Skip to content
Snippets Groups Projects
Commit f1191440 authored by Guillaume Demesy's avatar Guillaume Demesy
Browse files

update python postplot

parent 5aa612e3
Branches
No related tags found
No related merge requests found
Pipeline #5107 passed
......@@ -443,7 +443,7 @@ PostOperation {
{ Name postop_energy; NameOfPostProcessing postpro_energy ;
Operation {
If (flag_Hparallel==1)
Print[ lambda_step, OnPoint{0,0,0}, Format Table, File StrCat[myDir, "temp_lambda_step.txt"], SendToServer "GetDP/Lambda_step" ] ;
Print[ lambda_step, OnPoint{0,0,0}, Format Table, File > StrCat[myDir, "temp_lambda_step.txt"], SendToServer "GetDP/Lambda_step" ] ;
For i In {0:2*nb_orders}
Print[ s_r~{i}[SurfCutSuper1], OnGlobal, Store i , Format Table , File > StrCat[myDir, Sprintf("temp_s_r_%g.txt", i-nb_orders)]];
Print[ s_t~{i}[SurfCutSubs1] , OnGlobal, Store (2*nb_orders+1+i), Format Table , File > StrCat[myDir, Sprintf("temp_s_t_%g.txt", i-nb_orders)]];
......
......@@ -5,24 +5,14 @@ import subprocess
import numpy as np
import scipy as sc
import matplotlib
matplotlib.use('Agg')
import pylab as pl
pi=np.pi
pl.rc('font', family='serif',size=20)
pl.rc('legend',fontsize=20)
# pl.rc('text', usetex=True)
# pl.rc('figure', **{'autolayout': True})
#### scaling the problem (*10^12)
nm = 1.e3
ep0 = 8.854187817e-3*nm
mu0 = 400.*pi*nm
cel = 1.0/(np.sqrt(ep0 * mu0))
####
nb_orders = int(int(subprocess.check_output("ls ./run_results/efficiency_r_* | grep -c efficiency_r_", shell=True))/2)
nb_rods = int(int(subprocess.check_output("ls ./run_results/absorption-Q_rod_* | grep -c absorption-Q_rod_", shell=True))-1)
zerotol = 0.001
if len(np.loadtxt('./run_results/efficiency_r_0.txt').shape)==2:
tab_lambdas = cel/nm/np.loadtxt('./run_results/efficiency_r_0.txt')[:,0]
tab_lambdas = np.loadtxt('./run_results/temp_lambda_step.txt')[:,8]
nb_lambdas = tab_lambdas.shape[0]
R = np.zeros((nb_lambdas,2*nb_orders+1),dtype=complex)
T = np.zeros((nb_lambdas,2*nb_orders+1),dtype=complex)
......@@ -46,9 +36,9 @@ if len(np.loadtxt('./run_results/efficiency_r_0.txt').shape)==2:
pl.savez('last_run_RTA.npz',R0=R0,T0=T0,A=A)
pl.figure(figsize=(12,8));ax = pl.subplot(111)
ax.plot(tab_lambdas,Rtot,'g',label='$R_{tot}$') #R_0
ax.plot(tab_lambdas,Ttot,'b',label='$T_{tot}$') #T_0
pl.figure();ax = pl.subplot(111)
ax.plot(tab_lambdas,Rtot,'g',label='$R_{tot}=\sum_k R_k$') #R_0
ax.plot(tab_lambdas,Ttot,'b',label='$T_{tot}=\sum_k T_k$') #T_0
ax.plot(tab_lambdas, A ,'r',label='$A$')
ax.plot(tab_lambdas, Rtot+Ttot+A,'k',label='$R_{tot}+T_{tot}+A$')
ax.set_ylim([-0.07,1.07])
......@@ -56,10 +46,10 @@ if len(np.loadtxt('./run_results/efficiency_r_0.txt').shape)==2:
ax.grid()
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5),fontsize=16)
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5))
pl.savefig('energy_balance_global.pdf')
pl.figure(figsize=(12,8));ax = pl.subplot(111)
pl.figure();ax = pl.subplot(111)
absorption_list=[A_rod_out,A_layer_cov,A_layer_dep,A_sub]
absorption_list_label=['$A_{rod_{out}}$','$A_{layer_{cov}}$','$A_{layer_{dep}}$','$A_{sub}$']
count=0
......@@ -93,7 +83,7 @@ if len(np.loadtxt('./run_results/efficiency_r_0.txt').shape)==2:
if not np.all(np.isclose(tran.real,np.zeros_like(tran),atol=zerotol)):
if(k==0):ax.plot(tab_lambdas,tran.real ,lw=3, c=next(color),label='$T_{%g}$'%(k))
else:ax.plot(tab_lambdas,tran.real ,lw=1, c=next(color),label='$T_{%g}$'%(k))
pl.title('details : diffraction orders (>%.0fpercent for clarity)'%(zerotol*100.))
pl.title('details : diffraction orders (>%.0f%% for clarity)'%(zerotol*100.))
ax.set_ylim([-0.07,1.07])
ax.set_xlim([tab_lambdas.min(),tab_lambdas.max()])
ax.grid()
......@@ -103,7 +93,7 @@ if len(np.loadtxt('./run_results/efficiency_r_0.txt').shape)==2:
pl.savefig('energy_balance_detailed.pdf')
pl.show()
elif len(np.loadtxt('./run_results/efficiency_r_0.txt').shape)==1:
lambdas=cel/nm/np.loadtxt('./run_results/efficiency_r_0.txt')[0]
lambdas=np.loadtxt('./run_results/efficiency_r_0.txt')[0]
R = np.zeros(2*nb_orders+1,dtype=complex)
T = np.zeros(2*nb_orders+1,dtype=complex)
angle_r = np.zeros(2*nb_orders+1)
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment