Newer
Older
///////////////////////////////
// Author : Guillaume Demesy //
// scattering.pro //
///////////////////////////////
Include "scattering_data.geo";
myDir = "run_results/";
Group {
If(flag_cartpml==1)
PMLxyz = Region[1000];
PMLxz = Region[1001];
PMLyz = Region[1002];
PMLxy = Region[1003];
PMLz = Region[1004];
PMLy = Region[1005];
PMLx = Region[1006];
Scat_In = Region[1008];
Scat_Out = Region[1007];
// Domains
Domain = Region[{Scat_In,Scat_Out}];
PMLs = Region[{PMLxyz,PMLxy,PMLxz,PMLyz,PMLx,PMLy,PMLz}];
All_domains = Region[{Scat_In,Scat_Out,PMLxyz,PMLxy,PMLxz,PMLyz,PMLx,PMLy,PMLz}];
EndIf
If(flag_cartpml==0)
Scat_In = Region[1];
Scat_Out = Region[2];
Domain = Region[{Scat_In,Scat_Out}];
PMLs = Region[3];
All_domains = Region[{Scat_In,Scat_Out,PMLs}];
EndIf
PrintPoint = Region[2000];
}
Function{
// test={1.4,2.6,3.7};
// For i In {0:#test()-1}
// Printf("%g",test(i));
// EndFor
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
I[] = Complex[0,1];
avoid_sing = 1.e-14;
mu0 = 4*Pi*100.0*nm;
epsilon0 = 8.854187817e-3*nm;
cel = 1.0/Sqrt[epsilon0 * mu0];
Freq = cel/lambda0;
omega0 = 2.0*Pi*Freq;
k_Out = 2.0*Pi*Sqrt[epsr_Out_re]/lambda0;
r3D_sph[] = Sqrt[X[]^2+Y[]^2+Z[]^2];
r2D_sph[] = Sqrt[X[]^2+Y[]^2];
cos_theta[] = Z[]/(r3D_sph[]+avoid_sing);
theta[] = Acos[cos_theta[]];
phi[] = Atan2[-Y[],-X[]]+Pi;
For kr In {0:nb_cuts-1}
r_sph~{kr}=r_sph_min+kr*(r_sph_max-r_sph_min)/(nb_cuts-1);
EndFor
If (flag_study==0)
Ae = 1.0;
Ah = Ae*Sqrt[epsilon0*epsr_In_re/mu0];
alpha0 = k_Out*Sin[theta0]*Cos[phi0];
beta0 = k_Out*Sin[theta0]*Sin[phi0];
gamma0 = k_Out*Cos[theta0];
Ex0 = Ae * Cos[psi0]*Cos[theta0]*Cos[phi0] - Ae* Sin[psi0]*Sin[phi0];
Ey0 = Ae * Cos[psi0]*Cos[theta0]*Sin[phi0] + Ae* Sin[psi0]*Cos[phi0];
Ez0 = -Ae * Cos[psi0]*Sin[theta0];
Hx0 = -1/(omega0*mu0)*(beta0 * Ez0 - gamma0 * Ey0);
Hy0 = -1/(omega0*mu0)*(gamma0 * Ex0 - alpha0 * Ez0);
Hz0 = -1/(omega0*mu0)*(alpha0 * Ey0 - beta0 * Ex0);
Prop[] = Ae * Complex[ Cos[alpha0*X[]+beta0*Y[]+gamma0*Z[]] , siwt*Sin[alpha0*X[]+beta0*Y[]+gamma0*Z[]] ];
Einc[] = Vector[Ex0*Prop[],Ey0*Prop[],Ez0*Prop[]];
Hinc[] = Vector[Hx0*Prop[],Hy0*Prop[],Hz0*Prop[]];
Pinc = 0.5*Ae*Ae*Sqrt[epsilon0*epsr_In_re/mu0] * Cos[theta0];
EndIf
If (flag_study==2)
// Green Dyadic
normrr_p[] = Sqrt[(X[]-x_p)^2+(Y[]-y_p)^2+(Z[]-z_p)^2];
Gsca[] = Complex[Cos[-1.*siwt*k_Out*normrr_p[]],
Sin[-1.*siwt*k_Out*normrr_p[]]]
/(4.*Pi*normrr_p[]);
GDfact_diag[] = 1.+(I[]*k_Out*normrr_p[]-1.)/(k_Out*normrr_p[])^2;
GDfact_glob[] = (3.-3.*I[]*k_Out*normrr_p[]-(k_Out*normrr_p[])^2)/
(k_Out*normrr_p[]^2)^2;
Dyad_Green2[]=
Gsca[]*(
GDfact_diag[]*TensorDiag[1,1,1]
+ GDfact_glob[]*
Tensor[(X[]-x_p)*(X[]-x_p),(X[]-x_p)*(Y[]-y_p),(X[]-x_p)*(Z[]-z_p),
(Y[]-y_p)*(X[]-x_p),(Y[]-y_p)*(Y[]-y_p),(Y[]-y_p)*(Z[]-z_p),
(Z[]-z_p)*(X[]-x_p),(Z[]-z_p)*(Y[]-y_p),(Z[]-z_p)*(Z[]-z_p)]);
// Getdp Func
Dyad_Green[] = DyadGreenHom[x_p,y_p,z_p,XYZ[],k_Out,siwt];
Einc_Green_0[] = Dyad_Green2[]*Vector[1,0,0];
Einc_Green_1[] = Dyad_Green2[]*Vector[0,1,0];
Einc_Green_2[] = Dyad_Green2[]*Vector[0,0,1];
CurlDyad_Green[] = CurlDyadGreenHom[x_p,y_p,z_p,XYZ[],k_Out,siwt];
Hinc_Green_0[] = siwt*I[]/(mu0*omega0)*CurlDyad_Green[]*Vector[1,0,0];
Hinc_Green_1[] = siwt*I[]/(mu0*omega0)*CurlDyad_Green[]*Vector[0,1,0];
Hinc_Green_2[] = siwt*I[]/(mu0*omega0)*CurlDyad_Green[]*Vector[0,0,1];
// test[] = DyadGreenHom[x_p,y_p,z_p,x_p+1e-1*nm,y_p+1e-1*nm,z_p+1e-1*nm,lambda0,Sqrt[epsr_Out_re]]*Vector[1,0,0];
EndIf
a_pml = 1.;
b_pml = -siwt;
eigtarget = (2.*Pi*cel/lambda0)^2;
eigfilter = 1e-4*Sqrt[eigtarget];
EigFilter[] = (Norm[$EigenvalueReal] > eigfilter);
If(flag_cartpml==1)
sx[Scat_In] = 1.;
sy[Scat_In] = 1.;
sz[Scat_In] = 1.;
sx[Scat_Out] = 1.;
sy[Scat_Out] = 1.;
sz[Scat_Out] = 1.;
sx[PMLxyz] = Complex[a_pml,b_pml];
sy[PMLxyz] = Complex[a_pml,b_pml];
sz[PMLxyz] = Complex[a_pml,b_pml];
sx[PMLxz] = Complex[a_pml,b_pml];
sy[PMLxz] = 1.0;
sz[PMLxz] = Complex[a_pml,b_pml];
sx[PMLyz] = 1.0;
sy[PMLyz] = Complex[a_pml,b_pml];
sz[PMLyz] = Complex[a_pml,b_pml];
sx[PMLxy] = Complex[a_pml,b_pml];
sy[PMLxy] = Complex[a_pml,b_pml];
sz[PMLxy] = 1.0;
sx[PMLx] = Complex[a_pml,b_pml];
sy[PMLx] = 1.0;
sz[PMLx] = 1.0;
sx[PMLy] = 1.0;
sy[PMLy] = Complex[a_pml,b_pml];
sz[PMLy] = 1.0;
sx[PMLz] = 1.0;
sy[PMLz] = 1.0;
sz[PMLz] = Complex[a_pml,b_pml];
Lxx[] = sy[]*sz[]/sx[];
Lyy[] = sz[]*sx[]/sy[];
Lzz[] = sx[]*sy[]/sz[];
epsilonr_In[] = Complex[epsr_In_re , epsr_In_im];
epsilonr_Out[] = Complex[epsr_Out_re , epsr_Out_im];
epsilonr[Scat_In] = epsilonr_In[] * TensorDiag[1.,1.,1.];
epsilonr[Scat_Out] = epsilonr_Out[] * TensorDiag[1.,1.,1.];
epsilonr[PMLs] = epsr_Out_re * TensorDiag[Lxx[],Lyy[],Lzz[]];
epsilonr1[Scat_In] = epsilonr_Out[] * TensorDiag[1.,1.,1.];
epsilonr1[Scat_Out] = epsilonr_Out[] * TensorDiag[1.,1.,1.];
epsilonr1[PMLs] = epsr_Out_re * TensorDiag[Lxx[],Lyy[],Lzz[]];
mur[Scat_In] = TensorDiag[1.,1.,1.];
mur[Scat_Out] = TensorDiag[1.,1.,1.];
mur[PMLs] = TensorDiag[Lxx[],Lyy[],Lzz[]];
EndIf
If(flag_cartpml==0)
sr[] = Complex[a_pml,b_pml];
sphi[] = Complex[1,0];
stheta[] = Complex[1,0];
r_tild[] = r_pml_in + (r3D_sph[] - r_pml_in) * sr[];
theta_tild[] = theta[];
pml_tens_temp1[] = TensorDiag[(r_tild[]/r3D_sph[])^2 * sphi[]*stheta[]/sr[],
(r_tild[]/r3D_sph[]) * sr[]*stheta[]/sphi[],
(r_tild[]/r3D_sph[]) * sphi[]*sr[]/stheta[]];
pml_tens_temp2[] = Rotate[pml_tens_temp1[],0,-theta[]-Pi/2,0];
pml_tens[] = Rotate[pml_tens_temp2[],0,0,-phi[]];
epsilonr_In[] = Complex[epsr_In_re , epsr_In_im];
epsilonr_Out[] = Complex[epsr_Out_re , epsr_Out_im];
epsilonr[Scat_In] = epsilonr_In[] * TensorDiag[1.,1.,1.];
epsilonr[Scat_Out] = epsilonr_Out[] * TensorDiag[1.,1.,1.];
epsilonr[PMLs] = pml_tens[];
epsilonr1[Scat_In] = epsilonr_Out[] * TensorDiag[1.,1.,1.];
epsilonr1[Scat_Out] = epsilonr_Out[] * TensorDiag[1.,1.,1.];
epsilonr1[PMLs] = pml_tens[];
mur[Scat_In] = TensorDiag[1.,1.,1.];
mur[Scat_Out] = TensorDiag[1.,1.,1.];
mur[PMLs] = pml_tens[];
EndIf
If(flag_study==RES_PW)
source[] = (omega0/cel)^2*(epsilonr[]-epsilonr1[])*Einc[];
EndIf
If(flag_study==RES_TMAT)
For pe In {1:p_max}
ne = Floor[Sqrt[pe]];
me = ne*(ne+1) - Floor[pe];
Mnm_source~{pe}[] = Mnm[1,ne,me,XYZ[],k_Out];
Nnm_source~{pe}[] = Nnm[1,ne,me,XYZ[],k_Out];
Mnm_out~{pe}[] = Mnm[4,ne,me,XYZ[],k_Out];
Nnm_out~{pe}[] = Nnm[4,ne,me,XYZ[],k_Out];
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
source_M~{pe}[] = (omega0/cel)^2*(epsilonr[]-epsilonr1[])*Mnm_source~{pe}[];
source_N~{pe}[] = (omega0/cel)^2*(epsilonr[]-epsilonr1[])*Nnm_source~{pe}[];
EndFor
EndIf
If (flag_study==RES_GREEN)
sourceG_0[] = (omega0/cel)^2*(epsilonr[]-epsilonr1[])*Einc_Green_0[];
sourceG_1[] = (omega0/cel)^2*(epsilonr[]-epsilonr1[])*Einc_Green_1[];
sourceG_2[] = (omega0/cel)^2*(epsilonr[]-epsilonr1[])*Einc_Green_2[];
EndIf
}
Constraint {
// {Name Dirichlet; Type Assign;
// Case {
// { Region SurfDirichlet; Value 0.; }
// }
// }
}
Jacobian {
{ Name JVol ;
Case {
{ Region All ; Jacobian Vol ; }
}
}
{ Name JSur ;
Case {
{ Region All ; Jacobian Sur ; }
}
}
{ Name JLin ;
Case {
{ Region All ; Jacobian Lin ; }
}
}
}
Integration {
{ Name Int_1 ;
Case {
{ Type Gauss ;
Case {
{ GeoElement Point ; NumberOfPoints 1 ; }
{ GeoElement Line2 ; NumberOfPoints 4 ; }
{ GeoElement Triangle2 ; NumberOfPoints 6 ; }
{ GeoElement Tetrahedron2 ; NumberOfPoints 15 ; }
// { GeoElement Line2 ; NumberOfPoints 4 ; }
// { GeoElement Triangle2 ; NumberOfPoints 6 ; }
// { GeoElement Tetrahedron2 ; NumberOfPoints 15 ; }
}
}
}
}
}
FunctionSpace {
{ Name Hcurl; Type Form1;
BasisFunction {
{ Name sn; NameOfCoef un; Function BF_Edge;
Support Region[{All_domains,SurfInt}]; Entity EdgesOf[All]; }
{ Name sn2; NameOfCoef un2; Function BF_Edge_2E;
Support Region[{All_domains,SurfInt}]; Entity EdgesOf[All]; }
If (is_FEM_o2==1)
{ Name sn3; NameOfCoef un3; Function BF_Edge_3F_b;
Support Region[{All_domains,SurfInt}]; Entity FacetsOf[All]; }
{ Name sn4; NameOfCoef un4; Function BF_Edge_3F_c;
Support Region[{All_domains,SurfInt}]; Entity FacetsOf[All]; }
{ Name sn5; NameOfCoef un5; Function BF_Edge_4E;
Support Region[{All_domains,SurfInt}]; Entity EdgesOf[All]; }
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
EndIf
}
Constraint {
// { NameOfCoef un; EntityType EdgesOf ; NameOfConstraint Dirichlet; }
// { NameOfCoef un2; EntityType EdgesOf ; NameOfConstraint Dirichlet; }
}
}
}
Formulation {
If (flag_study==RES_QNM)
{Name QNM_helmholtz_vector; Type FemEquation;
Quantity {
{ Name u; Type Local; NameOfSpace Hcurl;}
}
Equation {
Galerkin { [ -1/mur[] * Dof{Curl u} , {Curl u}]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { DtDtDof[-1. * 1/cel^2 * epsilonr[]*Dof{u} , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
}
}
EndIf
If (flag_study==RES_PW)
{Name PW_helmholtz_vector; Type FemEquation;
Quantity {
{ Name u; Type Local; NameOfSpace Hcurl;}
}
Equation {
Galerkin { [-1/mur[]*Dof{Curl u} , {Curl u}]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [(omega0/cel)^2*epsilonr[]*Dof{u} , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [source[] , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
}
}
EndIf
If (flag_study==RES_TMAT)
For pe In {1:p_max}
{Name VPWM_helmholtz_vector~{pe}; Type FemEquation;
Quantity {
{ Name u; Type Local; NameOfSpace Hcurl;}
}
Equation {
Galerkin { [-1/mur[]*Dof{Curl u} , {Curl u}]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [(omega0/cel)^2*epsilonr[]*Dof{u} , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [source_M~{pe}[] , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
}
}
{Name VPWN_helmholtz_vector~{pe}; Type FemEquation;
Quantity {
{ Name u; Type Local; NameOfSpace Hcurl;}
}
Equation {
Galerkin { [-1/mur[]*Dof{Curl u} , {Curl u}]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [(omega0/cel)^2*epsilonr[]*Dof{u} , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [source_N~{pe}[] , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
}
}
EndFor
{Name VPWM_helmholtz_vector_test; Type FemEquation;
Quantity {
{ Name u; Type Local; NameOfSpace Hcurl;}
}
Equation {
Galerkin { [-1/mur[]*Dof{Curl u} , {Curl u}]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [(omega0/cel)^2*epsilonr[]*Dof{u} , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
// For pe In {1:p_max}
Galerkin { [ (omega0/cel)^2*(epsilonr[]-epsilonr1[])*Mnm[$PE,ne,me,XYZ[],k_Out], {u} ]; In Scat_In; Jacobian JVol; Integration Int_1;}
// EndFor
}
}
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
EndIf
If (flag_study==RES_GREEN)
For ncomp In {0:2}
{Name GreenAll_helmholtz_vector~{ncomp}; Type FemEquation;
Quantity {
{ Name u; Type Local; NameOfSpace Hcurl;}
}
Equation {
Galerkin { [-1/mur[]*Dof{Curl u} , {Curl u}]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [(omega0/cel)^2*epsilonr[]*Dof{u} , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
Galerkin { [sourceG~{ncomp}[] , {u} ]; In All_domains; Jacobian JVol; Integration Int_1; }
}
}
EndFor
EndIf
}
Resolution {
If (flag_study==RES_PW)
{ Name res_PW_helmholtz_vector;
System {
{ Name P; NameOfFormulation PW_helmholtz_vector; Type ComplexValue; Frequency Freq; }
}
Operation {
CreateDir[Str[myDir]];
Evaluate[Python[]{"scattering_init.py"}];
Generate[P];
Solve[P];
PostOperation[PW_postop];
Evaluate[Python[]{"scattering_post.py"}];
}
}
EndIf
If (flag_study==RES_TMAT)
// { Name res_VPWall_helmholtz_vector;
// System {
// For pe In {1:p_max}
// { Name M~{pe}; NameOfFormulation VPWM_helmholtz_vector~{pe}; Type ComplexValue; Frequency Freq; }
// { Name N~{pe}; NameOfFormulation VPWN_helmholtz_vector~{pe}; Type ComplexValue; Frequency Freq; }
// EndFor
// }
// Operation {
// CreateDir[Str[myDir]];
// Evaluate[Python[]{"scattering_init.py"}];
// For pe In {1:p_max}
// Generate[M~{pe}];
// Solve[M~{pe}];
// PostOperation[VPWM_postop~{pe}];
// Generate[N~{pe}];
// Solve[N~{pe}];
// PostOperation[VPWN_postop~{pe}];
// EndFor
// Evaluate[Python[]{"scattering_post.py"}];
// }
// }
{ Name res_VPWall_helmholtz_vector;
{ Name A; NameOfFormulation VPWM_helmholtz_vector_test; Type ComplexValue; }
}
Operation {
CreateDir[Str[myDir]];
Evaluate[Python[]{"scattering_init.py"}];
Evaluate[ $PE = 1 ];
Generate[A];
Solve[A];
PostOperation[VPWM_postop~{1}];
For pe In {2:p_max}
Evaluate[ $PE = pe ];
GenerateRHS[A];
SolveAgain[A];
PostOperation[VPWM_postop~{pe}];
EndFor
// Evaluate[Python[]{"scattering_post.py"}];
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
EndIf
If (flag_study==RES_GREEN)
{ Name res_GreenAll_helmholtz_vector;
System {
For ncomp In {0:2}
{ Name M~{ncomp}; NameOfFormulation GreenAll_helmholtz_vector~{ncomp}; Type ComplexValue; Frequency Freq; }
EndFor
}
Operation {
CreateDir[Str[myDir]];
Evaluate[Python[]{"scattering_init.py"}];
For ncomp In {0:2}
Generate[M~{ncomp}];
Solve[M~{ncomp}];
PostOperation[GreenAll_postop~{ncomp}];
EndFor
Evaluate[Python[]{"scattering_post.py"}];
}
}
EndIf
If (flag_study==RES_QNM)
{ Name res_QNM_helmholtz_vector;
System{
{ Name E; NameOfFormulation QNM_helmholtz_vector; Type ComplexValue; }
}
Operation{
CreateDir[Str[myDir]];
Evaluate[Python[]{"scattering_init.py"}];
GenerateSeparate[E];
EigenSolve[E,neig,eigtarget,0,EigFilter[]];
PostOperation[QNM_postop];
Evaluate[Python[]{"scattering_post.py"}];
}
}
EndIf
}
PostProcessing {
If (flag_study==RES_QNM)
{ Name QNM_postpro; NameOfFormulation QNM_helmholtz_vector; NameOfSystem E;
Quantity {
{ Name u ; Value { Local { [{u}]; In All_domains; Jacobian JVol; } } }
{ Name EigenValuesReal; Value { Local{ [$EigenvalueReal]; In PrintPoint; Jacobian JVol; } } }
{ Name EigenValuesImag; Value { Local{ [$EigenvalueImag]; In PrintPoint; Jacobian JVol; } } }
}
}
EndIf
If (flag_study==RES_PW)
{ Name PW_postpro ; NameOfFormulation PW_helmholtz_vector;NameOfSystem P;
Quantity {
{ Name E_tot ; Value { Local { [{u}+Einc[]]; In All_domains; Jacobian JVol; } } }
{ Name E_scat ; Value { Local { [{u}]; In All_domains; Jacobian JVol; } } }
{ Name E_scat_sph ; Value { Local { [Vector[
(X[]*CompX[{u}] + Y[]*CompY[{u}] + Z[]*CompZ[{u}])/r3D_sph[],
(X[]*Z[]*CompX[{u}] + Y[]*Z[]*CompY[{u}] - (X[]^2+Y[]^2)*CompZ[{u}])/(r3D_sph[]*r2D_sph[]),
(-Y[]*CompX[{u}] + X[]*CompY[{u}])/r2D_sph[]
]];
In All_domains; Jacobian JVol; } } }
{ Name H_scat ; Value { Local { [siwt*I[]/(mur[]*mu0*omega0)*{Curl u}] ; In All_domains; Jacobian JVol; } } }
{ Name H_tot ; Value { Local { [ siwt*I[]/(mur[]*mu0*omega0)*{Curl u} +Hinc[]]; In All_domains; Jacobian JVol; } } }
{ Name normalized_losses ; Value { Integral { [ 0.5*omega0*epsilon0*Fabs[Im[epsilonr_In[]]]*(SquNorm[{u}+Einc[]]) ] ; In Scat_In ; Integration Int_1 ; Jacobian JVol ; } } }
{ Name Poy_dif ; Value { Local { [ 0.5*Re[Cross[{u} , Conj[ siwt*I[]/(mur[]*mu0*omega0)*{Curl u}]]] ]; In All_domains; Jacobian JVol; } } }
{ Name Poy_tot ; Value { Local { [ 0.5*Re[Cross[{u}+Einc[] , Conj[Hinc[]+siwt*I[]/(mur[]*mu0*omega0)*{Curl u}]]] ]; In All_domains; Jacobian JVol; } } }
}
}
EndIf
If (flag_study==RES_TMAT)
{ Name VPWM_postpro_test; NameOfFormulation VPWM_helmholtz_vector_test; NameOfSystem A;
Quantity {
{ Name E_scat ; Value { Local { [$PE]; In All_domains; Jacobian JVol; } } } }
}
// { Name VPWM_postpro~{pe}; NameOfFormulation VPWM_helmholtz_vector~{pe};NameOfSystem M~{pe};
{ Name VPWM_postpro~{pe}; NameOfFormulation VPWM_helmholtz_vector_test; NameOfSystem A;
Quantity {
{ Name E_scat ; Value { Local { [{u}]; In All_domains; Jacobian JVol; } } }
{ Name E_scat_sph ; Value { Local { [Vector[
(X[]*CompX[{u}] + Y[]*CompY[{u}] + Z[]*CompZ[{u}])/r3D_sph[],
(X[]*Z[]*CompX[{u}] + Y[]*Z[]*CompY[{u}] - (X[]^2+Y[]^2)*CompZ[{u}])/(r3D_sph[]*r2D_sph[]),
(-Y[]*CompX[{u}] + X[]*CompY[{u}])/r2D_sph[]
]];
In All_domains; Jacobian JVol; } } }
{ Name H_scat ; Value { Local { [siwt*I[]/(mur[]*mu0*omega0)*{Curl u}]; In All_domains; Jacobian JVol; } } }
{ Name Mnm_source~{pe} ; Value { Local { [ Mnm_source~{pe}[] ]; In All_domains; Jacobian JVol; } } }
For po In {1:p_max}
{ Name a~{pe}~{po} ; Value { Integral { [ {u}*Conj[Mnm_out~{pe}[]]]; In SurfInt; Integration Int_1 ; Jacobian JSur; } } }
{ Name norma~{pe}~{po} ; Value { Integral { [Mnm_out~{pe}[]*Conj[Mnm_out~{pe}[]]]; In SurfInt; Integration Int_1 ; Jacobian JSur; } } }
EndFor
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
}
}
{ Name VPWN_postpro~{pe}; NameOfFormulation VPWN_helmholtz_vector~{pe};NameOfSystem N~{pe};
Quantity {
{ Name E_scat ; Value { Local { [{u}]; In All_domains; Jacobian JVol; } } }
{ Name E_scat_sph ; Value { Local { [Vector[
(X[]*CompX[{u}] + Y[]*CompY[{u}] + Z[]*CompZ[{u}])/r3D_sph[],
(X[]*Z[]*CompX[{u}] + Y[]*Z[]*CompY[{u}] - (X[]^2+Y[]^2)*CompZ[{u}])/(r3D_sph[]*r2D_sph[]),
(-Y[]*CompX[{u}] + X[]*CompY[{u}])/r2D_sph[]
]];
In All_domains; Jacobian JVol; } } }
{ Name H_scat ; Value { Local { [siwt*I[]/(mur[]*mu0*omega0)*{Curl u}]; In All_domains; Jacobian JVol; } } }
{ Name Nnm_source~{pe} ; Value { Local { [ Nnm_source~{pe}[] ]; In All_domains; Jacobian JVol; } } }
}
}
EndFor
EndIf
If (flag_study==RES_GREEN)
For ncomp In {0:2}
{ Name GreenAll_postpro~{ncomp}; NameOfFormulation GreenAll_helmholtz_vector~{ncomp};NameOfSystem M~{ncomp};
Quantity {
{ Name E_tot~{ncomp} ; Value { Local {[{u}+Einc_Green~{ncomp}[]]; In All_domains; Jacobian JVol; } } }
{ Name H_tot~{ncomp} ; Value { Local {[siwt*I[]/(mur[]*mu0*omega0)*{Curl u}+Hinc_Green~{ncomp}[]]; In All_domains; Jacobian JVol; } } }
{ Name Einc_Green~{ncomp}; Value { Local {[ Einc_Green~{ncomp}[] ]; In All_domains; Jacobian JVol; } } }
{ Name Hinc_Green~{ncomp}; Value { Local {[ Hinc_Green~{ncomp}[] ]; In All_domains; Jacobian JVol; } } }
{ Name E_scat~{ncomp} ; Value { Local { [{u}]; In All_domains; Jacobian JVol; } } }
{ Name E_tot_im~{ncomp} ; Value { Local {[Im[{u}+Einc_Green~{ncomp}[]]]; In All_domains; Jacobian JVol; } } }
{ Name Einc_Green_im~{ncomp}; Value { Local {[Im[ Einc_Green~{ncomp}[] ]]; In All_domains; Jacobian JVol; } } }
// { Name Einc_Green_im~{ncomp}; Value { Local {[test[]]; In All_domains; Jacobian JVol; } } }
{ Name E_scat_im~{ncomp} ; Value { Local {[Im[{u} ]]; In All_domains; Jacobian JVol; } } }
{ Name E_tot_sph~{ncomp}; Value { Local { [Vector[
(X[]*CompX[{u}+Einc_Green~{ncomp}[]]
+ Y[]*CompY[{u}+Einc_Green~{ncomp}[]]
+ Z[]*CompZ[{u}+Einc_Green~{ncomp}[]])/r3D_sph[],
(X[]*Z[]*CompX[{u}+Einc_Green~{ncomp}[]]
+ Y[]*Z[]*CompY[{u}+Einc_Green~{ncomp}[]]
- (X[]^2+Y[]^2)*CompZ[{u}+Einc_Green~{ncomp}[]])
/(r3D_sph[]*r2D_sph[]),
(-Y[]*CompX[{u}+Einc_Green~{ncomp}[]]
+ X[]*CompY[{u}+Einc_Green~{ncomp}[]])
/r2D_sph[] ]];
In All_domains; Jacobian JVol; } } }
{ Name E_scat_sph~{ncomp}; Value { Local { [Vector[
(X[]*CompX[{u}] + Y[]*CompY[{u}] + Z[]*CompZ[{u}])/r3D_sph[],
(X[]*Z[]*CompX[{u}] + Y[]*Z[]*CompY[{u}]
- (X[]^2+Y[]^2)*CompZ[{u}])/(r3D_sph[]*r2D_sph[]),
(-Y[]*CompX[{u}] + X[]*CompY[{u}])/r2D_sph[]
]];
In All_domains; Jacobian JVol; } } }
{ Name H_scat~{ncomp} ; Value { Local { [siwt*I[]/(mur[]*mu0*omega0)*{Curl u}]; In All_domains; Jacobian JVol; } } }
}
}
EndFor
EndIf
}
PostOperation {
If (flag_study==RES_QNM)
{ Name QNM_postop; NameOfPostProcessing QNM_postpro ;
Operation {
Print [EigenValuesReal, OnElementsOf PrintPoint , Format TimeTable, File StrCat[myDir,"EigenValuesReal.txt"]];
Print [EigenValuesImag, OnElementsOf PrintPoint , Format TimeTable, File StrCat[myDir,"EigenValuesImag.txt"]];
Print [ u , OnElementsOf All_domains, File StrCat[myDir,"eigenVectors.pos"], EigenvalueLegend];
}
}
EndIf
If (flag_study==RES_PW)
{Name PW_postop; NameOfPostProcessing PW_postpro ;
Operation {
Print [ E_tot , OnElementsOf Domain , File StrCat[myDir,"E_tot.pos"]];
Print [ E_scat , OnElementsOf All_domains, File StrCat[myDir,"E_scat.pos"]];
// Print [ E_scat_sph , OnElementsOf All_domains, File StrCat[myDir,"E_scat_sph.pos"]];
Print [ H_scat , OnElementsOf Domain , File StrCat[myDir,"H_scat.pos"]];
Print [ H_tot , OnElementsOf All_domains, File StrCat[myDir,"H_tot.pos"]];
Print [ Poy_dif , OnElementsOf All_domains, File StrCat[myDir,"Poy_dif.pos"]];
Print [ Poy_tot , OnElementsOf Domain , File StrCat[myDir,"Poy_tot.pos"]];
For kr In {0:nb_cuts-1}
Print [ E_scat_sph , OnGrid
{r_sph~{kr}*Sin[$B]*Cos[$C], r_sph~{kr}*Sin[$B]*Sin[$C], r_sph~{kr}*Cos[$B]}
{r_sph~{kr}, {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_theta-1.0)},
{sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_phi-1.0)} },
File StrCat[myDir,StrCat["E_scat_onsphere_sph_PW",Sprintf["_r%g.dat",kr]]], Format Table];
EndFor
}
}
EndIf
If (flag_study==RES_TMAT)
{Name VPWM_postop_test ; NameOfPostProcessing VPWM_postpro_test;
Operation {
Print [ E_scat , OnElementsOf Domain , File StrCat[myDir,"Escat.pos"]];
}
}
For pe In {1:p_max}
{Name VPWM_postop~{pe}; NameOfPostProcessing VPWM_postpro~{pe} ;
Operation {
For kr In {0:nb_cuts-1}
Print [ E_scat_sph , OnGrid
{r_sph~{kr}*Sin[$B]*Cos[$C], r_sph~{kr}*Sin[$B]*Sin[$C], r_sph~{kr}*Cos[$B]}
{r_sph~{kr}, {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_theta-1.0)},
{sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_phi-1.0)} },
File StrCat[myDir,StrCat[StrCat["E_scat_onsphere_sph_M",Sprintf["%g",pe]],Sprintf["_r%g.dat",kr]]], Format Table];
EndFor
Print [ E_scat , OnGrid
{r_sph~{kr}*Sin[$B]*Cos[$C], r_sph~{kr}*Sin[$B]*Sin[$C], r_sph~{kr}*Cos[$B]}
{r_sph~{kr}, {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_plot_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_plot_theta-1.0)},
{sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_plot_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_plot_phi-1.0)} },
File StrCat[myDir,StrCat[StrCat["E_scat_onsphere_cart_M",Sprintf["%g",pe]],Sprintf["_r%g.pos",kr]]],
Name StrCat["E_scat_onsphere_cart_M",Sprintf["%g",pe]]];
For po In {1:p_max}
Print[a~{pe}~{po}[SurfInt], OnGlobal , Format Table, File StrCat[myDir,StrCat[StrCat["a_",Sprintf["pe%g",pe]],Sprintf["po%g.dat",po]]]];
EndFor
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
}
}
{Name VPWN_postop~{pe}; NameOfPostProcessing VPWN_postpro~{pe} ;
Operation {
For kr In {0:nb_cuts-1}
Print [ E_scat_sph , OnGrid
{r_sph~{kr}*Sin[$B]*Cos[$C], r_sph~{kr}*Sin[$B]*Sin[$C], r_sph~{kr}*Cos[$B]}
{r_sph~{kr}, {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_theta-1.0)},
{sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_phi-1.0)} },
File StrCat[myDir,StrCat[StrCat["E_scat_onsphere_sph_N",Sprintf["%g",pe]],Sprintf["_r%g.dat",kr]]], Format Table];
EndFor
Print [ E_scat , OnGrid
{r_sph~{kr}*Sin[$B]*Cos[$C], r_sph~{kr}*Sin[$B]*Sin[$C], r_sph~{kr}*Cos[$B]}
{r_sph~{kr}, {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_plot_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_plot_theta-1.0)},
{sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_plot_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_plot_phi-1.0)} },
File StrCat[myDir,StrCat[StrCat["E_scat_onsphere_cart_N",Sprintf["%g",pe]],Sprintf["_r%g.pos",kr]]],
Name StrCat["E_scat_onsphere_cart_N",Sprintf["%g",pe]]];
}
}
EndFor
EndIf
If (flag_study==RES_GREEN)
For ncomp In {0:2}
{Name GreenAll_postop~{ncomp}; NameOfPostProcessing GreenAll_postpro~{ncomp} ;
Operation {
Print [ E_tot_sph~{ncomp} , OnGrid
{r_pml_in *Sin[$B]*Cos[$C], r_pml_in*Sin[$B]*Sin[$C], r_pml_in*Cos[$B]}
{r_pml_in , {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_theta-1.0)},
{sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_phi-1.0)} },
File StrCat[myDir,StrCat["E_tot_onsphere_sph_G",Sprintf["%g.dat",ncomp]]] , Format Table];
Print [ E_tot~{ncomp} , OnGrid
{r_pml_in *Sin[$B]*Cos[$C], r_pml_in*Sin[$B]*Sin[$C], r_pml_in*Cos[$B]}
{r_pml_in , {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_plot_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_plot_theta-1.0)},
{sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_plot_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_plot_phi-1.0)} },
File StrCat[myDir,StrCat["E_tot_onsphere_cart_G",Sprintf["%g.pos",ncomp]]]];
Print [ E_scat_im~{ncomp} , OnPoint {x_p,y_p,z_p},
File StrCat[myDir,StrCat["E_scat_im_onpt_G",Sprintf["%g.dat",ncomp]]] , Format Table];
// Print [ Einc_Green_im~{ncomp} , OnPoint {x_p+0.1*nm,y_p+0.1*nm,z_p+0.1*nm},
// File StrCat[myDir,StrCat["E_inc_im_onpt_G",Sprintf["%g.dat",ncomp]]] , Format Table];
// If(flag_FF==1)
// Print [ E_tot~{ncomp}, OnElementsOf Scat_Out , File StrCat[myDir,StrCat["E_tot_",Sprintf["%g.pos",ncomp]]]];
// Print [ H_tot~{ncomp}, OnElementsOf Scat_Out , File StrCat[myDir,StrCat["H_tot_",Sprintf["%g.pos",ncomp]]]];
// Print [ E_tot~{ncomp} , OnGrid
// {r_pml_in *Sin[$B]*Cos[$C], r_pml_in*Sin[$B]*Sin[$C], r_pml_in*Cos[$B]}
// {r_pml_in , {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_theta-1.0)},
// {sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_phi-1.0)} },
// File StrCat[myDir,StrCat["E_tot_onsphere_G",Sprintf["%g.pos",ncomp]]]];
// Print [ H_tot~{ncomp} , OnGrid
// {r_pml_in *Sin[$B]*Cos[$C], r_pml_in*Sin[$B]*Sin[$C], r_pml_in*Cos[$B]}
// {r_pml_in , {sph_scan : Pi-sph_scan+(Pi-2.0*sph_scan)/(10*(npts_theta-1.0)) : (Pi-2.0*sph_scan)/(npts_theta-1.0)},
// {sph_scan : 2.0*Pi-sph_scan+(2.0*Pi-2.0*sph_scan)/(10*(npts_phi-1.0)) : (2.0*Pi-2.0*sph_scan)/(npts_phi-1.0)} },
// File StrCat[myDir,StrCat["H_tot_onsphere_G",Sprintf["%g.pos",ncomp]]]];
//
// Echo[
// Str["Plugin(NearToFarField).Wavenumber = 2*Pi/lambda0;",
// "Plugin(NearToFarField).PhiStart = 0;",
// "Plugin(NearToFarField).PhiEnd = 2*Pi;",
// "Plugin(NearToFarField).NumPointsPhi = npts_phi;",
// "Plugin(NearToFarField).ThetaStart = 0;",
// "Plugin(NearToFarField).ThetaEnd = Pi;",
// "Plugin(NearToFarField).NumPointsTheta = npts_theta;",
// "Plugin(NearToFarField).EView = PostProcessing.NbViews-2;",
// "Plugin(NearToFarField).HView = PostProcessing.NbViews-1;",
// "Plugin(NearToFarField).Normalize = 0;",
// "Plugin(NearToFarField).dB = 0;",
// "Plugin(NearToFarField).NegativeTime = 0;",
// "Plugin(NearToFarField).RFar = r_pml_in;",
// "Plugin(NearToFarField).Run;"], File StrCat[myDir,"tmp1.geo"]] ;
// EndIf
}
}
EndFor
EndIf
}
If (flag_study==RES_QNM)
DefineConstant[
R_ = {"res_QNM_helmholtz_vector", Name "GetDP/1ResolutionChoices", Visible 1},
C_ = {"-solve -pos -petsc_prealloc 200 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps", Name "GetDP/9ComputeCommand", Visible 1},
P_ = {"", Name "GetDP/2PostOperationChoices", Visible 0}];
EndIf
If (flag_study==RES_TMAT)
DefineConstant[
R_ = {"res_VPWall_helmholtz_vector", Name "GetDP/1ResolutionChoices", Visible 1},
C_ = {"-solve -pos -petsc_prealloc 200 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps", Name "GetDP/9ComputeCommand", Visible 1},
P_ = {"", Name "GetDP/2PostOperationChoices", Visible 0}];
EndIf
If (flag_study==RES_PW)
DefineConstant[
R_ = {"res_PW_helmholtz_vector", Name "GetDP/1ResolutionChoices", Visible 1},
C_ = {"-solve -pos -petsc_prealloc 200 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps", Name "GetDP/9ComputeCommand", Visible 1},
P_ = {"", Name "GetDP/2PostOperationChoices", Visible 0}];
EndIf
If (flag_study==RES_GREEN)
DefineConstant[
R_ = {"res_GreenAll_helmholtz_vector", Name "GetDP/1ResolutionChoices", Visible 1},
C_ = {"-solve -pos -petsc_prealloc 200 -ksp_type preonly -pc_type lu -pc_factor_mat_solver_type mumps", Name "GetDP/9ComputeCommand", Visible 1},
P_ = {"", Name "GetDP/2PostOperationChoices", Visible 0}];