diff --git a/GetDDM/getddm.html b/GetDDM/getddm.html
index 73a92eab1fa24cf4fbead59f3e8e18fa5a747b27..b94fbb4302df5622cbb452a571eb6118c8670cc2 100644
--- a/GetDDM/getddm.html
+++ b/GetDDM/getddm.html
@@ -29,13 +29,30 @@
   <img src="marmousi.png" alt="">
 </div>
 
-<h1>Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic Wave Problems</h1>
+<h1>An Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
+Wave Problems</h1>
 
 <p>
-GetDDM combines <a href="http://getdp.info">GetDP</a>
-and <a href="http://gmsh.info">Gmsh</a> to solve large scale finite element
-problems using optimized Schwarz domain decomposition methods.
-
+  GetDDM<a href="#1"><sup>1</sup></a> combines <a href="http://getdp.info">GetDP</a>
+  and <a href="http://gmsh.info">Gmsh</a> to solve large scale finite element
+  problems using optimized Schwarz domain decomposition methods.
+</p>
+<p>
+  <a href="https://gitlab.onelab.info/doc/models/wikis/Domain-decomposition-methods-for-waves">Examples
+  for time-harmonic acoustic and electromagnetic wave problems</a> implement
+  several families of transmission conditions: zeroth- and second-order
+  optimized conditions<a href="#2"><sup>2-7</sup></a>, Padé-localized
+  square-root conditions<a href="#8"><sup>8-9</sup></a> and PML
+  conditions<a href="#10"><sup>10</sup></a>. Several variants of the
+  double-sweep preconditioner<a href="#10"><sup>10</sup></a> are also
+  implemented.
+</p>
+<p>
+  For more information about these methods as well as the implementation, please
+  refer
+  to <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf">GetDDM:
+  an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic Wave
+  Problems</a>.
 </p>
 
 <h2>Quick start</h2>
@@ -63,72 +80,55 @@ problems using optimized Schwarz domain decomposition methods.
       mpirun -np 100 getdp models/GetDDM/waveguide3d.pro -solve DDM
     </pre>
     The actual commands will depend on your particular MPI setup.  Sample
-    scripts for SLURM and PBS schedulers are also available.
+    scripts
+    for <a href="https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh">SLURM</a>
+    and <a href="https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh">PBS</a>
+    schedulers are also available.
 </ol>
 
-(For parallel computations you will have to [recompile GetDP with MPI
- support](https://gitlab.onelab.info/getdp/getdp/wikis/GetDP-compilation). Sample
- [SLURM](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_slurm.sh)
- and [PBS
- scripts](https://gitlab.onelab.info/doc/models/tree/master/DDMWaves/run_pbs.sh)
- are provided to to run on HPC clusters.)
-
-
-for time-harmonic acoustic and electromagnetic wave problems. See Several
-families of transmission conditions are implemented: zeroth- and second-order
-optimized conditions [1-6], Padé-localized square-root conditions [7-8] and PML
-conditions [9]. Several variants of the double-sweep preconditioner [9] are also
-implemented.
-
-For more information about these methods as well as the implementation, please
-refer to [GetDDM: an Open Framework for Testing Optimized Schwarz Methods for
-Time-Harmonic Wave
-Problems](http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf)
-[10].
-
-
 <h2>References</h2>
 
 <div class="small">
   <ol class="small">
-    <li>B. Després, Méthodes de Décomposition de Domaine pour les Problèmes de
-      Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg pour
-      l'Equation de Hill Vectorielle, PhD Thesis, Paris VI University, France,
-      1991.
-    <li>B. Després, P. Joly and J. Roberts, A domain decomposition method for
-      the harmonic Maxwell equations, Iterative methods in linear algebra
-      (Brussels, 1991), pp. 475-484, North-Holland, 1992.
-    <li>M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
+    <li><a name="1"></a>B. Thierry, A.Vion, S. Tournier, M. El Bouajaji,
+      D. Colignon, N. Marsic, X. Antoine,
+      C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf">GetDDM:
+      an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
+      Wave Problems</a>.  Computer Physics Communications 203, 309-330, 2016.
+    <li><a name="2"></a>B. Després, Méthodes de Décomposition de Domaine pour les
+      Problèmes de Propagation d'Ondes en Régime Harmonique. Le Théorème de Borg
+      pour l'Equation de Hill Vectorielle, PhD Thesis, Paris VI University,
+      France, 1991.
+    <li><a name="3"></a>B. Després, P. Joly and J. Roberts, A domain decomposition
+      method for the harmonic Maxwell equations, Iterative methods in linear
+      algebra (Brussels, 1991), pp. 475-484, North-Holland, 1992.
+    <li><a name="4"></a>M. Gander, F. Magoulès and F. Nataf, Optimized Schwarz methods without
       overlap for the Helmholtz equation}, SIAM Journal on Scientific Computing,
       24(1), pp. 38-60, 2002.
-    <li>V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized Schwarz methods
-      for Maxwell's equations, SIAM Journal on Scientific Computing, 31(3),
-      pp. 2193-2213, 2009.
-    <li>A. Bendali and Y. Boubendir, Non-Overlapping Domain Decomposition Method
-      for a Nodal Finite Element Method, Numerische Mathematik 103(4),
-      pp.515-537, (2006).
-    <li>V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition with Second
-      Order Transmission Condition for the Time-Harmonic Maxwell's Equations,
-      SIAM Journal on Scientific Computing, 32(6), pp. 3584-3603, 2010.
-    <li>Y. Boubendir, X. Antoine and
+    <li><a name="5"></a>V. Dolean, M. Gander and L. Gerardo-Giorda, Optimized
+      Schwarz methods for Maxwell's equations, SIAM Journal on Scientific
+      Computing, 31(3), pp. 2193-2213, 2009.
+    <li><a name="6"></a>A. Bendali and Y. Boubendir, Non-Overlapping Domain
+      Decomposition Method for a Nodal Finite Element Method, Numerische
+      Mathematik 103(4), pp.515-537, (2006).
+    <li><a name="7"></a>V. Rawat and J.-F. Lee, Nonoverlapping Domain Decomposition
+      with Second Order Transmission Condition for the Time-Harmonic Maxwell's
+      Equations, SIAM Journal on Scientific Computing, 32(6), pp. 3584-3603,
+      2010.
+    <li><a name="8"></a>Y. Boubendir, X. Antoine and
       C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_helmholtz_preprint.pdf">A
       quasi-optimal non-overlapping domain decomposition algorithm for the
       Helmholtz equation</a>.  Journal of Computational Physics 231 (2),
       262-280, 2012.
-    <li>M. El Bouajaji, X. Antoine and
+    <li><a name="9"></a>M. El Bouajaji, X. Antoine and
       C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/osrc_maxwell_preprint.pdf">Approximate
       local magnetic-to-electric surface operators for time-harmonic Maxwell's
       equations</a>.  Journal of Computational Physics 279 241-260, 2014.
-    <li>A. Vion and
+    <li><a name="10"></a>A. Vion and
       C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/ddm_double_sweep_preprint.pdf">
       Double sweep preconditioner for optimized Schwarz methods applied to the
       Helmholtz problem</a>.  Journal of Computational Physics 266, 171-190,
       2014.
-    <li>B. Thierry, A.Vion, S. Tournier, M. El Bouajaji, D. Colignon, N. Marsic,
-      X. Antoine,
-      C. Geuzaine. <a href="http://www.montefiore.ulg.ac.be/~geuzaine/preprints/getddm_preprint.pdf">GetDDM:
-      an Open Framework for Testing Optimized Schwarz Methods for Time-Harmonic
-      Wave Problems</a>.  Computer Physics Communications 203, 309-330, 2016.
   </ol>
 </div>