Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
# -*- coding: utf-8 -*-
"""
///////////////////////////////
// Author : Guillaume Demesy //
// scattering_init.py //
///////////////////////////////
"""
import sys,os
import numpy as np
from scipy.special import jv, yv, hankel1, hankel2
sys.path.append(os.getcwd())
from matplotlib import cm
import pylab as pl
from scattering_tmp import *
np.set_printoptions(precision=2)
pi = np.pi
ps = np.linspace(1,p_max,p_max)
r_sphs = np.linspace(r_sph_min,r_sph_max,nb_cuts)
k_Out = 2*pi*np.sqrt(epsr_Out_re)/lambda0
epsr_In = epsr_In_re+1j*epsr_In_im
epsr_Out = epsr_Out_re+1j*epsr_Out_im
phi_range = np.linspace(sph_scan,2*pi-sph_scan,npts_phi)
theta_range = np.linspace(sph_scan, pi-sph_scan,npts_theta)
[phi_sph,theta_sph]=np.meshgrid(phi_range,theta_range)
cos_theta = np.cos(theta_range)
sin_theta = np.sin(phi_range)
def field_VSH_expansion(post_filename):
m_max = n_max
p_max = n_max**2 +2*n_max
FF_Xnm_t = np.zeros((npts_theta,npts_phi,p_max),dtype=complex)
FF_Xnm_p = np.zeros((npts_theta,npts_phi,p_max),dtype=complex)
FF_erCrossXnm_t = np.zeros((npts_theta,npts_phi,p_max),dtype=complex)
FF_erCrossXnm_p = np.zeros((npts_theta,npts_phi,p_max),dtype=complex)
#####################################
##### sn, pn ,un
##### Brian's recurrence relations
B_Pnpms = np.zeros((npts_theta,m_max+1,n_max+1))
B_unpms = np.zeros((npts_theta,m_max+1,n_max+1))
B_snpms = np.zeros((npts_theta,m_max+1,n_max+1))
### Init
B_Pnpms[:,0,0] = np.sqrt(1./(4.*pi))
B_unpms[:,0,0] = 0.
B_unpms[:,1,1] = -0.25*np.sqrt(3./pi)
for k in range(npts_theta):
u=cos_theta[k]
for n in range(1,n_max+1):
B_Pnpms[k,n,n] = -np.sqrt((2.*float(n)+1.)/(2.*float(n))) * np.sqrt(1.-u**2) * B_Pnpms[k,n-1,n-1]
B_Pnpms[k,n-1,n] = u*np.sqrt(2.*float(n)+1.) * B_Pnpms[k,n-1,n-1]
for n in range(2,n_max+1):
B_unpms[k,n,n] = -np.sqrt( (float(n)*(2.*float(n)+1.)) / (2.*(float(n)+1.)*(float(n)-1.)) ) * np.sqrt(1.-u**2) * B_unpms[k,n-1,n-1]
B_unpms[k,n-1,n] = np.sqrt( (2.*float(n)+1.)*(float(n)-1.)/(float(n)+1.) ) * u * B_unpms[k,n-1,n-1]
for n in range(2,n_max+1):
for m in range(n-2+1):
B_Pnpms[k,m,n] = np.sqrt((4.*(float(n))**2-1.)/((float(n))**2-(float(m))**2)) * u * B_Pnpms[k,m,n-1] \
- np.sqrt( ( (2.*float(n)+1.)*((float(n)-1.)**2-(float(m))**2) ) \
/ ( (2.*float(n)-3.)*((float(n))**2-(float(m))**2) ) )*B_Pnpms[k,m,n-2]
B_unpms[k,m,n] = np.sqrt( ((4.*(float(n))**2-1.)*(float(n)-1.))/((float(n)**2-float(m)**2)*(float(n)+1.)) ) * u * B_unpms[k,m,n-1] \
- np.sqrt( ((2.*float(n)+1.) * (float(n)-1.) * (float(n)-2.) * (float(n-m)-1.) *(float(n+m)-1.)) \
/ ((2.*float(n)-3.) * (float(n)**2-float(m)**2)*float(n)*(float(n)+1.)))*B_unpms[k,m,n-2]
for n in range(0,n_max+1):
m=0
B_snpms[k,m,n] = 1./float(m+1)*np.sqrt((float(n+m)+1.)*(float(n-m))) * np.sqrt(1.-u**2) *\
B_unpms[k,m+1,n] + u*B_unpms[k,m,n]
for n in range(1,n_max+1):
for m in range(1,n+1):
B_snpms[k,m,n] = float(n)/float(m) * u * B_unpms[k,m,n] - float(m+n)/float(m) * \
np.sqrt( ( (2.*float(n)+1.)*(float(n)-float(m))*(float(n)-1.) ) / \
( (2.*float(n)-1.)*(float(n)+float(m))*(float(n)+1.) ) )*B_unpms[k,m,n-1]
B_Pnmms = np.zeros_like(B_Pnpms)
B_unmms = np.zeros_like(B_unpms)
B_snmms = np.zeros_like(B_snpms)
for m in range(m_max+1):
B_Pnmms[:,m,:] = (-1.0)**m * B_Pnpms[:,m,:]
B_unmms[:,m,:] = (-1.0)**(m+1) * B_unpms[:,m,:]
B_snmms[:,m,:] = (-1.0)**(m) * B_snpms[:,m,:]
B_Pnmms=B_Pnmms[:,::-1,:]
B_unmms=B_unmms[:,::-1,:]
B_snmms=B_snmms[:,::-1,:]
B_Pnms = np.concatenate((B_Pnmms,B_Pnpms[:,1::,:]),axis=1)
B_unms = np.concatenate((B_unmms,B_unpms[:,1::,:]),axis=1)
B_snms = np.concatenate((B_snmms,B_snpms[:,1::,:]),axis=1)
#####################################
##### sn, pn ,un
##### Brian's recurrence relations
m_max = n_max
p_max = n_max*n_max+2*n_max
aM_nm = np.zeros(p_max,dtype=complex)
bN_nm = np.zeros(p_max,dtype=complex)
fenm_Y = np.zeros(p_max,dtype=complex)
fenm_Z = np.zeros(p_max,dtype=complex)
fhnm_X = np.zeros(p_max,dtype=complex)
B_Pnpms = np.zeros((npts_theta,m_max+1,n_max+1))
B_unpms = np.zeros((npts_theta,m_max+1,n_max+1))
B_snpms = np.zeros((npts_theta,m_max+1,n_max+1))
### Init
B_Pnpms[:,0,0] = np.sqrt(1./(4.*pi))
B_unpms[:,0,0] = 0.
B_unpms[:,1,1] = -0.25*np.sqrt(3./pi)
for k in range(npts_theta):
u=cos_theta[k]
for n in range(1,n_max+1):
B_Pnpms[k,n,n] = -np.sqrt((2.*float(n)+1.)/(2.*float(n))) * np.sqrt(1.-u**2) * B_Pnpms[k,n-1,n-1]
B_Pnpms[k,n-1,n] = u*np.sqrt(2.*float(n)+1.) * B_Pnpms[k,n-1,n-1]
for n in range(2,n_max+1):
B_unpms[k,n,n] = -np.sqrt( (float(n)*(2.*float(n)+1.)) / (2.*(float(n)+1.)*(float(n)-1.)) ) * np.sqrt(1.-u**2) * B_unpms[k,n-1,n-1]
B_unpms[k,n-1,n] = np.sqrt( (2.*float(n)+1.)*(float(n)-1.)/(float(n)+1.) ) * u * B_unpms[k,n-1,n-1]
for n in range(2,n_max+1):
for m in range(n-2+1):
B_Pnpms[k,m,n] = np.sqrt((4.*(float(n))**2-1.)/((float(n))**2-(float(m))**2)) * u * B_Pnpms[k,m,n-1] \
- np.sqrt( ( (2.*float(n)+1.)*((float(n)-1.)**2-(float(m))**2) ) \
/ ( (2.*float(n)-3.)*((float(n))**2-(float(m))**2) ) )*B_Pnpms[k,m,n-2]
B_unpms[k,m,n] = np.sqrt( ((4.*(float(n))**2-1.)*(float(n)-1.))/((float(n)**2-float(m)**2)*(float(n)+1.)) ) * u * B_unpms[k,m,n-1] \
- np.sqrt( ((2.*float(n)+1.) * (float(n)-1.) * (float(n)-2.) * (float(n-m)-1.) *(float(n+m)-1.)) \
/ ((2.*float(n)-3.) * (float(n)**2-float(m)**2)*float(n)*(float(n)+1.)))*B_unpms[k,m,n-2]
for n in range(0,n_max+1):
m=0
B_snpms[k,m,n] = 1./float(m+1)*np.sqrt((float(n+m)+1.)*(float(n-m))) * np.sqrt(1.-u**2) * B_unpms[k,m+1,n] + u*B_unpms[k,m,n]
for n in range(1,n_max+1):
for m in range(1,n+1):
B_snpms[k,m,n] = float(n)/float(m) * u * B_unpms[k,m,n] - float(m+n)/float(m) * \
np.sqrt( ( (2.*float(n)+1.)*(float(n)-float(m))*(float(n)-1.) ) / ( (2.*float(n)-1.)*(float(n)+float(m))*(float(n)+1.) ) )*B_unpms[k,m,n-1]
B_Pnmms = np.zeros_like(B_Pnpms)
B_unmms = np.zeros_like(B_unpms)
B_snmms = np.zeros_like(B_snpms)
for m in range(m_max+1):
B_Pnmms[:,m,:] = (-1.0)**m * B_Pnpms[:,m,:]
B_unmms[:,m,:] = (-1.0)**(m+1) * B_unpms[:,m,:]
B_snmms[:,m,:] = (-1.0)**(m) * B_snpms[:,m,:]
B_Pnmms=B_Pnmms[:,::-1,:]
B_unmms=B_unmms[:,::-1,:]
B_snmms=B_snmms[:,::-1,:]
B_Pnms = np.concatenate((B_Pnmms,B_Pnpms[:,1::,:]),axis=1)
B_unms = np.concatenate((B_unmms,B_unpms[:,1::,:]),axis=1)
B_snms = np.concatenate((B_snmms,B_snpms[:,1::,:]),axis=1)
E_scat_onsphere_sph = np.array( [np.loadtxt(post_filename,usecols=[8])
+ 1j*np.loadtxt(post_filename,usecols=[11]),
np.loadtxt(post_filename,usecols=[9])
+ 1j*np.loadtxt(post_filename,usecols=[12]),
np.loadtxt(post_filename,usecols=[10])
+ 1j*np.loadtxt(post_filename,usecols=[13])])
E_scat_onsphere_sph_r = E_scat_onsphere_sph[0,:].reshape(npts_phi,npts_theta,order='F').transpose()
E_scat_onsphere_sph_t = E_scat_onsphere_sph[1,:].reshape(npts_phi,npts_theta,order='F').transpose()
E_scat_onsphere_sph_p = E_scat_onsphere_sph[2,:].reshape(npts_phi,npts_theta,order='F').transpose()
for ko in range(p_max):
po = ps[ko]
n = int(np.sqrt(po))
m = n*(n+1) - int(po)
# print('=========>> po',po,'n',n,'m',m)
B_PnmN_costheta = np.tile( B_Pnms[:,m+m_max,n],(npts_phi,1)).transpose()
B_UnmN_costheta = np.tile( B_unms[:,m+m_max,n],(npts_phi,1)).transpose()
B_SnmN_costheta = np.tile( B_snms[:,m+m_max,n],(npts_phi,1)).transpose()
B_Ynm_r = B_PnmN_costheta * np.exp(1j*float(m)*phi_sph)
B_Ynm_t = np.zeros_like(phi_sph)
B_Ynm_p = np.zeros_like(phi_sph)
B_Xnm_r = np.zeros_like(phi_sph)
B_Xnm_t = 1j * B_UnmN_costheta * np.exp(1j*float(m)*phi_sph)
B_Xnm_p = -1. * B_SnmN_costheta * np.exp(1j*float(m)*phi_sph)
B_Znm_r = np.zeros_like(phi_sph)
B_Znm_t = 1. * B_SnmN_costheta * np.exp(1j*float(m)*phi_sph)
B_Znm_p = 1j * B_UnmN_costheta * np.exp(1j*float(m)*phi_sph)
B_erCrossXnm_r = np.zeros_like(phi_sph,dtype=complex)
B_erCrossXnm_t = -B_Xnm_p
B_erCrossXnm_p = B_Xnm_t
FF_Xnm_t[:,:,ko] = B_Xnm_t
FF_Xnm_p[:,:,ko] = B_Xnm_p
FF_erCrossXnm_t[:,:,ko] = B_erCrossXnm_t
FF_erCrossXnm_p[:,:,ko] = B_erCrossXnm_p
sph_bessel_n_ofkr = np.sqrt(pi/(2.*k_Out*r_sph))*outgoing_sph_hankel(float(n )+0.5,k_Out*r_sph)
sph_bessel_nminus1_ofkr = np.sqrt(pi/(2.*k_Out*r_sph))*outgoing_sph_hankel(float(n-1)+0.5,k_Out*r_sph)
dRicatti_dx_ofkr = (k_Out * r_sph * (sph_bessel_nminus1_ofkr-(float(n+1)/((k_Out*r_sph))) * sph_bessel_n_ofkr) + sph_bessel_n_ofkr)
B_Mnm_r = 0.
B_Mnm_t = sph_bessel_n_ofkr * B_Xnm_t
B_Mnm_p = sph_bessel_n_ofkr * B_Xnm_p
B_Nnm_r = 1./(k_Out*r_sph) * np.sqrt(float(n*(n+1))) * sph_bessel_n_ofkr * B_Ynm_r
B_Nnm_t = 1./(k_Out*r_sph) * dRicatti_dx_ofkr * B_Znm_t
B_Nnm_p = 1./(k_Out*r_sph) * dRicatti_dx_ofkr * B_Znm_p
B_EdotconjYnm = E_scat_onsphere_sph_r*B_Ynm_r.conjugate()
B_EdotconjZnm = E_scat_onsphere_sph_t*B_Znm_t.conjugate() + E_scat_onsphere_sph_p*B_Znm_p.conjugate()
B_EdotconjXnm = E_scat_onsphere_sph_t*B_Xnm_t.conjugate() + E_scat_onsphere_sph_p*B_Xnm_p.conjugate()
normalize_fhnm_X = 1./sph_bessel_n_ofkr
normalize_fenm_Y = k_Out*r_sph/(sph_bessel_n_ofkr*np.sqrt(float(n)*(float(n)+1.)) )
normalize_fenm_Z = k_Out*r_sph/dRicatti_dx_ofkr
fenm_Y[int(po)-1] = np.trapz(np.trapz((np.sin(theta_sph)*B_EdotconjYnm).transpose(),theta_sph[:,0]),phi_sph[0,:])*normalize_fenm_Y
fenm_Z[int(po)-1] = np.trapz(np.trapz((np.sin(theta_sph)*B_EdotconjZnm).transpose(),theta_sph[:,0]),phi_sph[0,:])*normalize_fenm_Z
fhnm_X[int(po)-1] = np.trapz(np.trapz((np.sin(theta_sph)*B_EdotconjXnm).transpose(),theta_sph[:,0]),phi_sph[0,:])*normalize_fhnm_X
EdotconjMnm = E_scat_onsphere_sph_r*B_Mnm_r.conjugate() + E_scat_onsphere_sph_t*B_Mnm_t.conjugate() + E_scat_onsphere_sph_p*B_Mnm_p.conjugate()
EdotconjNnm = E_scat_onsphere_sph_r*B_Nnm_r.conjugate() + E_scat_onsphere_sph_t*B_Nnm_t.conjugate() + E_scat_onsphere_sph_p*B_Nnm_p.conjugate()
MnmconjMnm = B_Mnm_r*B_Mnm_r.conjugate() + B_Mnm_t*B_Mnm_t.conjugate() + B_Mnm_p*B_Mnm_p.conjugate()
NnmconjNnm = B_Nnm_r*B_Nnm_r.conjugate() + B_Nnm_t*B_Nnm_t.conjugate() + B_Nnm_p*B_Nnm_p.conjugate()
MnmconjNnm = B_Mnm_r*B_Nnm_r.conjugate() + B_Mnm_t*B_Nnm_t.conjugate() + B_Mnm_p*B_Nnm_p.conjugate()
XnmconjXnm = B_Xnm_r*B_Xnm_r.conjugate() + B_Xnm_t*B_Xnm_t.conjugate() + B_Xnm_p*B_Xnm_p.conjugate()
YnmconjYnm = B_Ynm_r*B_Ynm_r.conjugate() + B_Ynm_t*B_Ynm_t.conjugate() + B_Ynm_p*B_Ynm_p.conjugate()
ZnmconjZnm = B_Znm_r*B_Znm_r.conjugate() + B_Znm_t*B_Znm_t.conjugate() + B_Znm_p*B_Znm_p.conjugate()
XnmconjYnm = B_Xnm_r*B_Ynm_r.conjugate() + B_Xnm_t*B_Ynm_t.conjugate() + B_Xnm_p*B_Ynm_p.conjugate()
YnmconjZnm = B_Ynm_r*B_Znm_r.conjugate() + B_Ynm_t*B_Znm_t.conjugate() + B_Ynm_p*B_Znm_p.conjugate()
ZnmconjXnm = B_Znm_r*B_Xnm_r.conjugate() + B_Znm_t*B_Xnm_t.conjugate() + B_Znm_p*B_Xnm_p.conjugate()
normalize_aM_nm2 = np.trapz(np.trapz((np.sin(theta_sph)*MnmconjMnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
normalize_bN_nm2 = np.trapz(np.trapz((np.sin(theta_sph)*NnmconjNnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
orth = np.trapz(np.trapz((np.sin(theta_sph)*MnmconjNnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
orthX = np.trapz(np.trapz((np.sin(theta_sph)*XnmconjXnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
orthY = np.trapz(np.trapz((np.sin(theta_sph)*YnmconjYnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
orthZ = np.trapz(np.trapz((np.sin(theta_sph)*ZnmconjZnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
orth1 = np.trapz(np.trapz((np.sin(theta_sph)*XnmconjYnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
orth2 = np.trapz(np.trapz((np.sin(theta_sph)*YnmconjZnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
orth3 = np.trapz(np.trapz((np.sin(theta_sph)*ZnmconjXnm).transpose(),theta_sph[:,0]),phi_sph[0,:])
aM_nm[int(po)-1] = np.trapz(np.trapz((np.sin(theta_sph)*EdotconjMnm).transpose(),theta_sph[:,0]),phi_sph[0,:]) / normalize_aM_nm2
bN_nm[int(po)-1] = np.trapz(np.trapz((np.sin(theta_sph)*EdotconjNnm).transpose(),theta_sph[:,0]),phi_sph[0,:]) / normalize_bN_nm2
print(np.loadtxt('run_results/a_pe%gpo%g.dat'%(1,int(po))))
print(aM_nm)
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
return [fhnm_X,fenm_Y,fenm_Z,aM_nm,bN_nm,FF_Xnm_t,FF_Xnm_p,FF_erCrossXnm_t,FF_erCrossXnm_p]
###########################
def plot_farfield(far_field_sph,filename):
vmax_sph = np.max(far_field_sph)
vmin_sph = np.min(far_field_sph)
x_sph = far_field_sph/vmax_sph*np.sin(theta_sph) * np.cos(phi_sph)
y_sph = far_field_sph/vmax_sph*np.sin(theta_sph) * np.sin(phi_sph)
z_sph = far_field_sph/vmax_sph*np.cos(theta_sph)
fig = pl.figure()
ax = fig.add_subplot(111, projection='3d')
ax.set_aspect('equal')
surf=ax.plot_surface(x_sph,y_sph,z_sph,\
facecolors=cm.viridis(far_field_sph/vmax_sph),\
rstride=2,\
cstride=2,\
linewidth=0,\
vmin = vmin_sph,\
vmax = vmax_sph,\
shade=True,\
alpha=0.5,\
antialiased=False)
cset = ax.contourf(x_sph, y_sph, z_sph,1,fc='k', zdir='z', offset=-1)
cset = ax.contourf(x_sph, y_sph, z_sph,1,fc='k', zdir='x', offset=-1)
cset = ax.contourf(x_sph, y_sph, z_sph,1,fc='k', zdir='y', offset=1 )
surf.set_edgecolor('k')
max_range = 0.5*np.max(np.array([x_sph.max()-x_sph.min(), y_sph.max()-y_sph.min(), z_sph.max()-z_sph.min()]))
mid_x = (x_sph.max()+x_sph.min())*0.5
mid_y = (y_sph.max()+y_sph.min())*0.5
mid_z = (z_sph.max()+z_sph.min())*0.5
ax.set_xlim(mid_x-max_range, mid_x+max_range)
ax.set_ylim(mid_y-max_range, mid_y+max_range)
ax.set_zlim(mid_z-max_range, mid_z+max_range)
ax.xaxis.set_ticklabels([]);ax.xaxis.set_label('x')
ax.yaxis.set_ticklabels([]);ax.yaxis.set_label('y')
ax.zaxis.set_ticklabels([]);ax.zaxis.set_label('z')
pl.savefig(filename,bbox_inches='tight')
pl.close('all')