Skip to content
Snippets Groups Projects
Commit 11dc03be authored by Guillaume Demesy's avatar Guillaume Demesy
Browse files

more tabs

parent 3af60703
No related branches found
No related tags found
No related merge requests found
Pipeline #4901 passed
...@@ -427,55 +427,55 @@ PostProcessing { ...@@ -427,55 +427,55 @@ PostProcessing {
{ Name Q_tot ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[Im[CompZZ[epsilonr[]]]] * ( SquNorm[-CompY[{Grad u2d}]*I[]/(omega0*epsilon0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]] ] + SquNorm[CompX[{Grad u2d}]*I[]/(omega0*epsilon0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_tot ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[Im[CompZZ[epsilonr[]]]] * ( SquNorm[-CompY[{Grad u2d}]*I[]/(omega0*epsilon0*CompXX[epsilonr[]])+Ex1[]/CompXX[epsilonr[]]*CompXX[epsilonr_annex[]] ] + SquNorm[CompX[{Grad u2d}]*I[]/(omega0*epsilon0*CompYY[epsilonr[]])+Ey1[]/CompYY[epsilonr[]]*CompYY[epsilonr_annex[]] ] ) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name lambda_step ; Value { Local { [ lambda0/nm ]; In Omega ; Jacobian JVol; } } } { Name lambda_step ; Value { Local { [ lambda0/nm ]; In Omega ; Jacobian JVol; } } }
EndIf EndIf
If (flag_Hparallel==0) If (flag_Hparallel==0)
{ Name testte ; Value { Local { [ {u2d} ]; In Omega; Jacobian JVol; } } } { Name testte ; Value { Local { [ {u2d} ]; In Omega; Jacobian JVol; } } }
{ Name epsr ; Value { Local { [ CompZZ[epsilonr[]] ]; In Omega; Jacobian JVol; } } } { Name epsr ; Value { Local { [ CompZZ[epsilonr[]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_diff ; Value { Local { [ {u2d}+u1d[] ]; In Omega; Jacobian JVol; } } } { Name Ez_diff ; Value { Local { [ {u2d}+u1d[] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_tot ; Value { Local { [ {u2d}+u1[] ]; In Omega; Jacobian JVol; } } } { Name Ez_tot ; Value { Local { [ {u2d}+u1[] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp1 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 1*-alpha[]*d],Sin[ 1*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totp1 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 1*-alpha[]*d],Sin[ 1*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp2 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 2*-alpha[]*d],Sin[ 2*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totp2 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 2*-alpha[]*d],Sin[ 2*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp3 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 3*-alpha[]*d],Sin[ 3*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totp3 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 3*-alpha[]*d],Sin[ 3*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totp4 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 4*-alpha[]*d],Sin[ 4*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totp4 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[ 4*-alpha[]*d],Sin[ 4*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm1 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-1*-alpha[]*d],Sin[-1*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totm1 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-1*-alpha[]*d],Sin[-1*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm2 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-2*-alpha[]*d],Sin[-2*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totm2 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-2*-alpha[]*d],Sin[-2*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm3 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-3*-alpha[]*d],Sin[-3*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totm3 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-3*-alpha[]*d],Sin[-3*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name Ez_totm4 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-4*-alpha[]*d],Sin[-4*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } } { Name Ez_totm4 ; Value { Local { [ ({u2d}+u1[])*Complex[Cos[-4*-alpha[]*d],Sin[-4*-alpha[]*d]] ]; In Omega; Jacobian JVol; } } }
{ Name boundary ; Value { Local { [ bndCol[] ] ; In Plot_bnd ; Jacobian JVol ; } } } { Name boundary ; Value { Local { [ bndCol[] ] ; In Plot_bnd ; Jacobian JVol ; } } }
{ Name u ; Value { Local { [ {u2d} ]; In Omega; Jacobian JVol; } } } { Name u ; Value { Local { [ {u2d} ]; In Omega; Jacobian JVol; } } }
// modif effic // modif effic
For i In {0:2*nb_orders} For i In {0:2*nb_orders}
{ Name s_r~{i} ; Value { { Name s_r~{i} ; Value {
Integral{ [ expialpha_orders~{i}[] * ({u2d}+u1d[])/d ] ; Integral{ [ expialpha_orders~{i}[] * ({u2d}+u1d[])/d ] ;
In SurfCutSuper1 ; Jacobian JSur ; Integration Int_1 ; } } } In SurfCutSuper1 ; Jacobian JSur ; Integration Int_1 ; } } }
{ Name s_t~{i} ; Value { { Name s_t~{i} ; Value {
Integral{ [ expialpha_orders~{i}[] * ({u2d}+u1d[])/d ] ; Integral{ [ expialpha_orders~{i}[] * ({u2d}+u1d[])/d ] ;
In SurfCutSubs1 ; Jacobian JSur ; Integration Int_1 ; } } } In SurfCutSubs1 ; Jacobian JSur ; Integration Int_1 ; } } }
{ Name order_t_angle~{i} ; Value { { Name order_t_angle~{i} ; Value {
Local{ [-Atan2[Re[alpha_orders~{i}[]],Re[betat_sub~{i}[]]]/deg2rad ] ; Local{ [-Atan2[Re[alpha_orders~{i}[]],Re[betat_sub~{i}[]]]/deg2rad ] ;
In Omega; Jacobian JVol; } } } In Omega; Jacobian JVol; } } }
{ Name order_r_angle~{i} ; Value { { Name order_r_angle~{i} ; Value {
Local{ [ Atan2[Re[alpha_orders~{i}[]],Re[betat_sup~{i}[]]]/deg2rad ] ; Local{ [ Atan2[Re[alpha_orders~{i}[]],Re[betat_sup~{i}[]]]/deg2rad ] ;
In Omega; Jacobian JVol; } } } In Omega; Jacobian JVol; } } }
EndFor EndFor
For i In {0:2*nb_orders} For i In {0:2*nb_orders}
{ Name eff_r~{i} ; Value { { Name eff_r~{i} ; Value {
Term{ Type Global; [ SquNorm[#i]*betat_sup~{i}[]/beta_sup[] ] ; Term{ Type Global; [ SquNorm[#i]*betat_sup~{i}[]/beta_sup[] ] ;
In SurfCutSuper1 ; } } } In SurfCutSuper1 ; } } }
{ Name eff_t~{i} ; Value { { Name eff_t~{i} ; Value {
Term{ Type Global; [ SquNorm[#(2*nb_orders+1+i)]*(betat_sub~{i}[]/beta_sup[])] ; Term{ Type Global; [ SquNorm[#(2*nb_orders+1+i)]*(betat_sub~{i}[]/beta_sup[])] ;
In SurfCutSubs1 ; } } } In SurfCutSubs1 ; } } }
EndFor EndFor
For i In {0:N_rods-1:1} For i In {0:N_rods-1:1}
{ Name Q_rod~{i} ; Value { Integral { [0.5 * epsilon0*omega0*Fabs[epsr_rods_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In rod~{i} ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_rod~{i} ; Value { Integral { [0.5 * epsilon0*omega0*Fabs[epsr_rods_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In rod~{i} ; Integration Int_1 ; Jacobian JVol ; } } }
EndFor EndFor
{ Name Q_sub ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_sub_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In sub ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_sub ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_sub_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In sub ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_rod_out ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_rod_out_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In rod_out ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_rod_out ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_rod_out_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In rod_out ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_layer_dep ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_layer_dep_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_dep ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_layer_dep ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_layer_dep_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_dep ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_layer_cov ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_layer_cov_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_cov ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_layer_cov ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[epsr_layer_cov_im[]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In layer_cov ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Q_tot ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[Im[CompXX[epsilonr[]]]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } } { Name Q_tot ; Value { Integral { [ 0.5 * epsilon0*omega0*Fabs[Im[CompXX[epsilonr[]]]] * (SquNorm[{u2d}+u1[]]) / (Pinc[]*d) ] ; In Plot_domain ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name lambda_step ; Value { Local { [ lambda0/nm ]; In Omega ; Jacobian JVol; } } } { Name lambda_step ; Value { Local { [ lambda0/nm ]; In Omega ; Jacobian JVol; } } }
EndIf EndIf
} }
} }
} }
...@@ -614,14 +614,15 @@ PostOperation { ...@@ -614,14 +614,15 @@ PostOperation {
} }
} }
DefineConstant[ DefineConstant[
R_ = {"helmoltz_scalar", Name "GetDP/1ResolutionChoices", Visible 1}, R_ = {"helmoltz_scalar", Name "GetDP/1ResolutionChoices", Visible 1},
C_ = {"-solve -pos -petsc_prealloc 100 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps", Name "GetDP/9ComputeCommand", Visible 1}, C_ = {"-solve -pos -petsc_prealloc 100 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps", Name "GetDP/9ComputeCommand", Visible 1},
P_ = {"postop_energy", Name "GetDP/2PostOperationChoices", Visible 1}]; P_ = {"postop_energy", Name "GetDP/2PostOperationChoices", Visible 1}
];
If(plotRTgraphs) If(plotRTgraphs)
DefineConstant[ DefineConstant[
refl_ = {0, Name "GetDP/R0", ReadOnly 1, Graph "02000000", Visible 1}, refl_ = {0, Name "GetDP/R0", ReadOnly 1, Graph "02000000", Visible 1},
abs_ = {0, Name "GetDP/total absorption", ReadOnly 1, Graph "00000002", Visible 1}, abs_ = {0, Name "GetDP/total absorption", ReadOnly 1, Graph "00000002", Visible 1},
trans_ = {0, Name "GetDP/T0", ReadOnly 1, Graph "000000000002", Visible 1} trans_ = {0, Name "GetDP/T0", ReadOnly 1, Graph "000000000002", Visible 1}
]; ];
EndIf EndIf
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment