Skip to content
Snippets Groups Projects
Commit 8c29ddfd authored by Guillaume Demesy's avatar Guillaume Demesy
Browse files

lighter TE/TM postpro

parent 88eb22bc
No related branches found
No related tags found
No related merge requests found
Pipeline #7258 passed
...@@ -372,27 +372,22 @@ Resolution { ...@@ -372,27 +372,22 @@ Resolution {
PostProcessing { PostProcessing {
{ Name postpro_energy; NameOfFormulation helmoltz_scalar; { Name postpro_energy; NameOfFormulation helmoltz_scalar;
Quantity { Quantity {
For i In {-nb_plot_periods:nb_plot_periods}
{ Name u_tot~{i} ; Value { Local { [ ({u2d}+u1[])*Exp[I[]*i*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
EndFor
If (flag_polar==1)
{ Name debr ; Value { Local { [ r[] ]; In Omega; Jacobian JVol; } } }
{ Name debt ; Value { Local { [ t[] ]; In Omega; Jacobian JVol; } } }
{ Name u ; Value { Local { [ {u2d} ]; In Omega; Jacobian JVol; } } } { Name u ; Value { Local { [ {u2d} ]; In Omega; Jacobian JVol; } } }
{ Name epsr ; Value { Local { [ CompZZ[epsilonr[]] ]; In Omega; Jacobian JVol; } } } { Name u_diff ; Value { Local { [ {u2d}+u1d[] ]; In Omega; Jacobian JVol; } } }
{ Name Hz_diff ; Value { Local { [ {u2d}+u1d[] ]; In Omega; Jacobian JVol; } } } { Name u_tot ; Value { Local { [ {u2d}+u1[] ]; In Omega; Jacobian JVol; } } }
{ Name Hz_tot ; Value { Local { [ {u2d}+u1[] ]; In Omega; Jacobian JVol; } } }
{ Name NormHz_tot ; Value { Local { [ Norm[{u2d}+u1[]] ]; In Omega; Jacobian JVol; } } }
{ Name E1 ; Value { Local { [ E1[] ]; In Omega; Jacobian JVol; } } }
{ Name u1 ; Value { Local { [ u1[] ]; In Omega; Jacobian JVol; } } } { Name u1 ; Value { Local { [ u1[] ]; In Omega; Jacobian JVol; } } }
{ Name lambda_step ; Value { Local { [ lambda0/nm ]; In Omega; Jacobian JVol; } } }
{ Name boundary ; Value { Local { [ bndCol[] ]; In Plot_bnd ; Jacobian JVol ; } } } { Name boundary ; Value { Local { [ bndCol[] ]; In Plot_bnd ; Jacobian JVol ; } } }
For i In {-nb_plot_periods:nb_plot_periods}
{ Name u_tot~{i} ; Value { Local { [ ({u2d}+u1[])*Exp[I[]*i*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
EndFor
For i In {0:2*nb_orders} For i In {0:2*nb_orders}
{ Name s_r~{i} ; Value { Integral{ [ expmialpha~{i}[] * ({u2d}+u1d[])/d ] ; In SurfCutSuper1 ; Jacobian JSur ; Integration Int_1 ; } } } { Name s_r~{i} ; Value { Integral{ [ expmialpha~{i}[] * ({u2d}+u1d[])/d ] ; In SurfCutSuper1 ; Jacobian JSur ; Integration Int_1 ; } } }
{ Name s_t~{i} ; Value { Integral{ [ expmialpha~{i}[] * ({u2d}+u1d[])/d ] ; In SurfCutSubs1 ; Jacobian JSur ; Integration Int_1 ; } } } { Name s_t~{i} ; Value { Integral{ [ expmialpha~{i}[] * ({u2d}+u1d[])/d ] ; In SurfCutSubs1 ; Jacobian JSur ; Integration Int_1 ; } } }
{ Name order_t_angle~{i} ; Value { Local{ [-Atan2[Re[alpha~{i}[]],Re[beta_subs~{i}[]]]/deg2rad ] ; In Omega; Jacobian JVol; } } } { Name order_t_angle~{i} ; Value { Local{ [-Atan2[Re[alpha~{i}[]],Re[beta_subs~{i}[]]]/deg2rad ] ; In Omega; Jacobian JVol; } } }
{ Name order_r_angle~{i} ; Value { Local{ [ Atan2[Re[alpha~{i}[]],Re[beta_super~{i}[]]]/deg2rad ] ; In Omega; Jacobian JVol; } } } { Name order_r_angle~{i} ; Value { Local{ [ Atan2[Re[alpha~{i}[]],Re[beta_super~{i}[]]]/deg2rad ] ; In Omega; Jacobian JVol; } } }
EndFor EndFor
If (flag_polar==1)
For i In {0:2*nb_orders} For i In {0:2*nb_orders}
{ Name eff_r~{i} ; Value { Term{ Type Global; [ SquNorm[#i]*beta_super~{i}[]/beta1[] ] ; In SurfCutSuper1 ; } } } { Name eff_r~{i} ; Value { Term{ Type Global; [ SquNorm[#i]*beta_super~{i}[]/beta1[] ] ; In SurfCutSuper1 ; } } }
{ Name eff_t~{i} ; Value { Term{ Type Global; [ SquNorm[#(2*nb_orders+1+i)]*(beta_subs~{i}[]/beta1[])*(epsr1[]/epsr2[]) ] ; In SurfCutSubs1 ; } } } { Name eff_t~{i} ; Value { Term{ Type Global; [ SquNorm[#(2*nb_orders+1+i)]*(beta_subs~{i}[]/beta1[])*(epsr1[]/epsr2[]) ] ; In SurfCutSubs1 ; } } }
...@@ -405,29 +400,8 @@ PostProcessing { ...@@ -405,29 +400,8 @@ PostProcessing {
{ Name Q_layer_dep ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_dep_im[]] * ( SquNorm[CompY[{Grad u2d}]*I[]/(om0*ep0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]]] + SquNorm[-CompX[{Grad u2d}]*I[]/(om0*ep0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In layer_dep ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_layer_dep ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_dep_im[]] * ( SquNorm[CompY[{Grad u2d}]*I[]/(om0*ep0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]]] + SquNorm[-CompX[{Grad u2d}]*I[]/(om0*ep0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In layer_dep ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_layer_cov ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_cov_im[]] * ( SquNorm[CompY[{Grad u2d}]*I[]/(om0*ep0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]]] + SquNorm[-CompX[{Grad u2d}]*I[]/(om0*ep0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In layer_cov ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_layer_cov ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_cov_im[]] * ( SquNorm[CompY[{Grad u2d}]*I[]/(om0*ep0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]]] + SquNorm[-CompX[{Grad u2d}]*I[]/(om0*ep0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In layer_cov ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_tot ; Value { Integral { [ 0.5 * ep0*om0*Fabs[Im[CompZZ[epsilonr[]]]] * ( SquNorm[CompY[{Grad u2d}]*I[]/(om0*ep0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]]] + SquNorm[-CompX[{Grad u2d}]*I[]/(om0*ep0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_tot ; Value { Integral { [ 0.5 * ep0*om0*Fabs[Im[CompZZ[epsilonr[]]]] * ( SquNorm[CompY[{Grad u2d}]*I[]/(om0*ep0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]]] + SquNorm[-CompX[{Grad u2d}]*I[]/(om0*ep0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name lambda_step ; Value { Local { [ lambda0/nm ]; In Omega ; Jacobian JVol; } } }
EndIf EndIf
If (flag_polar==0) If (flag_polar==0)
{ Name u ; Value { Local { [ {u2d} ]; In Omega; Jacobian JVol; } } }
{ Name epsr ; Value { Local { [ CompZZ[epsilonr[]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_diff ; Value { Local { [ {u2d}+u1d[] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_tot ; Value { Local { [ {u2d}+u1[] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp1 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]* 1*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp2 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]* 2*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp3 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]* 3*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp4 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]* 4*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm1 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]*-1*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm2 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]*-2*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm3 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]*-3*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm4 ; Value { Local { [ ({u2d}+u1[])*Exp[I[]*-4*CompX[k1[]]*d] ]; In Omega; Jacobian JVol; } } }
{ Name boundary ; Value { Local { [ bndCol[] ] ; In Plot_bnd ; Jacobian JVol ; } } }
For i In {0:2*nb_orders}
{ Name s_r~{i} ; Value { Integral{ [ expmialpha~{i}[] * ({u2d}+u1d[])/d ] ; In SurfCutSuper1 ; Jacobian JSur ; Integration Int_1 ; } } }
{ Name s_t~{i} ; Value { Integral{ [ expmialpha~{i}[] * ({u2d}+u1d[])/d ] ; In SurfCutSubs1 ; Jacobian JSur ; Integration Int_1 ; } } }
{ Name order_t_angle~{i} ; Value { Local{ [-Atan2[Re[alpha~{i}[]],Re[beta_subs~{i}[]]]/deg2rad ] ; In Omega; Jacobian JVol; } } }
{ Name order_r_angle~{i} ; Value { Local{ [ Atan2[Re[alpha~{i}[]],Re[beta_super~{i}[]]]/deg2rad ] ; In Omega; Jacobian JVol; } } }
EndFor
For i In {0:2*nb_orders} For i In {0:2*nb_orders}
{ Name eff_r~{i} ; Value { Term{ Type Global; [ SquNorm[#i]*beta_super~{i}[]/beta1[] ] ; In SurfCutSuper1 ; } } } { Name eff_r~{i} ; Value { Term{ Type Global; [ SquNorm[#i]*beta_super~{i}[]/beta1[] ] ; In SurfCutSuper1 ; } } }
{ Name eff_t~{i} ; Value { Term{ Type Global; [ SquNorm[#(2*nb_orders+1+i)]*(beta_subs~{i}[]/beta1[])] ; In SurfCutSubs1 ; } } } { Name eff_t~{i} ; Value { Term{ Type Global; [ SquNorm[#(2*nb_orders+1+i)]*(beta_subs~{i}[]/beta1[])] ; In SurfCutSubs1 ; } } }
...@@ -440,7 +414,6 @@ PostProcessing { ...@@ -440,7 +414,6 @@ PostProcessing {
{ Name Q_layer_dep ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_dep_im[]] *(SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_dep ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_layer_dep ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_dep_im[]] *(SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_dep ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_layer_cov ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_cov_im[]] *(SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_cov ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_layer_cov ; Value { Integral { [ 0.5 * ep0*om0*Fabs[epsr_layer_cov_im[]] *(SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_cov ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_tot ; Value { Integral { [ 0.5 * ep0*om0*Fabs[Im[CompXX[epsilonr[]]]]*(SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_tot ; Value { Integral { [ 0.5 * ep0*om0*Fabs[Im[CompXX[epsilonr[]]]]*(SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name lambda_step ; Value { Local { [ lambda0/nm ]; In Omega ; Jacobian JVol; } } }
EndIf EndIf
} }
} }
...@@ -472,11 +445,10 @@ PostOperation { ...@@ -472,11 +445,10 @@ PostOperation {
Print[ Q_layer_dep[layer_dep] , OnGlobal, Format FrequencyTable, File > StrCat[myDir, "absorption-Q_layer_dep.txt"]]; Print[ Q_layer_dep[layer_dep] , OnGlobal, Format FrequencyTable, File > StrCat[myDir, "absorption-Q_layer_dep.txt"]];
Print[ Q_layer_cov[layer_cov] , OnGlobal, Format FrequencyTable, File > StrCat[myDir, "absorption-Q_layer_cov.txt"]]; Print[ Q_layer_cov[layer_cov] , OnGlobal, Format FrequencyTable, File > StrCat[myDir, "absorption-Q_layer_cov.txt"]];
If (flag_polar==1) If (flag_polar==1)
Print[ Hz_tot , OnElementsOf Plot_domain, File StrCat[myDir, Sprintf("Hz_tot_lambda%.2fnm_1.pos", lambda0/nm)] , Name Sprintf("Hz_tot_%.2fnm.pos", lambda0/nm)]; Print[ u_tot , OnElementsOf Plot_domain, File StrCat[myDir, Sprintf("Hz_tot_lambda%.2fnm_1.pos", lambda0/nm)] , Name Sprintf("Hz_tot_%.2fnm.pos", lambda0/nm)];
// Print[ u, OnElementsOf Omega, File StrCat[myDir, Sprintf("u2d_%.2fnm_1.pos", lambda0/nm)] , Name Sprintf("u2d_%.2fnm.pos", lambda0/nm)];
EndIf EndIf
If (flag_polar==0) If (flag_polar==0)
Print[ Ez_tot , OnElementsOf Plot_domain, File StrCat[myDir, Sprintf("Ez_tot_lambda%.2fnm_1.pos", lambda0/nm)] , Name Sprintf("Ez_tot_%.2fnm.pos", lambda0/nm)]; Print[ u_tot , OnElementsOf Plot_domain, File StrCat[myDir, Sprintf("Ez_tot_lambda%.2fnm_1.pos", lambda0/nm)] , Name Sprintf("Ez_tot_%.2fnm.pos", lambda0/nm)];
// Print[ u, OnElementsOf Plot_domain, File StrCat[myDir, Sprintf("u2d_%.2fnm_1.pos", lambda0/nm)] , Name Sprintf("u2d_%.2fnm.pos", lambda0/nm)]; // Print[ u, OnElementsOf Plot_domain, File StrCat[myDir, Sprintf("u2d_%.2fnm_1.pos", lambda0/nm)] , Name Sprintf("u2d_%.2fnm.pos", lambda0/nm)];
EndIf EndIf
If(multiplot) If(multiplot)
...@@ -502,7 +474,6 @@ PostOperation { ...@@ -502,7 +474,6 @@ PostOperation {
"View[l].ShowScale=0; View[l].LineWidth=1.5; View[l].LineType=1;Geometry.LineWidth=0;"], "View[l].ShowScale=0; View[l].LineWidth=1.5; View[l].LineType=1;Geometry.LineWidth=0;"],
File StrCat[myDir,"tmp3.geo" ]] ; File StrCat[myDir,"tmp3.geo" ]] ;
EndIf EndIf
} }
} }
} }
......
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment