Select Git revision
transfo.pro
transfo.pro 7.38 KiB
/* -------------------------------------------------------------------
Tutorial 7b : magnetodyamic model of a single-phase transformer
Features:
- Use of a generic template formulation library
- Circuit coupling used as a black-box (see Tutorial 8 for details)
To compute the solution in a terminal:
getdp transfo -solve Magnetodynamics2D_av -pos dyn
To compute the solution interactively from the Gmsh GUI:
File > Open > transfo.pro
Run (button at the bottom of the left panel)
------------------------------------------------------------------- */
Include "transfo_common.pro";
DefineConstant[
// The "Massive" option is non-physical, but it's interesting to highlight the
// fact that both massive and stranded conductors can be handled in the same
// way as far as circuit-coupling is concerned
ConductorType = {2, Choices{1 = "Massive", 2 = "Coil"}, Highlight "Blue",
Name "Parameters/01Conductor type"}
Freq = {1, Min 0, Max 1e3, Step 1,
Name "Parameters/Frequency"}
Flag_FrequencyDomain = {1, Choices{0, 1},
Name "Parameters/Frequency-domain?"}
mur_Core = {1000, Min 1, Max 10000, Step 1,
Name "Parameters/Core relative permeability"}
];
Group {
// Physical regions:
Air = Region[{AIR_WINDOW, AIR_EXT}];
Sur_Air_Ext = Region[SUR_AIR_EXT]; // exterior boundary
Core = Region[CORE]; // magnetic core of the transformer, assumed non-conducting
Coil_1_P = Region[COIL_1_PLUS]; // 1st coil, positive side
Coil_1_M = Region[COIL_1_MINUS]; // 1st coil, negative side
Coil_1 = Region[{Coil_1_P, Coil_1_M}];
Coil_2_P = Region[COIL_2_PLUS]; // 2nd coil, positive side
Coil_2_M = Region[COIL_2_MINUS]; // 2nd coil, negative side
Coil_2 = Region[{Coil_2_P, Coil_2_M}];
Coils = Region[{Coil_1, Coil_2}];
// Abstract regions that will be used in the "Lib_Magnetodynamics2D_av_Cir.pro"
// template file included below;
Vol_Mag = Region[{Air, Core, Coils}]; // full magnetic domain
If (ConductorType == 1)
Vol_C_Mag = Region[{Coils}]; // massive conductors
ElseIf (ConductorType == 2)
Vol_S_Mag = Region[{Coils}]; // stranded conductors (coils)
EndIf
}
Function {
mu0 = 4e-7*Pi;
mu[Air] = 1 * mu0;
mu[Core] = mur_Core * mu0;
mu[Coils] = 1 * mu0;
nu[] = 1 / mu[];
sigma[Coils] = 1e7;
// To be defined separately for each coil portion, to fix the convention of
// positive current (1: along Oz, -1: along -Oz)
SignBranch[Coil_1_P] = 1;
SignBranch[Coil_1_M] = -1;
SignBranch[Coil_2_P] = 1;
SignBranch[Coil_2_M] = -1;
If(ConductorType == 2)
// Number of turns in the coils (same for PLUS and MINUS portions) - half
// values because half coils are defined geometrically due to symmetry!
Ns[Coil_1] = 100;
Ns[Coil_2] = 200;
// To be defined separately for each coil portion:
Sc[Coil_1_P] = SurfaceArea[];
Sc[Coil_1_M] = SurfaceArea[];
Sc[Coil_2_P] = SurfaceArea[];
Sc[Coil_2_M] = SurfaceArea[];
// Current density in each coil portion for a unit current (will be
// multiplied by the actual total current in the coil), in the case of
// stranded conductors
js0[Coils] = Ns[] / Sc[] * Vector[0, 0, SignBranch[]];
EndIf
// For a correct definition of the voltage
CoefGeos[Coils] = SignBranch[] * thickness_Core;
}
// We will use a circuit coupling to connect the PLUS and MINUS portions of the
// coil in series, for both the primary and secondary. We will then apply a
// voltage source (with a small resistance in series) on the resulting branch on
// the primary, and connect a resistive load on the resulting branch on the
// secondary.
Flag_CircuitCoupling = 1;
// Note that the voltage will not be equally distributed in the PLUS and MINUS
// parts, which is the reason why we must apply the total voltage through a
// circuit -- and we cannot simply use a current source like in Tutorial 7a.
// Here is the definition of the circuits on primary and secondary sides:
Group {
// Empty Groups to be filled
Resistance_Cir = Region[{}]; // all resistances
Inductance_Cir = Region[{}] ; // all inductances
Capacitance_Cir = Region[{}] ; // all capacitances
SourceV_Cir = Region[{}]; // all voltage sources
SourceI_Cir = Region[{}]; // all current sources
// Primary side
E_in = Region[10001]; // arbitrary region number (not linked to the mesh)
SourceV_Cir += Region[{E_in}];
R_in = Region[10002]; // arbitrary region number (not linked to the mesh)
Resistance_Cir += Region[{R_in}];
// Secondary side
R_out = Region[10101]; // arbitrary region number (not linked to the mesh)
Resistance_Cir += Region[{R_out}];
}
Function {
deg = Pi/180;
// Input RMS voltage (half of the voltage because of symmetry; half coils are
// defined!)
val_E_in = 1.;
phase_E_in = 90 *deg; // Phase in radian (from phase in degree)
// High value for an open-circuit test; Low value for a short-circuit test;
// any value in-between for any charge
Resistance[R_out] = 10;
// End-winding primary winding resistance for more realistic primary coil
// model
Resistance[R_in] = 1e-3;
}
Constraint {
{ Name MagneticVectorPotential_2D;
Case {
{ Region Sur_Air_Ext; Value 0; }
}
}
{ Name Current_2D;
Case {
}
}
{ Name Voltage_2D;
Case {
}
}
{ Name Current_Cir ;
Case {
}
}
{ Name Voltage_Cir ;
Case {
{ Region E_in; Value val_E_in;
// F_Cos_wt_p[] is a built-in function with two parameters (w and p),
// that can be used to evaluate cos(w * t + p) in both frequency- and
// time-domain
TimeFunction F_Cos_wt_p[]{2*Pi*Freq, phase_E_in}; }
}
}
{ Name ElectricalCircuit ; Type Network ;
Case Circuit_1 {
// PLUS and MINUS coil portions to be connected in series, together with
// E_in; an additional resistor is defined in series to represent the
// Coil_1 end-winding, which is not considered in the 2D model.
{ Region E_in; Branch {1,4}; }
{ Region R_in; Branch {4,2}; }
{ Region Coil_1_P; Branch {2,3} ; }
{ Region Coil_1_M; Branch {3,1} ; }
}
Case Circuit_2 {
// PLUS and MINUS coil portions to be connected in series, together with
// R_out (an additional resistor could be defined to represent the Coil_2
// end-winding - but we can directly add it to R_out as well)
{ Region R_out; Branch {1,2}; }
{ Region Coil_2_P; Branch {2,3} ; }
{ Region Coil_2_M; Branch {3,1} ; }
}
}
}
Include "Lib_Magnetodynamics2D_av_Cir.pro";
PostOperation {
{ Name dyn; NameOfPostProcessing Magnetodynamics2D_av;
Operation {
Print[ j, OnElementsOf Region[{Vol_C_Mag, Vol_S_Mag}], Format Gmsh, File "j.pos" ];
Print[ b, OnElementsOf Vol_Mag, Format Gmsh, File "b.pos" ];
Print[ az, OnElementsOf Vol_Mag, Format Gmsh, File "az.pos" ];
If (Flag_FrequencyDomain)
// In text file UI.txt: voltage and current of the primary coil (from
// E_in) (real and imaginary parts!)
Echo[ "E_in", Format Table, File "UI.txt" ];
Print[ U, OnRegion E_in, Format FrequencyTable, File > "UI.txt" ];
Print[ I, OnRegion E_in, Format FrequencyTable, File > "UI.txt"];
// In text file UI.txt: voltage and current of the secondary coil (from
// R_out)
Echo[ "R_out", Format Table, File > "UI.txt" ];
Print[ U, OnRegion R_out, Format FrequencyTable, File > "UI.txt" ];
Print[ I, OnRegion R_out, Format FrequencyTable, File > "UI.txt"];
EndIf
}
}
}