAngle(adj, edges_detected, edges_lonly);
GEdge *selected = new discreteEdge
(this, getMaxElementaryNumber(1) + 1, 0, 0);
add(selected);
for(unsigned int i = 0; i < edges_detected.size(); i++){
edge_angle ea = edges_detected[i];
if(ea.angle <= _tresholdAngle) break;
selected->lines.push_back(new MLine(ea.v1, ea.v2));
}
for(unsigned int i = 0 ; i < edges_lonly.size(); i++){
edge_angle ea = edges_lonly[i];
selected->lines.push_back(new MLine(ea.v1, ea.v2));
}
std::set<GFace*> _temp;
_temp.insert(faces.begin(),faces.end());
classifyFaces(_temp);
remove(selected);
// delete selected;
#endif
}
void GModel::classifyFaces(std::set<GFace*> &_faces)
{
#if defined(HAVE_MESH)
std::map<MLine*, GEdge*, compareMLinePtr> lines;
for(GModel::eiter it = GModel::current()->firstEdge();
it != GModel::current()->lastEdge(); ++it){
for(unsigned int i = 0; i < (*it)->lines.size();i++)
lines[(*it)->lines[i]] = *it;
}
std::map<MTriangle*, GFace*> reverse_old;
std::list<MTri3*> tris;
{
std::set<GFace*>::iterator it = _faces.begin();
while(it != _faces.end()){
GFace *gf = *it;
for(unsigned int i = 0; i < gf->triangles.size(); i++){
tris.push_back(new MTri3(gf->triangles[i], 0));
reverse_old[gf->triangles[i]] = gf;
}
gf->triangles.clear();
gf->mesh_vertices.clear();
++it;
}
}
if(tris.empty()) return;
connectTriangles(tris);
std::map<MTriangle*, GFace*> reverse;
std::multimap<GFace*, GFace*> replacedBy;
// color all triangles
std::list<MTri3*> ::iterator it = tris.begin();
std::list<GFace*> newf;
while(it != tris.end()){
if(!(*it)->isDeleted()){
discreteFace *gf = new discreteFace
(GModel::current(), GModel::current()->getMaxElementaryNumber(2) + 1);
recurClassify(*it, gf, lines, reverse);
GModel::current()->add(gf);
newf.push_back(gf);
for (unsigned int i = 0; i < gf->triangles.size(); i++){
replacedBy.insert(std::make_pair(reverse_old[gf->triangles[i]],gf));
}
}
++it;
}
// now we have all faces coloured. If some regions were existing, replace
// their faces by the new ones
for (riter rit = firstRegion(); rit != lastRegion(); ++rit){
std::list<GFace *> _xfaces = (*rit)->faces();
std::set<GFace *> _newFaces;
for (std::list<GFace *>::iterator itf = _xfaces.begin(); itf != _xfaces.end(); ++itf){
std::multimap<GFace*, GFace*>::iterator itLow = replacedBy.lower_bound(*itf);
std::multimap<GFace*, GFace*>::iterator itUp = replacedBy.upper_bound(*itf);
for (; itLow != itUp; ++itLow)
_newFaces.insert(itLow->second);
}
std::list<GFace *> _temp;
_temp.insert(_temp.begin(),_newFaces.begin(),_newFaces.end());
(*rit)->set(_temp);
}
// color some lines
it = tris.begin();
while(it != tris.end()){
(*it)->setDeleted(false);
++it;
}
// classify edges that are bound by different GFaces
std::map<std::pair<int, int>, GEdge*> newEdges;
std::set<MLine*> touched;
std::set<MTri3*> trisTouched;
// bug fix : multiply connected domains
trisTouched.insert(tris.begin(),tris.end());
while(!trisTouched.empty())
recurClassifyEdges(*trisTouched.begin(), reverse, lines, touched, trisTouched,newEdges);
std::map<discreteFace*,std::vector<int> > newFaceTopology;
// check if new edges should not be splitted
// splitted if composed of several open or closed edges
std::map<MVertex*,GVertex*> modelVertices;
for (std::map<std::pair<int, int>, GEdge*>::iterator ite = newEdges.begin();
ite != newEdges.end() ; ++ite){
std::list<MLine*> allSegments;
for(unsigned int i = 0; i < ite->second->lines.size(); i++)
allSegments.push_back(ite->second->lines[i]);
while (!allSegments.empty()) {
std::list<MLine*> segmentsForThisDiscreteEdge;
MVertex *vB = (*allSegments.begin())->getVertex(0);
MVertex *vE = (*allSegments.begin())->getVertex(1);
segmentsForThisDiscreteEdge.push_back(*allSegments.begin());
allSegments.erase(allSegments.begin());
while(1){
bool found = false;
for (std::list<MLine*>::iterator it = allSegments.begin();
it != allSegments.end(); ++it){
MVertex *v1 = (*it)->getVertex(0);
MVertex *v2 = (*it)->getVertex(1);
if (v1 == vE || v2 == vE){
segmentsForThisDiscreteEdge.push_back(*it);
if (v2 == vE)(*it)->revert();
vE = (v1 == vE) ? v2 : v1;
found = true;
allSegments.erase(it);
break;
}
if (v1 == vB || v2 == vB){
segmentsForThisDiscreteEdge.push_front(*it);
if (v1 == vB)(*it)->revert();
vB = (v1 == vB) ? v2 : v1;
found = true;
allSegments.erase(it);
break;
}
}
if (vE == vB)break;
if (!found)break;
}
std::map<MVertex*,GVertex*>::iterator itMV = modelVertices.find(vB);
if (itMV == modelVertices.end()){
GVertex *newGv = new discreteVertex
(GModel::current(), GModel::current()->getMaxElementaryNumber(0) + 1);
newGv->mesh_vertices.push_back(vB);
vB->setEntity(newGv);
newGv->points.push_back(new MPoint(vB));
GModel::current()->add(newGv);
modelVertices[vB] = newGv;
}
itMV = modelVertices.find(vE);
if (itMV == modelVertices.end()){
GVertex *newGv = new discreteVertex
(GModel::current(), GModel::current()->getMaxElementaryNumber(0) + 1);
newGv->mesh_vertices.push_back(vE);
newGv->points.push_back(new MPoint(vE));
vE->setEntity(newGv);
GModel::current()->add(newGv);
modelVertices[vE] = newGv;
}
GEdge *newGe = new discreteEdge
(GModel::current(), GModel::current()->getMaxElementaryNumber(1) + 1,
modelVertices[vB], modelVertices[vE]);
newGe->lines.insert(newGe->lines.end(), segmentsForThisDiscreteEdge.begin(),
segmentsForThisDiscreteEdge.end());
for (std::list<MLine*>::iterator itL = segmentsForThisDiscreteEdge.begin();
itL != segmentsForThisDiscreteEdge.end(); ++itL){
if((*itL)->getVertex(0)->onWhat()->dim() != 0){
newGe->mesh_vertices.push_back((*itL)->getVertex(0));
(*itL)->getVertex(0)->setEntity(newGe);
}
}
GModel::current()->add(newGe);
discreteFace *gf1 = dynamic_cast<discreteFace*>
(GModel::current()->getFaceByTag(ite->first.first));
discreteFace *gf2 = dynamic_cast<discreteFace*>
(GModel::current()->getFaceByTag(ite->first.second));
if (gf1)newFaceTopology[gf1].push_back(newGe->tag());
if (gf2)newFaceTopology[gf2].push_back(newGe->tag());
}
}
std::map<discreteFace*,std::vector<int> >::iterator itFT = newFaceTopology.begin();
for (;itFT != newFaceTopology.end();++itFT){
itFT->first->setBoundEdges(itFT->second);
}
for (std::map<std::pair<int, int>, GEdge*>::iterator it = newEdges.begin();
it != newEdges.end(); ++it){
GEdge *ge = it->second;
GModel::current()->remove(ge);
// delete ge;
}
it = tris.begin();
while(it != tris.end()){
delete *it;
++it;
}
// delete empty mesh faces and reclasssify
std::set<GFace*, GEntityLessThan> fac = faces;
for (fiter fit = fac.begin() ; fit !=fac.end() ; ++fit){
std::set<MVertex *> _verts;
(*fit)->mesh_vertices.clear();
for (unsigned int i = 0; i < (*fit)->triangles.size(); i++){
for (int j = 0; j < 3; j++){
if ((*fit)->triangles[i]->getVertex(j)->onWhat()->dim() > 1){
(*fit)->triangles[i]->getVertex(j)->setEntity(*fit);
_verts.insert((*fit)->triangles[i]->getVertex(j));
}
}
}
if ((*fit)->triangles.size())
(*fit)->mesh_vertices.insert((*fit)->mesh_vertices.begin(),
_verts.begin(), _verts.end());
else
remove(*fit);
}
#endif
}
void GModel::createPartitionBoundaries(int createGhostCells)
{
#if (defined(HAVE_CHACO) || defined(HAVE_METIS)) && defined(HAVE_MESH)
CreatePartitionBoundaries(this, createGhostCells);
#endif
}