Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
W
website
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
documentation
website
Commits
50ec775d
Commit
50ec775d
authored
7 years ago
by
Christophe Geuzaine
Browse files
Options
Downloads
Patches
Plain Diff
up
parent
c8932306
Branches
Branches containing commit
Tags
Tags containing commit
No related merge requests found
Changes
1
Show whitespace changes
Inline
Side-by-side
Showing
1 changed file
GetDDM/getddm.html
+52
-52
52 additions, 52 deletions
GetDDM/getddm.html
with
52 additions
and
52 deletions
GetDDM/getddm.html
+
52
−
52
View file @
50ec775d
...
@@ -29,13 +29,30 @@
...
@@ -29,13 +29,30 @@
<img
src=
"marmousi.png"
alt=
""
>
<img
src=
"marmousi.png"
alt=
""
>
</div>
</div>
<h1>
Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic Wave Problems
</h1>
<h1>
An Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
Wave Problems
</h1>
<p>
<p>
GetDDM combines
<a
href=
"http://getdp.info"
>
GetDP
</a>
GetDDM
<a
href=
"#1"
><sup>
1
</sup></a>
combines
<a
href=
"http://getdp.info"
>
GetDP
</a>
and
<a
href=
"http://gmsh.info"
>
Gmsh
</a>
to solve large scale finite element
and
<a
href=
"http://gmsh.info"
>
Gmsh
</a>
to solve large scale finite element
problems using optimized Schwarz domain decomposition methods.
problems using optimized Schwarz domain decomposition methods.
</p>
<p>
<a
href=
"https://gitlab.onelab.info/doc/models/wikis/Domain-decomposition-methods-for-waves"
>
Examples
for time-harmonic acoustic and electromagnetic wave problems
</a>
implement
several families of transmission conditions: zeroth- and second-order
optimized conditions
<a
href=
"#2"
><sup>
2-7
</sup></a>
, Padé-localized
square-root conditions
<a
href=
"#8"
><sup>
8-9
</sup></a>
and PML
conditions
<a
href=
"#10"
><sup>
10
</sup></a>
. Several variants of the
double-sweep preconditioner
<a
href=
"#10"
><sup>
10
</sup></a>
are also
implemented.
</p>
<p>
For more information about these methods as well as the implementation, please
refer
to
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf"
>
GetDDM:
an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic Wave
Problems
</a>
.
</p>
</p>
<h2>
Quick start
</h2>
<h2>
Quick start
</h2>
...
@@ -63,72 +80,55 @@ problems using optimized Schwarz domain decomposition methods.
...
@@ -63,72 +80,55 @@ problems using optimized Schwarz domain decomposition methods.
mpirun -np 100 getdp models/GetDDM/waveguide3d.pro -solve DDM
mpirun -np 100 getdp models/GetDDM/waveguide3d.pro -solve DDM
</pre>
</pre>
The actual commands will depend on your particular MPI setup. Sample
The actual commands will depend on your particular MPI setup. Sample
scripts for SLURM and PBS schedulers are also available.
scripts
for
<a
href=
"https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh"
>
SLURM
</a>
and
<a
href=
"https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh"
>
PBS
</a>
schedulers are also available.
</ol>
</ol>
(For parallel computations you will have to [recompile GetDP with MPI
support](https://gitlab.onelab.info/getdp/getdp/wikis/GetDP-compilation). Sample
[SLURM](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh)
and [PBS
scripts](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh)
are provided to to run on HPC clusters.)
for time-harmonic acoustic and electromagnetic wave problems. See Several
families of transmission conditions are implemented: zeroth- and second-order
optimized conditions [1-6], Padé-localized square-root conditions [7-8] and PML
conditions [9]. Several variants of the double-sweep preconditioner [9] are also
implemented.
For more information about these methods as well as the implementation, please
refer to [GetDDM: an Open Framework for Testing Optimized Schwarz Methods for
Time-Harmonic Wave
Problems](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf)
[10].
<h2>
References
</h2>
<h2>
References
</h2>
<div
class=
"small"
>
<div
class=
"small"
>
<ol
class=
"small"
>
<ol
class=
"small"
>
<li>
B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de
<li><a
name=
"1"
></a>
B. Thierry, A.Vion, S. Tournier, M. El Bouajaji,
Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg pour
D. Colignon, N. Marsic, X. Antoine,
l'Equation de Hill Vectorielle, PhD Thesis, Paris VI University, France,
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf"
>
GetDDM:
1991.
an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
<li>
B. Després, P. Joly and J. Roberts, A domain decomposition method for
Wave Problems
</a>
. Computer Physics Communications 203, 309-330, 2016.
the harmonic Maxwell equations, Iterative methods in linear algebra
<li><a
name=
"2"
></a>
B. Després, Méthodes de Décomposition de Domaine pour les
(Brussels, 1991), pp. 475-484, North-Holland, 1992.
Problèmes de Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg
<li>
M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
pour l'Equation de Hill Vectorielle, PhD Thesis, Paris VI University,
France, 1991.
<li><a
name=
"3"
></a>
B. Després, P. Joly and J. Roberts, A domain decomposition
method for the harmonic Maxwell equations, Iterative methods in linear
algebra (Brussels, 1991), pp. 475-484, North-Holland, 1992.
<li><a
name=
"4"
></a>
M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
overlap for the Helmholtz equation}, SIAM Journal on Scientific Computing,
overlap for the Helmholtz equation}, SIAM Journal on Scientific Computing,
24(1), pp. 38-60, 2002.
24(1), pp. 38-60, 2002.
<li>
V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized Schwarz methods
<li><a
name=
"5"
></a>
V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized
for Maxwell's equations, SIAM Journal on Scientific Computing, 31(3),
Schwarz methods for Maxwell's equations, SIAM Journal on Scientific
pp. 2193-2213, 2009.
Computing, 31(3), pp. 2193-2213, 2009.
<li>
A. Bendali and Y. Boubendir, Non-Overlapping Domain Decomposition Method
<li><a
name=
"6"
></a>
A. Bendali and Y. Boubendir, Non-Overlapping Domain
for a Nodal Finite Element Method, Numerische Mathematik 103(4),
Decomposition Method for a Nodal Finite Element Method, Numerische
pp.515-537, (2006).
Mathematik 103(4), pp.515-537, (2006).
<li>
V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition with Second
<li><a
name=
"7"
></a>
V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition
Order Transmission Condition for the Time-Harmonic Maxwell's Equations,
with Second Order Transmission Condition for the Time-Harmonic Maxwell's
SIAM Journal on Scientific Computing, 32(6), pp. 3584-3603, 2010.
Equations, SIAM Journal on Scientific Computing, 32(6), pp. 3584-3603,
<li>
Y. Boubendir, X. Antoine and
2010.
<li><a
name=
"8"
></a>
Y. Boubendir, X. Antoine and
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_helmholtz_preprint.pdf"
>
A
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_helmholtz_preprint.pdf"
>
A
quasi-optimal non-overlapping domain decomposition algorithm for the
quasi-optimal non-overlapping domain decomposition algorithm for the
Helmholtz equation
</a>
. Journal of Computational Physics 231 (2),
Helmholtz equation
</a>
. Journal of Computational Physics 231 (2),
262-280, 2012.
262-280, 2012.
<li>
M. El Bouajaji, X. Antoine and
<li>
<a
name=
"9"
></a>
M. El Bouajaji, X. Antoine and
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/osrc_maxwell_preprint.pdf"
>
Approximate
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/osrc_maxwell_preprint.pdf"
>
Approximate
local magnetic-to-electric surface operators for time-harmonic Maxwell's
local magnetic-to-electric surface operators for time-harmonic Maxwell's
equations
</a>
. Journal of Computational Physics 279 241-260, 2014.
equations
</a>
. Journal of Computational Physics 279 241-260, 2014.
<li>
A. Vion and
<li>
<a
name=
"10"
></a>
A. Vion and
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_double_sweep_preprint.pdf"
>
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_double_sweep_preprint.pdf"
>
Double sweep preconditioner for optimized Schwarz methods applied to the
Double sweep preconditioner for optimized Schwarz methods applied to the
Helmholtz problem
</a>
. Journal of Computational Physics 266, 171-190,
Helmholtz problem
</a>
. Journal of Computational Physics 266, 171-190,
2014.
2014.
<li>
B. Thierry, A.Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic,
X. Antoine,
C. Geuzaine.
<a
href=
"http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf"
>
GetDDM:
an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
Wave Problems
</a>
. Computer Physics Communications 203, 309-330, 2016.
</ol>
</ol>
</div>
</div>
...
...
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment