Skip to content
GitLab
Explore
Sign in
Register
Primary navigation
Search or go to…
Project
models
Manage
Activity
Members
Labels
Plan
Issues
Issue boards
Milestones
Wiki
Code
Merge requests
Repository
Branches
Commits
Tags
Repository graph
Compare revisions
Snippets
Build
Pipelines
Jobs
Pipeline schedules
Artifacts
Deploy
Releases
Model registry
Operate
Environments
Monitor
Incidents
Analyze
Value stream analytics
Contributor analytics
CI/CD analytics
Repository analytics
Model experiments
Help
Help
Support
GitLab documentation
Compare GitLab plans
Community forum
Contribute to GitLab
Provide feedback
Terms and privacy
Keyboard shortcuts
?
Snippets
Groups
Projects
Show more breadcrumbs
documentation
models
Commits
bb3d355f
Commit
bb3d355f
authored
6 years ago
by
Guillaume Demesy
Browse files
Options
Downloads
Patches
Plain Diff
up
parent
5dcff6bd
No related branches found
No related tags found
No related merge requests found
Pipeline
#2743
passed
6 years ago
Stage: test
Changes
1
Pipelines
1
Hide whitespace changes
Inline
Side-by-side
Showing
1 changed file
DiffractionGratings/grating2D.pro
+167
-162
167 additions, 162 deletions
DiffractionGratings/grating2D.pro
with
167 additions
and
162 deletions
DiffractionGratings/grating2D.pro
+
167
−
162
View file @
bb3d355f
...
@@ -7,12 +7,12 @@ Include "grating2D_data.geo";
...
@@ -7,12 +7,12 @@ Include "grating2D_data.geo";
Include
"grating2D_materials.pro"
;
Include
"grating2D_materials.pro"
;
myDir
=
"run_results/"
;
myDir
=
"run_results/"
;
DefineConstant
[
DefineConstant
[
lambda0
=
{
lambda_min
,
Min
lambda_min
,
Max
lambda_max
,
Step
(
lambda_max
-
lambda_min
)
/
(
nb_lambdas
-
1
),
Name
StrCat
[
pp2
,
"0wavelength [nm]"
]
,
Loop
1
,
Highlight
Str
[
colorpp2
],
Graph
"200000200020"
}
lambda0
=
{
lambda_min
,
Min
lambda_min
,
Max
lambda_max
,
Step
(
lambda_max
-
lambda_min
)
/
(
nb_lambdas
-
1
),
Name
StrCat
[
pp2
,
"0wavelength [nm]"
]
,
Loop
1
,
Highlight
Str
[
colorpp2
],
Graph
"200000200020"
}
];
];
lambda0
=
lambda0
*
nm
;
lambda0
=
lambda0
*
nm
;
lambda_min
=
lambda_min
*
nm
;
lambda_min
=
lambda_min
*
nm
;
lambda_max
=
lambda_max
*
nm
;
lambda_max
=
lambda_max
*
nm
;
A
=
1.
;
A
=
1.
;
nb_orders
=
nb_orders
+
1
;
nb_orders
=
nb_orders
+
1
;
Group
{
Group
{
...
@@ -30,10 +30,10 @@ Group {
...
@@ -30,10 +30,10 @@ Group {
layer_dep
=
Region
[
LAYERDEP
];
layer_dep
=
Region
[
LAYERDEP
];
rod_out
=
Region
[
RODOUT
];
rod_out
=
Region
[
RODOUT
];
For
i
In
{
0
:
N_rods
-
1
:
1
}
For
i
In
{
0
:
N_rods
-
1
:
1
}
rod
~
{
i
}
=
Region
[{
ROD
~
{
i
}}];
rod
~
{
i
}
=
Region
[{
ROD
~
{
i
}}];
rods
+=
Region
[{
ROD
~
{
i
}}];
rods
+=
Region
[{
ROD
~
{
i
}}];
EndFor
EndFor
layer_cov
=
Region
[
LAYERCOV
];
layer_cov
=
Region
[
LAYERCOV
];
sup
=
Region
[{
SUP
,
SURF_INTEG_SUP1
,
SURF_INTEG_SUP2
}];
sup
=
Region
[{
SUP
,
SURF_INTEG_SUP1
,
SURF_INTEG_SUP2
}];
pmltop
=
Region
[
PMLTOP
];
pmltop
=
Region
[
PMLTOP
];
Omega_source
=
Region
[{
layer_dep
,
rod_out
,
rods
,
layer_cov
}];
Omega_source
=
Region
[{
layer_dep
,
rod_out
,
rods
,
layer_cov
}];
...
@@ -86,21 +86,21 @@ Function{
...
@@ -86,21 +86,21 @@ Function{
epsr_im_interp_mat_16
[]
=
InterpolationLinear
[
$
1
]{
ListAlt
[
lambdamat_16
,
epsr_mat_im_16
]};
epsr_im_interp_mat_16
[]
=
InterpolationLinear
[
$
1
]{
ListAlt
[
lambdamat_16
,
epsr_mat_im_16
]};
For
i
In
{
1
:
5
}
For
i
In
{
1
:
5
}
For
j
In
{
1
:
nb_available_materials
}
For
j
In
{
1
:
nb_available_materials
}
If
(
flag_mat
~
{
i
}
==
j
-
1
)
If
(
flag_mat
~
{
i
}
==
j
-
1
)
epsr_re_dom
~
{
i
}[]
=
epsr_re_interp_mat
~
{
j
}[
lambda0
/
nm
*
1e-9
];
epsr_re_dom
~
{
i
}[]
=
epsr_re_interp_mat
~
{
j
}[
lambda0
/
nm
*
1e-9
];
epsr_im_dom
~
{
i
}[]
=
epsr_im_interp_mat
~
{
j
}[
lambda0
/
nm
*
1e-9
];
epsr_im_dom
~
{
i
}[]
=
epsr_im_interp_mat
~
{
j
}[
lambda0
/
nm
*
1e-9
];
EndIf
EndIf
EndFor
EndFor
For
k
In
{
0
:
nb_available_lossless_materials
-
1
}
If
(
flag_mat_6
==
lossless_material_list
(
k
)
-
1
)
epsr_re_dom_6
[]
=
epsr_re_interp_mat
~
{
lossless_material_list
(
k
)}[
lambda0
/
nm
*
1e-9
];
epsr_im_dom_6
[]
=
epsr_im_interp_mat
~
{
lossless_material_list
(
k
)}[
lambda0
/
nm
*
1e-9
];
EndIf
EndFor
EndFor
EndFor
For
k
In
{
0
:
nb_available_lossless_materials
-
1
}
If
(
flag_mat_6
==
lossless_material_list
(
k
)
-
1
)
epsr_re_dom_6
[]
=
epsr_re_interp_mat
~
{
lossless_material_list
(
k
)}[
lambda0
/
nm
*
1e-9
];
epsr_im_dom_6
[]
=
epsr_im_interp_mat
~
{
lossless_material_list
(
k
)}[
lambda0
/
nm
*
1e-9
];
EndIf
EndFor
epsr_sub_re
[]
=
epsr_re_dom_1
[];
epsr_sub_re
[]
=
epsr_re_dom_1
[];
epsr_sub_im
[]
=
epsr_im_dom_1
[];
epsr_sub_im
[]
=
epsr_im_dom_1
[];
epsr_layer_dep_re
[]
=
epsr_re_dom_2
[];
epsr_layer_dep_re
[]
=
epsr_re_dom_2
[];
epsr_layer_dep_im
[]
=
epsr_im_dom_2
[];
epsr_layer_dep_im
[]
=
epsr_im_dom_2
[];
...
@@ -112,7 +112,7 @@ Function{
...
@@ -112,7 +112,7 @@ Function{
epsr_layer_cov_im
[]
=
epsr_im_dom_5
[];
epsr_layer_cov_im
[]
=
epsr_im_dom_5
[];
epsr_sup_re
[]
=
epsr_re_dom_6
[];
epsr_sup_re
[]
=
epsr_re_dom_6
[];
epsr_sup_im
[]
=
epsr_im_dom_6
[];
epsr_sup_im
[]
=
epsr_im_dom_6
[];
Freq
=
cel
/
lambda0
;
Freq
=
cel
/
lambda0
;
omega0
=
2.
*
Pi
*
cel
/
lambda0
;
omega0
=
2.
*
Pi
*
cel
/
lambda0
;
k0
=
2.
*
Pi
/
lambda0
;
k0
=
2.
*
Pi
/
lambda0
;
...
@@ -125,18 +125,18 @@ Function{
...
@@ -125,18 +125,18 @@ Function{
alpha
[]
=
k_sup
[]
*
Sin
[
theta_deg
*
deg2rad
];
alpha
[]
=
k_sup
[]
*
Sin
[
theta_deg
*
deg2rad
];
beta_sup
[]
=
k_sup
[]
*
Cos
[
theta_deg
*
deg2rad
];
beta_sup
[]
=
k_sup
[]
*
Cos
[
theta_deg
*
deg2rad
];
beta_sub
[]
=
(
k0
^
2
*
epsr_sub
[]
-
alpha
[]
^
2
)
^
(
0.5
);
beta_sub
[]
=
(
k0
^
2
*
epsr_sub
[]
-
alpha
[]
^
2
)
^
(
0.5
);
If
(
flag_Hparallel
==
1
)
If
(
flag_Hparallel
==
1
)
beta_pol_sup
[]
=
beta_sup
[]
/
epsr_sup
[];
beta_pol_sup
[]
=
beta_sup
[]
/
epsr_sup
[];
beta_pol_sub
[]
=
beta_sub
[]
/
epsr_sub
[];
beta_pol_sub
[]
=
beta_sub
[]
/
epsr_sub
[];
Pinc
[]
=
0.5
*
A
^
2
*
Sqrt
[
mu0
/
(
epsilon0
*
epsr_sup_re
[])]
*
Cos
[
theta_deg
*
deg2rad
];
Pinc
[]
=
0.5
*
A
^
2
*
Sqrt
[
mu0
/
(
epsilon0
*
epsr_sup_re
[])]
*
Cos
[
theta_deg
*
deg2rad
];
EndIf
EndIf
If
(
flag_Hparallel
==
0
)
If
(
flag_Hparallel
==
0
)
beta_pol_sup
[]
=
beta_sup
[];
beta_pol_sup
[]
=
beta_sup
[];
beta_pol_sub
[]
=
beta_sub
[];
beta_pol_sub
[]
=
beta_sub
[];
Pinc
[]
=
0.5
*
A
^
2
*
Sqrt
[
epsilon0
*
epsr_sup_re
[]
/
mu0
]
*
Cos
[
theta_deg
*
deg2rad
];
Pinc
[]
=
0.5
*
A
^
2
*
Sqrt
[
epsilon0
*
epsr_sup_re
[]
/
mu0
]
*
Cos
[
theta_deg
*
deg2rad
];
EndIf
EndIf
r
[]
=
(
beta_pol_sup
[]
-
beta_pol_sub
[])
/
(
beta_pol_sup
[]
+
beta_pol_sub
[]);
r
[]
=
(
beta_pol_sup
[]
-
beta_pol_sub
[])
/
(
beta_pol_sup
[]
+
beta_pol_sub
[]);
t
[]
=
(
2.
*
beta_pol_sup
[])
/
(
beta_pol_sup
[]
+
beta_pol_sub
[]);
t
[]
=
(
2.
*
beta_pol_sup
[])
/
(
beta_pol_sup
[]
+
beta_pol_sub
[]);
deph
[]
=
Complex
[
Cos
[
-
alpha
[]
*
d
]
,
Sin
[
-
alpha
[]
*
d
]];
deph
[]
=
Complex
[
Cos
[
-
alpha
[]
*
d
]
,
Sin
[
-
alpha
[]
*
d
]];
...
@@ -147,7 +147,7 @@ Function{
...
@@ -147,7 +147,7 @@ Function{
betat_sub
~
{
i
}[]
=
(
k_sub
[]
^
2
-
alpha_orders
~
{
i
}[]
^
2
)
^
(
0.5
);
betat_sub
~
{
i
}[]
=
(
k_sub
[]
^
2
-
alpha_orders
~
{
i
}[]
^
2
)
^
(
0.5
);
EndFor
EndFor
a_pml
=
1.
;
a_pml
=
1.
;
b_pml
=
1.
;
b_pml
=
1.
;
sx
=
1.
;
sx
=
1.
;
sy
[]
=
Complex
[
a_pml
,
-
b_pml
];
sy
[]
=
Complex
[
a_pml
,
-
b_pml
];
...
@@ -162,17 +162,17 @@ Function{
...
@@ -162,17 +162,17 @@ Function{
epsilonr
[
rods
]
=
Complex
[
epsr_rods_re
[],
epsr_rods_im
[]]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr
[
rods
]
=
Complex
[
epsr_rods_re
[],
epsr_rods_im
[]]
*
TensorDiag
[
1
,
1
,
1
];
Else
Else
epsilonr
[
rods
]
=
Tensor
[
Complex
[
epsr_custom_anisoXX_re
,
epsr_custom_anisoXX_im
],
epsilonr
[
rods
]
=
Tensor
[
Complex
[
epsr_custom_anisoXX_re
,
epsr_custom_anisoXX_im
],
Complex
[
epsr_custom_anisoXY_re
,
epsr_custom_anisoXY_im
],
Complex
[
epsr_custom_anisoXY_re
,
epsr_custom_anisoXY_im
],
0
,
0
,
Complex
[
epsr_custom_anisoXY_re
,
-
epsr_custom_anisoXX_im
],
Complex
[
epsr_custom_anisoXY_re
,
-
epsr_custom_anisoXX_im
],
Complex
[
epsr_custom_anisoYY_re
,
epsr_custom_anisoYY_im
],
Complex
[
epsr_custom_anisoYY_re
,
epsr_custom_anisoYY_im
],
0
,
0
,
0
,
0
,
0
,
0
,
Complex
[
epsr_custom_anisoZZ_re
,
epsr_custom_anisoZZ_im
]
Complex
[
epsr_custom_anisoZZ_re
,
epsr_custom_anisoZZ_im
]
];
];
EndIf
EndIf
epsilonr
[
layer_cov
]
=
Complex
[
epsr_layer_cov_re
[],
epsr_layer_cov_im
[]]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr
[
layer_cov
]
=
Complex
[
epsr_layer_cov_re
[],
epsr_layer_cov_im
[]]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr
[
pmltop
]
=
epsr_sup_re
[]
*
PML_Tensor
[];
epsilonr
[
pmltop
]
=
epsr_sup_re
[]
*
PML_Tensor
[];
epsilonr
[
pmlbot
]
=
epsr_sub_re
[]
*
PML_Tensor
[];
epsilonr
[
pmlbot
]
=
epsr_sub_re
[]
*
PML_Tensor
[];
...
@@ -180,12 +180,12 @@ Function{
...
@@ -180,12 +180,12 @@ Function{
epsilonr_annex
[
sup
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
sup
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
layer_dep
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
layer_dep
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
rod_out
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
rod_out
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
rods
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
rods
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
layer_cov
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
layer_cov
]
=
epsr_sup
[]
*
TensorDiag
[
1
,
1
,
1
];
epsilonr_annex
[
pmltop
]
=
epsr_sup_re
[]
*
PML_Tensor
[];
epsilonr_annex
[
pmltop
]
=
epsr_sup_re
[]
*
PML_Tensor
[];
epsilonr_annex
[
pmlbot
]
=
epsr_sub_re
[]
*
PML_Tensor
[];
epsilonr_annex
[
pmlbot
]
=
epsr_sub_re
[]
*
PML_Tensor
[];
mur
[
pmltop
]
=
PML_Tensor
[];
mur
[
pmltop
]
=
PML_Tensor
[];
mur
[
pmlbot
]
=
PML_Tensor
[];
mur
[
pmlbot
]
=
PML_Tensor
[];
mur
[
sub
]
=
TensorDiag
[
1
,
1
,
1
];
mur
[
sub
]
=
TensorDiag
[
1
,
1
,
1
];
mur
[
sup
]
=
TensorDiag
[
1
,
1
,
1
];
mur
[
sup
]
=
TensorDiag
[
1
,
1
,
1
];
...
@@ -194,15 +194,15 @@ Function{
...
@@ -194,15 +194,15 @@ Function{
mur
[
rod_out
]
=
TensorDiag
[
1
,
1
,
1
];
mur
[
rod_out
]
=
TensorDiag
[
1
,
1
,
1
];
mur
[
layer_cov
]
=
TensorDiag
[
1
,
1
,
1
];
mur
[
layer_cov
]
=
TensorDiag
[
1
,
1
,
1
];
ui
[
pmltop
]
=
0.
;
ui
[
pmltop
]
=
0.
;
ui
[
pmlbot
]
=
0.
;
ui
[
pmlbot
]
=
0.
;
ui
[
sup
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
sup
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
layer_cov
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
layer_cov
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
rod_out
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
rod_out
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
rods
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
rods
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
layer_dep
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
layer_dep
]
=
A
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
beta_sup
[]
*
Y
[]]
];
ui
[
sub
]
=
0.
;
ui
[
sub
]
=
0.
;
ur
[
pmltop
]
=
0.
;
ur
[
pmltop
]
=
0.
;
ur
[
pmlbot
]
=
0.
;
ur
[
pmlbot
]
=
0.
;
ur
[
sup
]
=
r
[]
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
-
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
-
beta_sup
[]
*
Y
[]]
];
ur
[
sup
]
=
r
[]
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
-
beta_sup
[]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
-
beta_sup
[]
*
Y
[]]
];
...
@@ -220,41 +220,41 @@ Function{
...
@@ -220,41 +220,41 @@ Function{
ut
[
rods
]
=
0.
;
ut
[
rods
]
=
0.
;
ut
[
layer_cov
]
=
0.
;
ut
[
layer_cov
]
=
0.
;
ut
[
sub
]
=
t
[]
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
Re
[
beta_sub
[]]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
Re
[
beta_sub
[]]
*
Y
[]]
]
*
Exp
[
-
Im
[
beta_sub
[]]
*
Y
[]];
ut
[
sub
]
=
t
[]
*
Complex
[
Cos
[
-
alpha
[]
*
X
[]
+
Re
[
beta_sub
[]]
*
Y
[]]
,
Sin
[
-
alpha
[]
*
X
[]
+
Re
[
beta_sub
[]]
*
Y
[]]
]
*
Exp
[
-
Im
[
beta_sub
[]]
*
Y
[]];
u1
[]
=
ui
[]
+
ur
[]
+
ut
[];
u1
[]
=
ui
[]
+
ur
[]
+
ut
[];
u1d
[]
=
ur
[]
+
ut
[];
u1d
[]
=
ur
[]
+
ut
[];
If
(
flag_Hparallel
==
1
)
If
(
flag_Hparallel
==
1
)
Exi
[]
=
(
beta_sup
[]
*
ui
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Exi
[]
=
(
beta_sup
[]
*
ui
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Exr
[]
=
-
(
beta_sup
[]
*
ur
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Exr
[]
=
-
(
beta_sup
[]
*
ur
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Ext
[]
=
(
beta_sub
[]
*
ut
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Ext
[]
=
(
beta_sub
[]
*
ut
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Eyi
[]
=
-
(
-
alpha
[]
*
ui
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Eyi
[]
=
-
(
-
alpha
[]
*
ui
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Eyr
[]
=
-
(
-
alpha
[]
*
ur
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Eyr
[]
=
-
(
-
alpha
[]
*
ur
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Eyt
[]
=
-
(
-
alpha
[]
*
ut
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Eyt
[]
=
-
(
-
alpha
[]
*
ut
[])
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr_annex
[]]);
Ex1
[
Omega_top
]
=
Exi
[]
+
Exr
[];
Ex1
[
Omega_top
]
=
Exi
[]
+
Exr
[];
Ey1
[
Omega_top
]
=
Eyi
[]
+
Eyr
[];
Ey1
[
Omega_top
]
=
Eyi
[]
+
Eyr
[];
Ex1
[
Omega_bot
]
=
Ext
[];
Ex1
[
Omega_bot
]
=
Ext
[];
Ey1
[
Omega_bot
]
=
Eyt
[];
Ey1
[
Omega_bot
]
=
Eyt
[];
Ex1
[
Omega_pml
]
=
0
;
Ex1
[
Omega_pml
]
=
0
;
Ey1
[
Omega_pml
]
=
0
;
Ey1
[
Omega_pml
]
=
0
;
detepst
[]
=
CompXX
[
epsilonr
[]]
*
CompYY
[
epsilonr
[]]
-
CompXY
[
epsilonr
[]]
*
Conj
[
CompYX
[
epsilonr
[]]];
detepst
[]
=
CompXX
[
epsilonr
[]]
*
CompYY
[
epsilonr
[]]
-
CompXY
[
epsilonr
[]]
*
Conj
[
CompYX
[
epsilonr
[]]];
detepst_annex
[]
=
CompXX
[
epsilonr_annex
[]]
*
CompYY
[
epsilonr_annex
[]]
-
CompXY
[
epsilonr_annex
[]]
*
Conj
[
CompYX
[
epsilonr_annex
[]]];
detepst_annex
[]
=
CompXX
[
epsilonr_annex
[]]
*
CompYY
[
epsilonr_annex
[]]
-
CompXY
[
epsilonr_annex
[]]
*
Conj
[
CompYX
[
epsilonr_annex
[]]];
xsi
[]
=
Transpose
[
epsilonr
[]]
/
detepst
[];
xsi
[]
=
Transpose
[
epsilonr
[]]
/
detepst
[];
xsi_annex
[]
=
Transpose
[
epsilonr_annex
[]]
/
detepst_annex
[];
xsi_annex
[]
=
Transpose
[
epsilonr_annex
[]]
/
detepst_annex
[];
chi
[]
=
CompZZ
[
mur
[]];
chi
[]
=
CompZZ
[
mur
[]];
source_xsi_r
[]
=
(
xsi
[]
-
xsi_annex
[])
*
Vector
[
alpha
[],
-
beta_sup
[],
0.
]
*
I
[]
*
ui
[];
source_xsi_r
[]
=
(
xsi
[]
-
xsi_annex
[])
*
Vector
[
alpha
[],
-
beta_sup
[],
0.
]
*
I
[]
*
ui
[];
source_xsi_i
[]
=
(
xsi
[]
-
xsi_annex
[])
*
Vector
[
alpha
[],
beta_sup
[],
0.
]
*
I
[]
*
ur
[];
source_xsi_i
[]
=
(
xsi
[]
-
xsi_annex
[])
*
Vector
[
alpha
[],
beta_sup
[],
0.
]
*
I
[]
*
ur
[];
source_chi_r
[]
=
0
;
source_chi_r
[]
=
0
;
source_chi_i
[]
=
0
;
source_chi_i
[]
=
0
;
Else
Else
detmut
[]
=
CompXX
[
mur
[]]
*
CompYY
[
mur
[]]
-
CompXY
[
mur
[]]
*
Conj
[
CompYX
[
mur
[]]];
detmut
[]
=
CompXX
[
mur
[]]
*
CompYY
[
mur
[]]
-
CompXY
[
mur
[]]
*
Conj
[
CompYX
[
mur
[]]];
xsi
[]
=
Transpose
[
mur
[]]
/
detmut
[];
xsi
[]
=
Transpose
[
mur
[]]
/
detmut
[];
chi
[]
=
CompZZ
[
epsilonr
[]];
chi
[]
=
CompZZ
[
epsilonr
[]];
chi_annex
[]
=
CompZZ
[
epsilonr_annex
[]];
chi_annex
[]
=
CompZZ
[
epsilonr_annex
[]];
source_xsi_r
[]
=
Vector
[
0.
,
0.
,
0.
];
source_xsi_r
[]
=
Vector
[
0.
,
0.
,
0.
];
source_xsi_i
[]
=
Vector
[
0.
,
0.
,
0.
];
source_xsi_i
[]
=
Vector
[
0.
,
0.
,
0.
];
source_chi_r
[]
=
k0
^
2
*
(
chi
[]
-
chi_annex
[])
*
ur
[];
source_chi_r
[]
=
k0
^
2
*
(
chi
[]
-
chi_annex
[])
*
ur
[];
source_chi_i
[]
=
k0
^
2
*
(
chi
[]
-
chi_annex
[])
*
ui
[];
source_chi_i
[]
=
k0
^
2
*
(
chi
[]
-
chi_annex
[])
*
ui
[];
EndIf
EndIf
}
}
...
@@ -263,7 +263,7 @@ Constraint {
...
@@ -263,7 +263,7 @@ Constraint {
{
Name
Bloch
;
{
Name
Bloch
;
Case
{
Case
{
{
Region
SurfBlochRight
;
Type
LinkCplx
;
RegionRef
SurfBlochLeft
;
{
Region
SurfBlochRight
;
Type
LinkCplx
;
RegionRef
SurfBlochLeft
;
Coefficient
deph
[];
Function
Vector
[
$
X
-
d
,
$
Y
,
$
Z
]
;
Coefficient
deph
[];
Function
Vector
[
$
X
-
d
,
$
Y
,
$
Z
]
;
}
}
}
}
}
}
...
@@ -286,11 +286,11 @@ Integration {
...
@@ -286,11 +286,11 @@ Integration {
{
Name
Int_1
;
{
Name
Int_1
;
Case
{
Case
{
{
Type
Gauss
;
{
Type
Gauss
;
Case
{
Case
{
{
GeoElement
Point
;
NumberOfPoints
1
;
}
{
GeoElement
Point
;
NumberOfPoints
1
;
}
{
GeoElement
Line
;
NumberOfPoints
4
;
}
{
GeoElement
Line
;
NumberOfPoints
4
;
}
{
GeoElement
Triangle
;
NumberOfPoints
12
;
}
{
GeoElement
Triangle
;
NumberOfPoints
12
;
}
}
}
}
}
}
}
}
}
...
@@ -301,10 +301,15 @@ FunctionSpace {
...
@@ -301,10 +301,15 @@ FunctionSpace {
BasisFunction
{
BasisFunction
{
{
Name
sn
;
NameOfCoef
un
;
Function
BF_Node
;
Support
Region
[
Omega
];
Entity
NodesOf
[
Omega
];
}
{
Name
sn
;
NameOfCoef
un
;
Function
BF_Node
;
Support
Region
[
Omega
];
Entity
NodesOf
[
Omega
];
}
{
Name
sn2
;
NameOfCoef
un2
;
Function
BF_Node_2E
;
Support
Region
[
Omega
];
Entity
EdgesOf
[
Omega
];
}
{
Name
sn2
;
NameOfCoef
un2
;
Function
BF_Node_2E
;
Support
Region
[
Omega
];
Entity
EdgesOf
[
Omega
];
}
// { Name un3; NameOfCoef un3; Function BF_Node_2F; Support Region[Omega]; Entity FacetsOf[Omega]; }
// { Name un4; NameOfCoef un4; Function BF_Node_3E; Support Region[Omega]; Entity EdgesOf[Omega]; }
// { Name un5; NameOfCoef un5; Function BF_Node_3F; Support Region[Omega]; Entity FacetsOf[Omega]; }
}
}
Constraint
{
Constraint
{
{
NameOfCoef
un
;
EntityType
NodesOf
;
NameOfConstraint
Bloch
;
}
{
NameOfCoef
un
;
EntityType
NodesOf
;
NameOfConstraint
Bloch
;
}
{
NameOfCoef
un2
;
EntityType
EdgesOf
;
NameOfConstraint
Bloch
;
}
{
NameOfCoef
un2
;
EntityType
EdgesOf
;
NameOfConstraint
Bloch
;
}
// { NameOfCoef un3; EntityType EdgesOf ; NameOfConstraint Bloch; }
}
}
}
}
}
}
...
@@ -315,17 +320,17 @@ Formulation {
...
@@ -315,17 +320,17 @@ Formulation {
{
Name
u2d
;
Type
Local
;
NameOfSpace
Hgrad
;}}
{
Name
u2d
;
Type
Local
;
NameOfSpace
Hgrad
;}}
Equation
{
Equation
{
Galerkin
{
[
k0
^
2
*
chi
[]
*
Dof
{
u2d
}
,
{
u2d
}];
Galerkin
{
[
k0
^
2
*
chi
[]
*
Dof
{
u2d
}
,
{
u2d
}];
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
Galerkin
{
[
-
xsi
[]
*
Dof
{
Grad
u2d
}
,
{
Grad
u2d
}];
Galerkin
{
[
-
xsi
[]
*
Dof
{
Grad
u2d
}
,
{
Grad
u2d
}];
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
Galerkin
{
[
source_xsi_i
[]
,
{
Grad
u2d
}];
Galerkin
{
[
source_xsi_i
[]
,
{
Grad
u2d
}];
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
Galerkin
{
[
source_xsi_r
[]
,
{
Grad
u2d
}];
Galerkin
{
[
source_xsi_r
[]
,
{
Grad
u2d
}];
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
Galerkin
{
[
source_chi_r
[]
,
{
u2d
}];
Galerkin
{
[
source_chi_r
[]
,
{
u2d
}];
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
Galerkin
{
[
source_chi_i
[]
,
{
u2d
}];
Galerkin
{
[
source_chi_i
[]
,
{
u2d
}];
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
In
Omega
;
Jacobian
JVol
;
Integration
Int_1
;
}
}
}
}
}
}
}
...
@@ -348,7 +353,7 @@ PostProcessing {
...
@@ -348,7 +353,7 @@ PostProcessing {
{
Name
postpro_energy
;
NameOfFormulation
helmoltz_scalar
;
{
Name
postpro_energy
;
NameOfFormulation
helmoltz_scalar
;
Quantity
{
Quantity
{
If
(
flag_Hparallel
==
1
)
If
(
flag_Hparallel
==
1
)
{
Name
debr
;
Value
{
Local
{
[
r
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
debr
;
Value
{
Local
{
[
r
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
debt
;
Value
{
Local
{
[
t
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
debt
;
Value
{
Local
{
[
t
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
testtm
;
Value
{
Local
{
[
{
u2d
}
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
testtm
;
Value
{
Local
{
[
{
u2d
}
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
deb_beta_sub
;
Value
{
Local
{
[
beta_sub
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
deb_beta_sub
;
Value
{
Local
{
[
beta_sub
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
...
@@ -374,37 +379,37 @@ PostProcessing {
...
@@ -374,37 +379,37 @@ PostProcessing {
For
i
In
{
0
:
2
*
nb_orders
}
For
i
In
{
0
:
2
*
nb_orders
}
{
Name
s_r
~
{
i
}
;
Value
{
{
Name
s_r
~
{
i
}
;
Value
{
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
In
SurfCutSuper1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
In
SurfCutSuper1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
{
Name
s_t
~
{
i
}
;
Value
{
{
Name
s_t
~
{
i
}
;
Value
{
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
In
SurfCutSubs1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
In
SurfCutSubs1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
{
Name
order_t_angle
~
{
i
}
;
Value
{
{
Name
order_t_angle
~
{
i
}
;
Value
{
Local
{
[
-
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sub
~
{
i
}[]]]
/
deg2rad
]
;
Local
{
[
-
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sub
~
{
i
}[]]]
/
deg2rad
]
;
In
Omega
;
Jacobian
JVol
;
}
}
}
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
order_r_angle
~
{
i
}
;
Value
{
{
Name
order_r_angle
~
{
i
}
;
Value
{
Local
{
[
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sup
~
{
i
}[]]]
/
deg2rad
]
;
Local
{
[
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sup
~
{
i
}[]]]
/
deg2rad
]
;
In
Omega
;
Jacobian
JVol
;
}
}
}
In
Omega
;
Jacobian
JVol
;
}
}
}
EndFor
EndFor
For
i
In
{
0
:
2
*
nb_orders
}
For
i
In
{
0
:
2
*
nb_orders
}
{
Name
eff_r
~
{
i
}
;
Value
{
{
Name
eff_r
~
{
i
}
;
Value
{
Term
{
Type
Global
;
[
SquNorm
[
#
i
]
*
betat_sup
~
{
i
}[]
/
beta_sup
[]
]
;
Term
{
Type
Global
;
[
SquNorm
[
#
i
]
*
betat_sup
~
{
i
}[]
/
beta_sup
[]
]
;
In
SurfCutSuper1
;
}
}
}
In
SurfCutSuper1
;
}
}
}
{
Name
eff_t
~
{
i
}
;
Value
{
{
Name
eff_t
~
{
i
}
;
Value
{
Term
{
Type
Global
;
[
SquNorm
[
#
(
2
*
nb_orders
+
1
+
i
)]
*
(
betat_sub
~
{
i
}[]
/
beta_sup
[])
*
(
epsr_sup
[]
/
epsr_sub
[])
]
;
Term
{
Type
Global
;
[
SquNorm
[
#
(
2
*
nb_orders
+
1
+
i
)]
*
(
betat_sub
~
{
i
}[]
/
beta_sup
[])
*
(
epsr_sup
[]
/
epsr_sub
[])
]
;
In
SurfCutSubs1
;
}
}
}
In
SurfCutSubs1
;
}
}
}
EndFor
EndFor
For
i
In
{
0
:
N_rods
-
1
:
1
}
For
i
In
{
0
:
N_rods
-
1
:
1
}
{
Name
Q_rod
~
{
i
}
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_rods_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]]
)
/
(
Pinc
[]
*
d
)
]
;
In
rod
~
{
i
}
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_rod
~
{
i
}
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_rods_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]]
)
/
(
Pinc
[]
*
d
)
]
;
In
rod
~
{
i
}
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
EndFor
EndFor
{
Name
Q_sub
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_sub_im
[]
]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
sub
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_sub
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_sub_im
[]
]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
sub
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_rod_out
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_rod_out_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
rod_out
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_rod_out
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_rod_out_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
rod_out
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_layer_dep
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_layer_dep_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
layer_dep
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_layer_dep
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_layer_dep_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
layer_dep
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_layer_cov
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_layer_cov_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
layer_cov
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_layer_cov
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_layer_cov_im
[]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
layer_cov
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_tot
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
Im
[
CompZZ
[
epsilonr
[]]]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
Plot_domain
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_tot
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
Im
[
CompZZ
[
epsilonr
[]]]]
*
(
SquNorm
[
-
CompY
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompXX
[
epsilonr
[]])
+
Ex1
[]
/
CompXX
[
epsilonr
[]]
*
CompXX
[
epsilonr_annex
[]]
]
+
SquNorm
[
CompX
[{
Grad
u2d
}]
*
I
[]
/
(
omega0
*
epsilon0
*
CompYY
[
epsilonr
[]])
+
Ey1
[]
/
CompYY
[
epsilonr
[]]
*
CompYY
[
epsilonr_annex
[]]
]
)
/
(
Pinc
[]
*
d
)
]
;
In
Plot_domain
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
lambda_step
;
Value
{
Local
{
[
lambda0
/
nm
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
lambda_step
;
Value
{
Local
{
[
lambda0
/
nm
];
In
Omega
;
Jacobian
JVol
;
}
}
}
EndIf
EndIf
If
(
flag_Hparallel
==
0
)
If
(
flag_Hparallel
==
0
)
{
Name
testte
;
Value
{
Local
{
[
{
u2d
}
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
testte
;
Value
{
Local
{
[
{
u2d
}
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
epsr
;
Value
{
Local
{
[
CompZZ
[
epsilonr
[]]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
epsr
;
Value
{
Local
{
[
CompZZ
[
epsilonr
[]]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
Ez_diff
;
Value
{
Local
{
[
{
u2d
}
+
u1d
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
Ez_diff
;
Value
{
Local
{
[
{
u2d
}
+
u1d
[]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
...
@@ -419,31 +424,31 @@ PostProcessing {
...
@@ -419,31 +424,31 @@ PostProcessing {
{
Name
Ez_totm4
;
Value
{
Local
{
[
({
u2d
}
+
u1
[])
*
Complex
[
Cos
[
-
4
*-
alpha
[]
*
d
],
Sin
[
-
4
*-
alpha
[]
*
d
]]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
Ez_totm4
;
Value
{
Local
{
[
({
u2d
}
+
u1
[])
*
Complex
[
Cos
[
-
4
*-
alpha
[]
*
d
],
Sin
[
-
4
*-
alpha
[]
*
d
]]
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
boundary
;
Value
{
Local
{
[
bndCol
[]
]
;
In
Plot_bnd
;
Jacobian
JVol
;
}
}
}
{
Name
boundary
;
Value
{
Local
{
[
bndCol
[]
]
;
In
Plot_bnd
;
Jacobian
JVol
;
}
}
}
{
Name
u
;
Value
{
Local
{
[
{
u2d
}
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
u
;
Value
{
Local
{
[
{
u2d
}
];
In
Omega
;
Jacobian
JVol
;
}
}
}
// modif effic
// modif effic
For
i
In
{
0
:
2
*
nb_orders
}
For
i
In
{
0
:
2
*
nb_orders
}
{
Name
s_r
~
{
i
}
;
Value
{
{
Name
s_r
~
{
i
}
;
Value
{
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
In
SurfCutSuper1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
In
SurfCutSuper1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
{
Name
s_t
~
{
i
}
;
Value
{
{
Name
s_t
~
{
i
}
;
Value
{
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
Integral
{
[
expialpha_orders
~
{
i
}[]
*
({
u2d
}
+
u1d
[])
/
d
]
;
In
SurfCutSubs1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
In
SurfCutSubs1
;
Jacobian
JSur
;
Integration
Int_1
;
}
}
}
{
Name
order_t_angle
~
{
i
}
;
Value
{
{
Name
order_t_angle
~
{
i
}
;
Value
{
Local
{
[
-
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sub
~
{
i
}[]]]
/
deg2rad
]
;
Local
{
[
-
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sub
~
{
i
}[]]]
/
deg2rad
]
;
In
Omega
;
Jacobian
JVol
;
}
}
}
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
order_r_angle
~
{
i
}
;
Value
{
{
Name
order_r_angle
~
{
i
}
;
Value
{
Local
{
[
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sup
~
{
i
}[]]]
/
deg2rad
]
;
Local
{
[
Atan2
[
Re
[
alpha_orders
~
{
i
}[]],
Re
[
betat_sup
~
{
i
}[]]]
/
deg2rad
]
;
In
Omega
;
Jacobian
JVol
;
}
}
}
In
Omega
;
Jacobian
JVol
;
}
}
}
EndFor
EndFor
For
i
In
{
0
:
2
*
nb_orders
}
For
i
In
{
0
:
2
*
nb_orders
}
{
Name
eff_r
~
{
i
}
;
Value
{
{
Name
eff_r
~
{
i
}
;
Value
{
Term
{
Type
Global
;
[
SquNorm
[
#
i
]
*
betat_sup
~
{
i
}[]
/
beta_sup
[]
]
;
Term
{
Type
Global
;
[
SquNorm
[
#
i
]
*
betat_sup
~
{
i
}[]
/
beta_sup
[]
]
;
In
SurfCutSuper1
;
}
}
}
In
SurfCutSuper1
;
}
}
}
{
Name
eff_t
~
{
i
}
;
Value
{
{
Name
eff_t
~
{
i
}
;
Value
{
Term
{
Type
Global
;
[
SquNorm
[
#
(
2
*
nb_orders
+
1
+
i
)]
*
(
betat_sub
~
{
i
}[]
/
beta_sup
[])]
;
Term
{
Type
Global
;
[
SquNorm
[
#
(
2
*
nb_orders
+
1
+
i
)]
*
(
betat_sub
~
{
i
}[]
/
beta_sup
[])]
;
In
SurfCutSubs1
;
}
}
}
In
SurfCutSubs1
;
}
}
}
EndFor
EndFor
For
i
In
{
0
:
N_rods
-
1
:
1
}
For
i
In
{
0
:
N_rods
-
1
:
1
}
{
Name
Q_rod
~
{
i
}
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_rods_im
[]]
*
(
SquNorm
[{
u2d
}
+
u1
[]])
/
(
Pinc
[]
*
d
)
]
;
In
rod
~
{
i
}
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_rod
~
{
i
}
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_rods_im
[]]
*
(
SquNorm
[{
u2d
}
+
u1
[]])
/
(
Pinc
[]
*
d
)
]
;
In
rod
~
{
i
}
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
EndFor
EndFor
{
Name
Q_sub
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_sub_im
[]]
*
(
SquNorm
[{
u2d
}
+
u1
[]])
/
(
Pinc
[]
*
d
)
]
;
In
sub
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_sub
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
epsr_sub_im
[]]
*
(
SquNorm
[{
u2d
}
+
u1
[]])
/
(
Pinc
[]
*
d
)
]
;
In
sub
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
...
@@ -453,7 +458,7 @@ PostProcessing {
...
@@ -453,7 +458,7 @@ PostProcessing {
{
Name
Q_tot
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
Im
[
CompXX
[
epsilonr
[]]]]
*
(
SquNorm
[{
u2d
}
+
u1
[]])
/
(
Pinc
[]
*
d
)
]
;
In
Plot_domain
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
Q_tot
;
Value
{
Integral
{
[
0.5
*
epsilon0
*
omega0
*
Fabs
[
Im
[
CompXX
[
epsilonr
[]]]]
*
(
SquNorm
[{
u2d
}
+
u1
[]])
/
(
Pinc
[]
*
d
)
]
;
In
Plot_domain
;
Integration
Int_1
;
Jacobian
JVol
;
}
}
}
{
Name
lambda_step
;
Value
{
Local
{
[
lambda0
/
nm
];
In
Omega
;
Jacobian
JVol
;
}
}
}
{
Name
lambda_step
;
Value
{
Local
{
[
lambda0
/
nm
];
In
Omega
;
Jacobian
JVol
;
}
}
}
EndIf
EndIf
}
}
}
}
}
}
...
@@ -470,15 +475,15 @@ PostOperation {
...
@@ -470,15 +475,15 @@ PostOperation {
Print
[
eff_r
~
{
i
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Store
(
4
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_r_%g.txt"
,
i
-
nb_orders
)]];
Print
[
eff_r
~
{
i
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Store
(
4
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_r_%g.txt"
,
i
-
nb_orders
)]];
Print
[
eff_t
~
{
i
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Store
(
6
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_t_%g.txt"
,
i
-
nb_orders
)]];
Print
[
eff_t
~
{
i
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Store
(
6
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_t_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_r_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_r_angle_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_r_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_r_angle_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_t_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_t_angle_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_t_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_t_angle_%g.txt"
,
i
-
nb_orders
)]];
EndFor
EndFor
Print
[
eff_r
~
{
nb_orders
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Format
Table
,
SendToServer
"GetDP/R0"
,
File
StrCat
[
myDir
,
"temp_R0.txt"
]];
Print
[
eff_r
~
{
nb_orders
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Format
Table
,
SendToServer
"GetDP/R0"
,
File
StrCat
[
myDir
,
"temp_R0.txt"
]];
Print
[
eff_t
~
{
nb_orders
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Format
Table
,
SendToServer
"GetDP/T0"
,
File
StrCat
[
myDir
,
"temp_T0.txt"
]];
Print
[
eff_t
~
{
nb_orders
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Format
Table
,
SendToServer
"GetDP/T0"
,
File
StrCat
[
myDir
,
"temp_T0.txt"
]];
Print
[
Q_tot
[
Plot_domain
]
,
OnGlobal
,
Format
FrequencyTable
,
SendToServer
"GetDP/total absorption"
,
File
>
StrCat
[
myDir
,
"absorption-Q_tot.txt"
]];
Print
[
Q_tot
[
Plot_domain
]
,
OnGlobal
,
Format
FrequencyTable
,
SendToServer
"GetDP/total absorption"
,
File
>
StrCat
[
myDir
,
"absorption-Q_tot.txt"
]];
For
i
In
{
0
:
N_rods
-
1
:
1
}
For
i
In
{
0
:
N_rods
-
1
:
1
}
Print
[
Q_rod
~
{
i
}[
rod
~
{
i
}]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"absorption-Q_rod_%g.txt"
,
i
+
1
)
]];
Print
[
Q_rod
~
{
i
}[
rod
~
{
i
}]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"absorption-Q_rod_%g.txt"
,
i
+
1
)
]];
EndFor
EndFor
Print
[
Q_sub
[
sub
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_sub.txt"
]];
Print
[
Q_sub
[
sub
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_sub.txt"
]];
Print
[
Q_rod_out
[
rod_out
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_rod_out.txt"
]];
Print
[
Q_rod_out
[
rod_out
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_rod_out.txt"
]];
Print
[
Q_layer_dep
[
layer_dep
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_dep.txt"
]];
Print
[
Q_layer_dep
[
layer_dep
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_dep.txt"
]];
Print
[
Q_layer_cov
[
layer_cov
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_cov.txt"
]];
Print
[
Q_layer_cov
[
layer_cov
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_cov.txt"
]];
...
@@ -488,11 +493,11 @@ PostOperation {
...
@@ -488,11 +493,11 @@ PostOperation {
// "EndFor"], File StrCat[myDir,"tmp0.geo"]] ;
// "EndFor"], File StrCat[myDir,"tmp0.geo"]] ;
// // View[i].RangeType = 2;View[i].CustomMin=0.;View[i].CustomMax=1.;
// // View[i].RangeType = 2;View[i].CustomMin=0.;View[i].CustomMax=1.;
If
(
multiplot
)
If
(
multiplot
)
Echo
[
Str
[
"For i In {PostProcessing.NbViews-1:0:-1}"
,
Echo
[
Str
[
"For i In {PostProcessing.NbViews-1:0:-1}"
,
" If(!StrCmp(View[i].Name, 'boundary') || !StrCmp(View[i].Name, 'boundary_Combine'))"
,
" If(!StrCmp(View[i].Name, 'boundary') || !StrCmp(View[i].Name, 'boundary_Combine'))"
,
" Delete View[i];"
,
" Delete View[i];"
,
" EndIf"
,
" EndIf"
,
"EndFor"
],
File
StrCat
[
myDir
,
"tmp1.geo"
]]
;
"EndFor"
],
File
StrCat
[
myDir
,
"tmp1.geo"
]]
;
Print
[
Hz_totp1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Hz_tot_lambda%.2fnm_2.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Hz_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Hz_totp1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Hz_tot_lambda%.2fnm_2.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Hz_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Hz_totm1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Hz_tot_lambda%.2fnm_3.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
-
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Hz_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Hz_totm1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Hz_tot_lambda%.2fnm_3.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
-
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Hz_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Hz_totp2
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Hz_tot_lambda%.2fnm_4.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
2
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Hz_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Hz_totp2
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Hz_tot_lambda%.2fnm_4.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
2
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Hz_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
...
@@ -513,17 +518,17 @@ PostOperation {
...
@@ -513,17 +518,17 @@ PostOperation {
Print
[
boundary
,
OnElementsOf
Plot_bnd
,
File
StrCat
[
myDir
,
"boundary9.pos"
],
ChangeOfCoordinates
{
$
X
-
4
*
d
,
$
Y
,
$
Z
}
];
Print
[
boundary
,
OnElementsOf
Plot_bnd
,
File
StrCat
[
myDir
,
"boundary9.pos"
],
ChangeOfCoordinates
{
$
X
-
4
*
d
,
$
Y
,
$
Z
}
];
Echo
[
"Combine ElementsByViewName;"
,
File
StrCat
[
myDir
,
"tmp2.geo"
]]
;
Echo
[
"Combine ElementsByViewName;"
,
File
StrCat
[
myDir
,
"tmp2.geo"
]]
;
Echo
[
Str
[
"Hide {"
,
Echo
[
Str
[
"Hide {"
,
"Point{1,2,7,8,9,10,20,22};"
,
"Point{1,2,7,8,9,10,20,22};"
,
"Line{1,7,8,9,10,30,32,34,2,3,4,5,6,12,16,20,24,28};"
,
"Line{1,7,8,9,10,30,32,34,2,3,4,5,6,12,16,20,24,28};"
,
"Surface{36,48};}"
,
"Surface{36,48};}"
,
"Geometry.Color.Lines = {0,0,0};"
,
"Geometry.Color.Lines = {0,0,0};"
,
"l=PostProcessing.NbViews-1; View[l].ColorTable={Black}; "
,
"l=PostProcessing.NbViews-1; View[l].ColorTable={Black}; "
,
"View[l-1].Visible=1; View[l-1].ShowScale=0;"
,
"View[l-1].Visible=1; View[l-1].ShowScale=0;"
,
"View[l].ShowScale=0; View[l].LineWidth=1.5; View[l].LineType=1;Geometry.LineWidth=0;"
],
"View[l].ShowScale=0; View[l].LineWidth=1.5; View[l].LineType=1;Geometry.LineWidth=0;"
],
File
StrCat
[
myDir
,
"tmp3.geo"
]]
;
File
StrCat
[
myDir
,
"tmp3.geo"
]]
;
EndIf
EndIf
EndIf
EndIf
If
(
flag_Hparallel
==
0
)
If
(
flag_Hparallel
==
0
)
// Print [ testte , OnElementsOf Omega, File "testte.pos"];
// Print [ testte , OnElementsOf Omega, File "testte.pos"];
Print
[
lambda_step
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
StrCat
[
myDir
,
"temp_lambda_step.txt"
],
SendToServer
"GetDP/Lambda_step"
]
;
Print
[
lambda_step
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
StrCat
[
myDir
,
"temp_lambda_step.txt"
],
SendToServer
"GetDP/Lambda_step"
]
;
For
i
In
{
0
:
2
*
nb_orders
}
For
i
In
{
0
:
2
*
nb_orders
}
...
@@ -534,29 +539,29 @@ PostOperation {
...
@@ -534,29 +539,29 @@ PostOperation {
Print
[
eff_r
~
{
i
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Store
(
4
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_r_%g.txt"
,
i
-
nb_orders
)]];
Print
[
eff_r
~
{
i
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Store
(
4
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_r_%g.txt"
,
i
-
nb_orders
)]];
Print
[
eff_t
~
{
i
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Store
(
6
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_t_%g.txt"
,
i
-
nb_orders
)]];
Print
[
eff_t
~
{
i
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Store
(
6
*
nb_orders
+
1
+
i
),
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"efficiency_t_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_r_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_r_angle_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_r_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_r_angle_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_t_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_t_angle_%g.txt"
,
i
-
nb_orders
)]];
Print
[
order_t_angle
~
{
i
}
,
OnPoint
{
0
,
0
,
0
},
Format
Table
,
File
>
StrCat
[
myDir
,
Sprintf
(
"order_t_angle_%g.txt"
,
i
-
nb_orders
)]];
EndFor
EndFor
Print
[
eff_r
~
{
nb_orders
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Format
Table
,
SendToServer
"GetDP/R0"
,
File
StrCat
[
myDir
,
"temp_R0.txt"
]];
Print
[
eff_r
~
{
nb_orders
}[
SurfCutSuper1
],
OnRegion
SurfCutSuper1
,
Format
Table
,
SendToServer
"GetDP/R0"
,
File
StrCat
[
myDir
,
"temp_R0.txt"
]];
Print
[
eff_t
~
{
nb_orders
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Format
Table
,
SendToServer
"GetDP/T0"
,
File
StrCat
[
myDir
,
"temp_T0.txt"
]];
Print
[
eff_t
~
{
nb_orders
}[
SurfCutSubs1
]
,
OnRegion
SurfCutSubs1
,
Format
Table
,
SendToServer
"GetDP/T0"
,
File
StrCat
[
myDir
,
"temp_T0.txt"
]];
Print
[
Q_tot
[
Plot_domain
]
,
OnGlobal
,
Format
FrequencyTable
,
SendToServer
"GetDP/total absorption"
,
File
>
StrCat
[
myDir
,
"absorption-Q_tot.txt"
]];
Print
[
Q_tot
[
Plot_domain
]
,
OnGlobal
,
Format
FrequencyTable
,
SendToServer
"GetDP/total absorption"
,
File
>
StrCat
[
myDir
,
"absorption-Q_tot.txt"
]];
For
i
In
{
0
:
N_rods
-
1
:
1
}
For
i
In
{
0
:
N_rods
-
1
:
1
}
Print
[
Q_rod
~
{
i
}[
rod
~
{
i
}]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"absorption-Q_rod_%g.txt"
,
i
+
1
)
]];
Print
[
Q_rod
~
{
i
}[
rod
~
{
i
}]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
Sprintf
(
"absorption-Q_rod_%g.txt"
,
i
+
1
)
]];
EndFor
EndFor
Print
[
Q_sub
[
sub
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_sub.txt"
]
];
Print
[
Q_sub
[
sub
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_sub.txt"
]
];
Print
[
Q_rod_out
[
rod_out
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_rod_out.txt"
]
];
Print
[
Q_rod_out
[
rod_out
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_rod_out.txt"
]
];
Print
[
Q_layer_dep
[
layer_dep
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_dep.txt"
]
];
Print
[
Q_layer_dep
[
layer_dep
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_dep.txt"
]
];
Print
[
Q_layer_cov
[
layer_cov
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_cov.txt"
]
];
Print
[
Q_layer_cov
[
layer_cov
]
,
OnGlobal
,
Format
FrequencyTable
,
File
>
StrCat
[
myDir
,
"absorption-Q_layer_cov.txt"
]
];
Print
[
Ez_tot
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_1.pos"
,
lambda0
/
nm
)]
,
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)];
Print
[
Ez_tot
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_1.pos"
,
lambda0
/
nm
)]
,
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)];
// Echo[ Str["For i In {0:2}",
// Echo[ Str["For i In {0:2}",
//
"
View[i].LineWidth = 4;View[i].ColormapNumber = 15;View[0].AxesFormatX = '%.1f';",
//
"
View[i].LineWidth = 4;View[i].ColormapNumber = 15;View[0].AxesFormatX = '%.1f';",
// "EndFor"], File StrCat[myDir,"tmp0.geo"]] ;
// "EndFor"], File StrCat[myDir,"tmp0.geo"]] ;
// // View[i].RangeType = 2;View[i].CustomMin =0.;View[i].CustomMax =1.;
// // View[i].RangeType = 2;View[i].CustomMin =0.;View[i].CustomMax =1.;
If
(
multiplot
)
If
(
multiplot
)
Echo
[
Str
[
"For i In {PostProcessing.NbViews-1:0:-1}"
,
Echo
[
Str
[
"For i In {PostProcessing.NbViews-1:0:-1}"
,
" If(!StrCmp(View[i].Name, 'boundary') || !StrCmp(View[i].Name, 'boundary_Combine'))"
,
" If(!StrCmp(View[i].Name, 'boundary') || !StrCmp(View[i].Name, 'boundary_Combine'))"
,
" Delete View[i];"
,
" Delete View[i];"
,
" EndIf"
,
" EndIf"
,
"EndFor"
],
File
StrCat
[
myDir
,
"tmp1.geo"
]]
;
"EndFor"
],
File
StrCat
[
myDir
,
"tmp1.geo"
]]
;
Print
[
Ez_totp1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_2.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Ez_totp1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_2.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Ez_totm1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_3.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
-
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Ez_totm1
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_3.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
-
1
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Ez_totp2
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_4.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
2
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
Print
[
Ez_totp2
,
OnElementsOf
Plot_domain
,
File
StrCat
[
myDir
,
Sprintf
(
"Ez_tot_lambda%.2fnm_4.pos"
,
lambda0
/
nm
)],
ChangeOfCoordinates
{
$
X
+
2
*
d
,
$
Y
,
$
Z
},
Name
Sprintf
(
"Ez_tot_%.2fnm.pos"
,
lambda0
/
nm
)
]
;
...
@@ -577,28 +582,28 @@ PostOperation {
...
@@ -577,28 +582,28 @@ PostOperation {
Print
[
boundary
,
OnElementsOf
Plot_bnd
,
File
StrCat
[
myDir
,
"boundary9.pos"
],
ChangeOfCoordinates
{
$
X
-
4
*
d
,
$
Y
,
$
Z
}
];
Print
[
boundary
,
OnElementsOf
Plot_bnd
,
File
StrCat
[
myDir
,
"boundary9.pos"
],
ChangeOfCoordinates
{
$
X
-
4
*
d
,
$
Y
,
$
Z
}
];
Echo
[
"Combine ElementsByViewName;"
,
File
StrCat
[
myDir
,
"tmp2.geo"
]]
;
Echo
[
"Combine ElementsByViewName;"
,
File
StrCat
[
myDir
,
"tmp2.geo"
]]
;
Echo
[
Str
[
"Hide {"
,
Echo
[
Str
[
"Hide {"
,
"Point{1,2,7,8,9,10,20,22};"
,
"Point{1,2,7,8,9,10,20,22};"
,
"Line{1,7,8,9,10,30,32,34,2,3,4,5,6,12,16,20,24,28};"
,
"Line{1,7,8,9,10,30,32,34,2,3,4,5,6,12,16,20,24,28};"
,
"Surface{36,48};}"
,
"Surface{36,48};}"
,
"Geometry.Color.Lines = {0,0,0};"
,
"Geometry.Color.Lines = {0,0,0};"
,
"l=PostProcessing.NbViews-1; View[l].ColorTable={Black}; "
,
"l=PostProcessing.NbViews-1; View[l].ColorTable={Black}; "
,
"View[l-1].Visible=1; View[l-1].ShowScale=0;"
,
"View[l-1].Visible=1; View[l-1].ShowScale=0;"
,
"View[l].ShowScale=0; View[l].LineWidth=1.5; View[l].LineType=1;Geometry.LineWidth=0;"
],
"View[l].ShowScale=0; View[l].LineWidth=1.5; View[l].LineType=1;Geometry.LineWidth=0;"
],
File
StrCat
[
myDir
,
"tmp3.geo"
]]
;
File
StrCat
[
myDir
,
"tmp3.geo"
]]
;
EndIf
EndIf
EndIf
EndIf
}
}
}
}
}
}
DefineConstant
[
DefineConstant
[
R_
=
{
"helmoltz_scalar"
,
Name
"GetDP/1ResolutionChoices"
,
Visible
1
},
R_
=
{
"helmoltz_scalar"
,
Name
"GetDP/1ResolutionChoices"
,
Visible
1
},
C_
=
{
"-solve -pos -petsc_prealloc 1000 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_package mumps"
,
Name
"GetDP/9ComputeCommand"
,
Visible
1
},
C_
=
{
"-solve -pos -petsc_prealloc 1000 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_package mumps"
,
Name
"GetDP/9ComputeCommand"
,
Visible
1
},
P_
=
{
"postop_energy"
,
Name
"GetDP/2PostOperationChoices"
,
Visible
1
}];
P_
=
{
"postop_energy"
,
Name
"GetDP/2PostOperationChoices"
,
Visible
1
}];
If
(
plotRTgraphs
)
If
(
plotRTgraphs
)
DefineConstant
[
DefineConstant
[
refl_
=
{
0
,
Name
"GetDP/R0"
,
ReadOnly
1
,
Graph
"02000000"
,
Visible
1
},
refl_
=
{
0
,
Name
"GetDP/R0"
,
ReadOnly
1
,
Graph
"02000000"
,
Visible
1
},
abs_
=
{
0
,
Name
"GetDP/total absorption"
,
ReadOnly
1
,
Graph
"00000002"
,
Visible
1
},
abs_
=
{
0
,
Name
"GetDP/total absorption"
,
ReadOnly
1
,
Graph
"00000002"
,
Visible
1
},
trans_
=
{
0
,
Name
"GetDP/T0"
,
ReadOnly
1
,
Graph
"000000000002"
,
Visible
1
}
trans_
=
{
0
,
Name
"GetDP/T0"
,
ReadOnly
1
,
Graph
"000000000002"
,
Visible
1
}
];
];
EndIf
EndIf
This diff is collapsed.
Click to expand it.
Preview
0%
Loading
Try again
or
attach a new file
.
Cancel
You are about to add
0
people
to the discussion. Proceed with caution.
Finish editing this message first!
Save comment
Cancel
Please
register
or
sign in
to comment