Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
models
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
documentation
models
Commits
c1f9635a
Commit
c1f9635a
authored
3 years ago
by
Guillaume Demesy
Browse files
Options
Downloads
Patches
Plain Diff
standalone/fast T-matrix computation (no python)
parent
31bd18d5
No related branches found
Branches containing commit
No related tags found
No related merge requests found
Pipeline
#8316
canceled
3 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
ElectromagneticScattering/scattererTmatrix.pro
+267
-0
267 additions, 0 deletions
ElectromagneticScattering/scattererTmatrix.pro
with
267 additions
and
0 deletions
ElectromagneticScattering/scattererTmatrix.pro
0 → 100644
+
267
−
0
View file @
c1f9635a
///////////////////////////////
// Author : Guillaume Demesy //
// scattererTmatrix.pro //
///////////////////////////////
Include
"scattererTmatrix_data.geo"
;
myDir
=
"resT/"
;
Group
{
Scat_In
=
Region
[
1
];
Scat_Out
=
Region
[
2
];
Domain
=
Region
[{
Scat_In
,
Scat_Out
}];
PMLs
=
Region
[
3
];
All_domains
=
Region
[{
Scat_In
,
Scat_Out
,
PMLs
}];
SurfInt
=
Region
[{
10
}];
SurfDirichlet
=
Region
[{
20
}];
}
Function
{
I
[]
=
Complex
[
0
,
1
];
avoid_sing
=
1.e-14
;
mu0
=
4
*
Pi
*
100.0
*
nm
;
epsilon0
=
8.854187817e-3
*
nm
;
cel
=
1.0
/
Sqrt
[
epsilon0
*
mu0
];
Freq
=
cel
/
lambda0
;
omega0
=
2.0
*
Pi
*
Freq
;
k_Out
=
2.0
*
Pi
*
Sqrt
[
epsr_Out_re
]
/
lambda0
;
R3D
[]
=
Sqrt
[
X
[]
^
2
+
Y
[]
^
2
+
Z
[]
^
2
];
R2D
[]
=
Sqrt
[
X
[]
^
2
+
Y
[]
^
2
];
cos_theta
[]
=
Z
[]
/
(
R3D
[]
+
avoid_sing
);
theta
[]
=
Acos
[
cos_theta
[]];
phi
[]
=
Atan2
[
-
Y
[],
-
X
[]]
+
Pi
;
cart2sph
[]
=
Tensor
[
X
[]
/
R3D
[],
Y
[]
/
R3D
[],
Z
[]
/
R3D
[],
X
[]
*
Z
[]
/
(
R3D
[]
*
R2D
[]),
Y
[]
*
Z
[]
/
(
R3D
[]
*
R2D
[]),
-
(
X
[]
^
2
+
Y
[]
^
2
)
/
(
R3D
[]
*
R2D
[]),
-
Y
[]
/
R2D
[],
X
[]
/
R2D
[],
0
];
R
[]
=
Vector
[
X
[]
/
R3D
[],
Y
[]
/
R3D
[],
Z
[]
/
R3D
[]];
a_pml
=
1.
;
b_pml
=
-
siwt
;
sr
[]
=
Complex
[
a_pml
,
b_pml
];
sphi
[]
=
Complex
[
1
,
0
];
stheta
[]
=
Complex
[
1
,
0
];
r_tild
[]
=
r_pml_in
+
(
R3D
[]
-
r_pml_in
)
*
sr
[];
theta_tild
[]
=
theta
[];
pml_tens_temp1
[]
=
TensorDiag
[(
r_tild
[]
/
R3D
[])
^
2
*
sphi
[]
*
stheta
[]
/
sr
[],
(
r_tild
[]
/
R3D
[])
*
sr
[]
*
stheta
[]
/
sphi
[],
(
r_tild
[]
/
R3D
[])
*
sphi
[]
*
sr
[]
/
stheta
[]];
pml_tens_temp2
[]
=
Rotate
[
pml_tens_temp1
[],
0
,
-
theta
[]
-
Pi
/
2
,
0
];
pml_tens
[]
=
Rotate
[
pml_tens_temp2
[],
0
,
0
,
-
phi
[]];
epsilonr_In
[]
=
Complex
[
epsr_In_re
,
epsr_In_im
];
epsilonr_Out
[]
=
Complex
[
epsr_Out_re
,
epsr_Out_im
];
epsilonr
[
Scat_In
]
=
epsilonr_In
[]
*
TensorDiag
[
1.
,
1.
,
1.
];
epsilonr
[
Scat_Out
]
=
epsilonr_Out
[]
*
TensorDiag
[
1.
,
1.
,
1.
];
epsilonr
[
PMLs
]
=
pml_tens
[];
epsilonr1
[
Scat_In
]
=
epsilonr_Out
[]
*
TensorDiag
[
1.
,
1.
,
1.
];
epsilonr1
[
Scat_Out
]
=
epsilonr_Out
[]
*
TensorDiag
[
1.
,
1.
,
1.
];
epsilonr1
[
PMLs
]
=
pml_tens
[];
mur
[
Scat_In
]
=
TensorDiag
[
1.
,
1.
,
1.
];
mur
[
Scat_Out
]
=
TensorDiag
[
1.
,
1.
,
1.
];
mur
[
PMLs
]
=
pml_tens
[];
For
pe
In
{
1
:
p_max
}
ne
=
Floor
[
Sqrt
[
pe
]];
me
=
ne
*
(
ne
+
1
)
-
Floor
[
pe
];
Mnm_source
~
{
pe
}[]
=
Mnm
[
1
,
ne
,
me
,
XYZ
[],
k_Out
];
Nnm_source
~
{
pe
}[]
=
Nnm
[
1
,
ne
,
me
,
XYZ
[],
k_Out
];
Mnm_out
~
{
pe
}[]
=
Mnm
[
3
,
ne
,
me
,
XYZ
[],
k_Out
];
Nnm_out
~
{
pe
}[]
=
Nnm
[
3
,
ne
,
me
,
XYZ
[],
k_Out
];
Xnm
~
{
pe
}[]
=
Xnm
[
ne
,
me
,
X
[],
Y
[],
Z
[]];
Ynm
~
{
pe
}[]
=
Ynm
[
ne
,
me
,
X
[],
Y
[],
Z
[]];
Znm
~
{
pe
}[]
=
Znm
[
ne
,
me
,
X
[],
Y
[],
Z
[]];
Ynm_r
~
{
pe
}[]
=
Ynm
[
ne
,
me
,
X
[],
Y
[],
Z
[]]
*
R
[];
source_M
~
{
pe
}[]
=
(
omega0
/
cel
)
^
2
*
(
epsilonr
[]
-
epsilonr1
[])
*
Mnm_source
~
{
pe
}[];
source_N
~
{
pe
}[]
=
(
omega0
/
cel
)
^
2
*
(
epsilonr
[]
-
epsilonr1
[])
*
Nnm_source
~
{
pe
}[];
SphHankelOutgoing_n
~
{
pe
}[]
=
(
JnSph
[
ne
,
k_Out
*
r_pml_in
]
-
siwt
*
I
[]
*
YnSph
[
ne
,
k_Out
*
r_pml_in
])
;
SphHankelOutgoing_nm1
~
{
pe
}[]
=
(
JnSph
[
ne
-
1
,
k_Out
*
r_pml_in
]
-
siwt
*
I
[]
*
YnSph
[
ne
-
1
,
k_Out
*
r_pml_in
])
;
dRicattiBessel
~
{
pe
}[]
=
(
k_Out
*
r_pml_in
*
(
SphHankelOutgoing_nm1
~
{
pe
}[]
-
((
ne
+
1
)
/
((
k_Out
*
r_pml_in
)))
*
SphHankelOutgoing_n
~
{
pe
}[])
+
SphHankelOutgoing_n
~
{
pe
}[]);
normalize_fhnm_X
~
{
pe
}[]
=
1
/
SphHankelOutgoing_n
~
{
pe
}[];
normalize_fenm_Z
~
{
pe
}[]
=
k_Out
*
r_pml_in
/
dRicattiBessel
~
{
pe
}[];
normalize_fenm_Y
~
{
pe
}[]
=
k_Out
*
r_pml_in
/
(
SphHankelOutgoing_n
~
{
pe
}[]
*
Sqrt
[
ne
*
(
ne
+
1
)]);
EndFor
}
Constraint
{
{
Name
Dirichlet
;
Type
Assign
;
Case
{
{
Region
SurfDirichlet
;
Value
0.
;
}
}
}
}
Jacobian
{
{
Name
JVol
;
Case
{
{
Region
All
;
Jacobian
Vol
;
}
}
}
{
Name
JSur
;
Case
{
{
Region
All
;
Jacobian
Sur
;
}
}
}
}
Integration
{
{
Name
Int_1
;
Case
{
{
Type
Gauss
;
Case
{
{
GeoElement
Point
;
NumberOfPoints
1
;
}
{
GeoElement
Line2
;
NumberOfPoints
4
;
}
{
GeoElement
Triangle
;
NumberOfPoints
12
;
}
{
GeoElement
Triangle2
;
NumberOfPoints
12
;
}
{
GeoElement
Tetrahedron
;
NumberOfPoints
17
;
}
{
GeoElement
Tetrahedron2
;
NumberOfPoints
17
;
}
}
}
}
}
}
FunctionSpace
{
{
Name
Hcurl
;
Type
Form1
;
BasisFunction
{
{
Name
sn
;
NameOfCoef
un
;
Function
BF_Edge
;
Support
Region
[{
All_domains
,
SurfInt
}];
Entity
EdgesOf
[
All
];
}
{
Name
sn2
;
NameOfCoef
un2
;
Function
BF_Edge_2E
;
Support
Region
[{
All_domains
,
SurfInt
}];
Entity
EdgesOf
[
All
];
}
If
(
is_FEM_o2
==
1
)
{
Name
sn3
;
NameOfCoef
un3
;
Function
BF_Edge_3F_b
;
Support
Region
[{
All_domains
,
SurfInt
}];
Entity
FacetsOf
[
All
];
}
{
Name
sn4
;
NameOfCoef
un4
;
Function
BF_Edge_3F_c
;
Support
Region
[{
All_domains
,
SurfInt
}];
Entity
FacetsOf
[
All
];
}
{
Name
sn5
;
NameOfCoef
un5
;
Function
BF_Edge_4E
;
Support
Region
[{
All_domains
,
SurfInt
}];
Entity
EdgesOf
[
All
];
}
EndIf
}
Constraint
{
{
NameOfCoef
un
;
EntityType
EdgesOf
;
NameOfConstraint
Dirichlet
;
}
{
NameOfCoef
un2
;
EntityType
EdgesOf
;
NameOfConstraint
Dirichlet
;
}
If
(
is_FEM_o2
==
1
)
{
NameOfCoef
un3
;
EntityType
FacetsOf
;
NameOfConstraint
Dirichlet
;
}
{
NameOfCoef
un4
;
EntityType
FacetsOf
;
NameOfConstraint
Dirichlet
;
}
{
NameOfCoef
un5
;
EntityType
EdgesOf
;
NameOfConstraint
Dirichlet
;
}
EndIf
}
}
}
Formulation
{
{
Name
VPWMN_helmholtz_vector
;
Type
FemEquation
;
Quantity
{
{
Name
u
;
Type
Local
;
NameOfSpace
Hcurl
;}
}
Equation
{
Galerkin
{
[
-
1
/
mur
[]
*
Dof
{
Curl
u
}
,
{
Curl
u
}];
In
All_domains
;
Jacobian
JVol
;
Integration
Int_1
;
}
Galerkin
{
[(
omega0
/
cel
)
^
2
*
epsilonr
[]
*
Dof
{
u
}
,
{
u
}
];
In
All_domains
;
Jacobian
JVol
;
Integration
Int_1
;
}
Galerkin
{
[
(
omega0
/
cel
)
^
2
*
(
epsilonr
[]
-
epsilonr1
[])
*
(
$
isN
?
Nnm
[
1
,
$
NE
,
$
ME
,
XYZ
[],
k_Out
]
:
Mnm
[
1
,
$
NE
,
$
ME
,
XYZ
[],
k_Out
])
,
{
u
}
];
In
Scat_In
;
Jacobian
JVol
;
Integration
Int_1
;}
}
}
}
Resolution
{
{
Name
res_VPWall_helmholtz_vector
;
System
{
{
Name
T
;
NameOfFormulation
VPWMN_helmholtz_vector
;
Type
ComplexValue
;
}
}
Operation
{
CreateDir
[
Str
[
myDir
]];
For
pe
In
{
1
:
p_max
}
Evaluate
[
$
isN
=
0
];
Evaluate
[
$
PE
=
pe
];
Evaluate
[
$
NE
=
Floor
[
Sqrt
[
$
PE
]]
];
Evaluate
[
$
ME
=
$
NE
*
(
$
NE
+
1
)
-
Floor
[
$
PE
]
];
If
(
pe
==
1
)
Generate
[
T
];
Solve
[
T
];
EndIf
GenerateRHS
[
T
];
SolveAgain
[
T
];
PostOperation
[
VPWM_postop
~
{
pe
}];
Evaluate
[
$
isN
=
1
];
GenerateRHS
[
T
];
SolveAgain
[
T
];
PostOperation
[
VPWN_postop
~
{
pe
}];
EndFor
}
}
}
PostProcessing
{
For
pe
In
{
1
:
p_max
}
{
Name
VPWM_postpro
~
{
pe
};
NameOfFormulation
VPWMN_helmholtz_vector
;
NameOfSystem
T
;
Quantity
{
{
Name
E_scat
;
Value
{
Local
{
[{
u
}];
In
All_domains
;
Jacobian
JVol
;
}
}
}
{
Name
H_scat
;
Value
{
Local
{
[
siwt
*
I
[]
/
(
mur
[]
*
mu0
*
omega0
)
*
{
Curl
u
}];
In
All_domains
;
Jacobian
JVol
;
}
}
}
{
Name
Mnm_source
~
{
pe
}
;
Value
{
Local
{
[
Mnm_source
~
{
pe
}[]
];
In
All_domains
;
Jacobian
JVol
;
}
}
}
For
po
In
{
1
:
p_max
}
{
Name
feM
~
{
pe
}
~
{
po
}
;
Value
{
Integral
{
[
(
1
/
r_pml_in
)
^
2
*
normalize_fenm_Z
~
{
po
}[]
*
{
u
}
*
Conj
[
Znm
~
{
po
}[]]
];
In
SurfInt
;
Integration
Int_1
;
Jacobian
JSur
;
}
}
}
{
Name
fhM
~
{
pe
}
~
{
po
}
;
Value
{
Integral
{
[
(
1
/
r_pml_in
)
^
2
*
normalize_fhnm_X
~
{
po
}[]
*
{
u
}
*
Conj
[
Xnm
~
{
po
}[]]
];
In
SurfInt
;
Integration
Int_1
;
Jacobian
JSur
;
}
}
}
EndFor
}
}
{
Name
VPWN_postpro
~
{
pe
};
NameOfFormulation
VPWMN_helmholtz_vector
;
NameOfSystem
T
;
Quantity
{
{
Name
E_scat
;
Value
{
Local
{
[{
u
}];
In
All_domains
;
Jacobian
JVol
;
}
}
}
{
Name
H_scat
;
Value
{
Local
{
[
siwt
*
I
[]
/
(
mur
[]
*
mu0
*
omega0
)
*
{
Curl
u
}];
In
All_domains
;
Jacobian
JVol
;
}
}
}
{
Name
Nnm_source
~
{
pe
}
;
Value
{
Local
{
[
Nnm_source
~
{
pe
}[]
];
In
All_domains
;
Jacobian
JVol
;
}
}
}
For
po
In
{
1
:
p_max
}
{
Name
feN
~
{
pe
}
~
{
po
}
;
Value
{
Integral
{
[
(
1
/
r_pml_in
)
^
2
*
normalize_fenm_Z
~
{
po
}[]
*
{
u
}
*
Conj
[
Znm
~
{
po
}[]]
];
In
SurfInt
;
Integration
Int_1
;
Jacobian
JSur
;
}
}
}
{
Name
fhN
~
{
pe
}
~
{
po
}
;
Value
{
Integral
{
[
(
1
/
r_pml_in
)
^
2
*
normalize_fhnm_X
~
{
po
}[]
*
{
u
}
*
Conj
[
Xnm
~
{
po
}[]]
];
In
SurfInt
;
Integration
Int_1
;
Jacobian
JSur
;
}
}
}
EndFor
}
}
EndFor
}
PostOperation
{
For
pe
In
{
1
:
p_max
}
{
Name
VPWM_postop
~
{
pe
};
NameOfPostProcessing
VPWM_postpro
~
{
pe
}
;
Operation
{
If
(
flag_plotcuts
==
1
)
Print
[
E_scat
,
OnGrid
{(
r_pml_in
-
1
*
nm
)
*
Sin
[
$
B
]
*
Cos
[
$
C
],
(
r_pml_in
-
1
*
nm
)
*
Sin
[
$
B
]
*
Sin
[
$
C
],
(
r_pml_in
-
1
*
nm
)
*
Cos
[
$
B
]}
{(
r_pml_in
-
1
*
nm
),
{
sph_scan
:
Pi
-
sph_scan
+
(
Pi
-
2.0
*
sph_scan
)
/
(
10
*
(
npts_plot_theta
-
1.0
))
:
(
Pi
-
2.0
*
sph_scan
)
/
(
npts_plot_theta
-
1.0
)},
{
sph_scan
:
2.0
*
Pi
-
sph_scan
+
(
2.0
*
Pi
-
2.0
*
sph_scan
)
/
(
10
*
(
npts_plot_phi
-
1.0
))
:
(
2.0
*
Pi
-
2.0
*
sph_scan
)
/
(
npts_plot_phi
-
1.0
)}
},
File
StrCat
[
myDir
,
StrCat
[
"E_scat_onsphere_cart_M"
,
Sprintf
[
"%g.pos"
,
pe
]]],
Name
StrCat
[
"E_scat_onsphere_cart_M"
,
Sprintf
[
"%g"
,
pe
]]];
EndIf
For
po
In
{
1
:
p_max
}
Print
[
feM
~
{
pe
}
~
{
po
}[
SurfInt
]
,
OnGlobal
,
Format
Table
,
File
StrCat
[
myDir
,
StrCat
[
StrCat
[
"feM_"
,
Sprintf
[
"pe%g"
,
pe
]],
Sprintf
[
"po%g.dat"
,
po
]]]];
Print
[
fhM
~
{
pe
}
~
{
po
}[
SurfInt
]
,
OnGlobal
,
Format
Table
,
File
StrCat
[
myDir
,
StrCat
[
StrCat
[
"fhM_"
,
Sprintf
[
"pe%g"
,
pe
]],
Sprintf
[
"po%g.dat"
,
po
]]]];
EndFor
}
}
{
Name
VPWN_postop
~
{
pe
};
NameOfPostProcessing
VPWN_postpro
~
{
pe
}
;
Operation
{
If
(
flag_plotcuts
==
1
)
Print
[
E_scat
,
OnGrid
{(
r_pml_in
-
1
*
nm
)
*
Sin
[
$
B
]
*
Cos
[
$
C
],
(
r_pml_in
-
1
*
nm
)
*
Sin
[
$
B
]
*
Sin
[
$
C
],
(
r_pml_in
-
1
*
nm
)
*
Cos
[
$
B
]}
{(
r_pml_in
-
1
*
nm
),
{
sph_scan
:
Pi
-
sph_scan
+
(
Pi
-
2.0
*
sph_scan
)
/
(
10
*
(
npts_plot_theta
-
1.0
))
:
(
Pi
-
2.0
*
sph_scan
)
/
(
npts_plot_theta
-
1.0
)},
{
sph_scan
:
2.0
*
Pi
-
sph_scan
+
(
2.0
*
Pi
-
2.0
*
sph_scan
)
/
(
10
*
(
npts_plot_phi
-
1.0
))
:
(
2.0
*
Pi
-
2.0
*
sph_scan
)
/
(
npts_plot_phi
-
1.0
)}
},
File
StrCat
[
myDir
,
StrCat
[
"E_scat_onsphere_cart_N"
,
Sprintf
[
"%g.pos"
,
pe
]]],
Name
StrCat
[
"E_scat_onsphere_cart_N"
,
Sprintf
[
"%g"
,
pe
]]];
EndIf
For
po
In
{
1
:
p_max
}
Print
[
feN
~
{
pe
}
~
{
po
}[
SurfInt
]
,
OnGlobal
,
Format
Table
,
File
StrCat
[
myDir
,
StrCat
[
StrCat
[
"feN_"
,
Sprintf
[
"pe%g"
,
pe
]],
Sprintf
[
"po%g.dat"
,
po
]]]];
Print
[
fhN
~
{
pe
}
~
{
po
}[
SurfInt
]
,
OnGlobal
,
Format
Table
,
File
StrCat
[
myDir
,
StrCat
[
StrCat
[
"fhN_"
,
Sprintf
[
"pe%g"
,
pe
]],
Sprintf
[
"po%g.dat"
,
po
]]]];
EndFor
}
}
EndFor
}
DefineConstant
[
R_
=
{
"res_VPWall_helmholtz_vector"
,
Name
"GetDP/1ResolutionChoices"
,
Visible
1
},
C_
=
{
"-solve -pos -petsc_prealloc 200 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps"
,
Name
"GetDP/9ComputeCommand"
,
Visible
1
},
P_
=
{
""
,
Name
"GetDP/2PostOperationChoices"
,
Visible
0
}];
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment