Skip to content
Snippets Groups Projects
Commit 50ec775d authored by Christophe Geuzaine's avatar Christophe Geuzaine
Browse files

up

parent c8932306
No related branches found
No related tags found
No related merge requests found
......@@ -29,13 +29,30 @@
<img src="marmousi.png" alt="">
</div>
<h1>Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic Wave Problems</h1>
<h1>An Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
Wave Problems</h1>
<p>
GetDDM combines <a href="http://getdp.info">GetDP</a>
and <a href="http://gmsh.info">Gmsh</a> to solve large scale finite element
problems using optimized Schwarz domain decomposition methods.
GetDDM<a href="#1"><sup>1</sup></a> combines <a href="http://getdp.info">GetDP</a>
and <a href="http://gmsh.info">Gmsh</a> to solve large scale finite element
problems using optimized Schwarz domain decomposition methods.
</p>
<p>
<a href="https://gitlab.onelab.info/doc/models/wikis/Domain-decomposition-methods-for-waves">Examples
for time-harmonic acoustic and electromagnetic wave problems</a> implement
several families of transmission conditions: zeroth- and second-order
optimized conditions<a href="#2"><sup>2-7</sup></a>, Padé-localized
square-root conditions<a href="#8"><sup>8-9</sup></a> and PML
conditions<a href="#10"><sup>10</sup></a>. Several variants of the
double-sweep preconditioner<a href="#10"><sup>10</sup></a> are also
implemented.
</p>
<p>
For more information about these methods as well as the implementation, please
refer
to <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf">GetDDM:
an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic Wave
Problems</a>.
</p>
<h2>Quick start</h2>
......@@ -63,72 +80,55 @@ problems using optimized Schwarz domain decomposition methods.
mpirun -np 100 getdp models/GetDDM/waveguide3d.pro -solve DDM
</pre>
The actual commands will depend on your particular MPI setup. Sample
scripts for SLURM and PBS schedulers are also available.
scripts
for <a href="https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh">SLURM</a>
and <a href="https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh">PBS</a>
schedulers are also available.
</ol>
(For parallel computations you will have to [recompile GetDP with MPI
support](https://gitlab.onelab.info/getdp/getdp/wikis/GetDP-compilation). Sample
[SLURM](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh)
and [PBS
scripts](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh)
are provided to to run on HPC clusters.)
for time-harmonic acoustic and electromagnetic wave problems. See Several
families of transmission conditions are implemented: zeroth- and second-order
optimized conditions [1-6], Padé-localized square-root conditions [7-8] and PML
conditions [9]. Several variants of the double-sweep preconditioner [9] are also
implemented.
For more information about these methods as well as the implementation, please
refer to [GetDDM: an Open Framework for Testing Optimized Schwarz Methods for
Time-Harmonic Wave
Problems](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf)
[10].
<h2>References</h2>
<div class="small">
<ol class="small">
<li>B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de
Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg pour
l'Equation de Hill Vectorielle, PhD Thesis, Paris VI University, France,
1991.
<li>B. Després, P. Joly and J. Roberts, A domain decomposition method for
the harmonic Maxwell equations, Iterative methods in linear algebra
(Brussels, 1991), pp. 475-484, North-Holland, 1992.
<li>M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
<li><a name="1"></a>B. Thierry, A.Vion, S. Tournier, M. El Bouajaji,
D. Colignon, N. Marsic, X. Antoine,
C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf">GetDDM:
an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
Wave Problems</a>. Computer Physics Communications 203, 309-330, 2016.
<li><a name="2"></a>B. Després, Méthodes de Décomposition de Domaine pour les
Problèmes de Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg
pour l'Equation de Hill Vectorielle, PhD Thesis, Paris VI University,
France, 1991.
<li><a name="3"></a>B. Després, P. Joly and J. Roberts, A domain decomposition
method for the harmonic Maxwell equations, Iterative methods in linear
algebra (Brussels, 1991), pp. 475-484, North-Holland, 1992.
<li><a name="4"></a>M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
overlap for the Helmholtz equation}, SIAM Journal on Scientific Computing,
24(1), pp. 38-60, 2002.
<li>V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized Schwarz methods
for Maxwell's equations, SIAM Journal on Scientific Computing, 31(3),
pp. 2193-2213, 2009.
<li>A. Bendali and Y. Boubendir, Non-Overlapping Domain Decomposition Method
for a Nodal Finite Element Method, Numerische Mathematik 103(4),
pp.515-537, (2006).
<li>V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition with Second
Order Transmission Condition for the Time-Harmonic Maxwell's Equations,
SIAM Journal on Scientific Computing, 32(6), pp. 3584-3603, 2010.
<li>Y. Boubendir, X. Antoine and
<li><a name="5"></a>V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized
Schwarz methods for Maxwell's equations, SIAM Journal on Scientific
Computing, 31(3), pp. 2193-2213, 2009.
<li><a name="6"></a>A. Bendali and Y. Boubendir, Non-Overlapping Domain
Decomposition Method for a Nodal Finite Element Method, Numerische
Mathematik 103(4), pp.515-537, (2006).
<li><a name="7"></a>V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition
with Second Order Transmission Condition for the Time-Harmonic Maxwell's
Equations, SIAM Journal on Scientific Computing, 32(6), pp. 3584-3603,
2010.
<li><a name="8"></a>Y. Boubendir, X. Antoine and
C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_helmholtz_preprint.pdf">A
quasi-optimal non-overlapping domain decomposition algorithm for the
Helmholtz equation</a>. Journal of Computational Physics 231 (2),
262-280, 2012.
<li>M. El Bouajaji, X. Antoine and
<li><a name="9"></a>M. El Bouajaji, X. Antoine and
C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/osrc_maxwell_preprint.pdf">Approximate
local magnetic-to-electric surface operators for time-harmonic Maxwell's
equations</a>. Journal of Computational Physics 279 241-260, 2014.
<li>A. Vion and
<li><a name="10"></a>A. Vion and
C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_double_sweep_preprint.pdf">
Double sweep preconditioner for optimized Schwarz methods applied to the
Helmholtz problem</a>. Journal of Computational Physics 266, 171-190,
2014.
<li>B. Thierry, A.Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic,
X. Antoine,
C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf">GetDDM:
an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
Wave Problems</a>. Computer Physics Communications 203, 309-330, 2016.
</ol>
</div>
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment