Skip to content
Snippets Groups Projects
Commit c3571cfb authored by Christophe Geuzaine's avatar Christophe Geuzaine
Browse files

basic Python stuff works

parent 552e3e07
Branches
Tags
No related merge requests found
...@@ -1262,7 +1262,7 @@ int gmshModelOccSynchronize() ...@@ -1262,7 +1262,7 @@ int gmshModelOccSynchronize()
// gmshModelField // gmshModelField
int gmshModelFieldAdd(const int tag, const std::string &type) int gmshModelFieldCreate(const int tag, const std::string &type)
{ {
if(!isInitialized()) return -1; if(!isInitialized()) return -1;
#if defined(HAVE_MESH) #if defined(HAVE_MESH)
......
...@@ -293,7 +293,7 @@ GMSH_API gmshModelOccSynchronize(); ...@@ -293,7 +293,7 @@ GMSH_API gmshModelOccSynchronize();
// gmshModelField // gmshModelField
GMSH_API gmshModelFieldAdd(const int tag, const std::string &type); GMSH_API gmshModelFieldCreate(const int tag, const std::string &type);
GMSH_API gmshModelFieldSetNumber(const int tag, const std::string &option, GMSH_API gmshModelFieldSetNumber(const int tag, const std::string &option,
const double value); const double value);
GMSH_API gmshModelFieldSetString(const int tag, const std::string &option, GMSH_API gmshModelFieldSetString(const int tag, const std::string &option,
...@@ -303,9 +303,7 @@ GMSH_API gmshModelFieldSetNumbers(const int tag, const std::string &option, ...@@ -303,9 +303,7 @@ GMSH_API gmshModelFieldSetNumbers(const int tag, const std::string &option,
GMSH_API gmshModelFieldSetAsBackground(const int tag); GMSH_API gmshModelFieldSetAsBackground(const int tag);
GMSH_API gmshModelFieldDelete(const int tag); GMSH_API gmshModelFieldDelete(const int tag);
// gmshSolver // gmshView
// gmshPost
// gmshPlugin // gmshPlugin
......
%module gmsh %module gmsh
%include typemaps.i
// reference to int is appended to the returned values of the function
%apply int &OUTPUT { int &outTag };
%{ %{
#include "gmsh.h" #include "gmsh.h"
%} %}
%include std_string.i %include std_string.i
%include std_vector.i %include std_vector.i
%include std_pair.i
namespace std { %template() std::pair<int, int>;
%template(DoubleVector) vector<double>; %template(IntVector) std::vector<int>;
%template(StringVector) vector<string>; %template(DoubleVector) std::vector<double>;
%template(PairVector) vector<std::pair<int, int> >; %template(StringVector) std::vector<std::string>;
} %template(PairVector) std::vector<std::pair<int, int> >;
%template(PairVectorVector) std::vector<std::vector<std::pair<int, int> > >;
%include "gmsh.h" %include "gmsh.h"
#!/usr/bin/env python
# This file reimplements gmsh/tutorial/t1.geo in Python. For all the elementary
# explanations about the general philosphy of entities in Gmsh, see the
# comments in the .geo file. Comments here will focus on the specifics of the
# Python API.
# The Gmsh API is entirely defined in the gmsh module
from gmsh import *
# Before using any functions in the Python API, Gmsh must be initialized. If
# argc/argv are passed, Gmsh will parse the commandline in the same way as the
# standalone Gmsh code.
gmshInitialize();
# By default Gmsh will not print out any messages: in order to output messages
# on the terminal, just set the standard Gmsh option "General.Terminal" (same
# format and meaning as in .geo files) using gmshOptionSetNumber():
gmshOptionSetNumber("General.Terminal", 1);
# This creates a new model, named "t1". If gmshModelCreate() is not called, a
# new default (unnamed) model will be created on the fly, if necessary.
gmshModelCreate("t1");
# The C++ API provides direct access to the internal CAD kernels. The built-in
# CAD kernel was used in t1.geo: the corresponding API functions have the
# "gmshModeGeo" prefix. To create geometrical points with the built-in CAD
# kernel, one thus uses gmshModelGeoAddPoint():
#
# - the first argument is the point tag ; if positive, the point is created with
# this tag ; if negative, a new (unused) tag will be assigned and returned as
# the second value after the return code, i.e. gmshModelGeoAddPoint(3, .1, .3,
# 0, lc) will return [0 3]
#
# - the next 3 arguments are the point coordinates (x, y, z)
#
# - the last (optional) argument is the target mesh size close to the point
lc = 1e-2;
gmshModelGeoAddPoint(1, 0, 0, 0, lc);
gmshModelGeoAddPoint(2, .1, 0, 0, lc);
gmshModelGeoAddPoint(3, .1, .3, 0, lc);
gmshModelGeoAddPoint(4, 0, .3, 0, lc);
# The API to create lines with the built-in kernel follows the same conventions:
# the first argument is a tag (here positive to force it), followed by 2 point
# tags, followed by the actual (returned) tag.
gmshModelGeoAddLine(1, 1, 2);
gmshModelGeoAddLine(2, 3, 2);
gmshModelGeoAddLine(3, 3, 4);
gmshModelGeoAddLine(4, 4, 1);
# The philosophy to construct line loops and surfaces is similar: the second
# arguments are now vectors of integers.
gmshModelGeoAddLineLoop(1, [4, 1, -2, 3]);
gmshModelGeoAddPlaneSurface(1, [1]);
# Physical groups are defined by providing the dimension of the group (0 for
# physical points, 1 for physical lines, 2 for physical surfaces and 3 for
# phsyical volumes) and its tag, followed by a vector of entity tags.
gmshModelAddPhysicalGroup(0, 1, [1, 2]);
gmshModelAddPhysicalGroup(1, 2, [1, 2]);
gmshModelAddPhysicalGroup(2, 6, [1]);
# Physical names are also defined by providing the dimension and tag of the
# entity.
gmshModelSetPhysicalName(2, 6, "My surface");
# Before it can be meshed, the internal CAD representation must be synchronized
# with the Gmsh model, which will create the relevant Gmsh data structures. This
# is achieved by the gmshModelGeoSynchronize() API call for the built-in CAD
# kernel. Synchronizations can be called at any time, but they involve a non
# trivial amount of processing; so while you could synchronize the internal CAD
# data after every CAD command, it is usually better to minimize the number of
# synchronization points.
gmshModelGeoSynchronize();
# We can then generate a 2D mesh...
gmshModelMesh(2);
# ... and save it to disk
gmshExport("t1.msh");
# This should be called at the end:
gmshFinalize();
#!/usr/bin/env python
# This file reimplements gmsh/tutorial/t2.geo in Python. Comments focus on the new
# API functions used, compared to the ones introduced in t1.py.
from gmsh import *
gmshInitialize();
gmshOptionSetNumber("General.Terminal", 1);
gmshModelCreate("t2");
# Copied from t1.cpp...
lc = 1e-2;
gmshModelGeoAddPoint(1, 0, 0, 0, lc);
gmshModelGeoAddPoint(2, .1, 0, 0, lc);
gmshModelGeoAddPoint(3, .1, .3, 0, lc);
gmshModelGeoAddPoint(4, 0, .3, 0, lc);
gmshModelGeoAddLine(1, 1, 2);
gmshModelGeoAddLine(2, 3, 2);
gmshModelGeoAddLine(3, 3, 4);
gmshModelGeoAddLine(4, 4, 1);
gmshModelGeoAddLineLoop(1, [4, 1, -2, 3]);
gmshModelGeoAddPlaneSurface(1, [1]);
gmshModelAddPhysicalGroup(0, 1, [1, 2]);
gmshModelAddPhysicalGroup(1, 2, [1, 2]);
gmshModelAddPhysicalGroup(2, 6, [1]);
gmshModelSetPhysicalName(2, 6, "My surface");
# ...end of copy
gmshModelGeoAddPoint(5, 0, .4, 0, lc);
gmshModelGeoAddLine(5, 4, 5);
# Geometrical transformations take a vector of pairs of integers as first
# argument, which contains the list of entities, represented by (dimension, tag)
# pairs. Here we thus translate point 3 (dimension=0, tag=3), by dx=-0.05, dy=0,
# dz=0.
gmshModelGeoTranslate([(0, 3)], -0.05, 0, 0);
# The "Duplicata" functionality in .geo files is handled by
# gmshModelGeoCopy(), which takes a vector of (dim, tag) pairs as input, and
# returns another vector of (dim, tag) pairs.
ov = PairVector()
gmshModelGeoCopy([(0, 3)], ov);
gmshModelGeoTranslate(ov, 0, 0.1, 0);
gmshModelGeoAddLine(7, 3, ov[0][1]);
gmshModelGeoAddLine(8, ov[0][1], 5);
gmshModelGeoAddLineLoop(10, [5,-8,-7,3]);
gmshModelGeoAddPlaneSurface(11, [10]);
gmshModelGeoCopy([(2, 1), (2, 11)], ov);
gmshModelGeoTranslate(ov, 0.12, 0, 0);
print "New surfaces '%d' and '%d'\n", ov[0][1], ov[1][1];
gmshModelGeoAddPoint(100, 0., 0.3, 0.13, lc);
gmshModelGeoAddPoint(101, 0.08, 0.3, 0.1, lc);
gmshModelGeoAddPoint(102, 0.08, 0.4, 0.1, lc);
gmshModelGeoAddPoint(103, 0., 0.4, 0.13, lc);
gmshModelGeoAddLine(110, 4, 100);
gmshModelGeoAddLine(111, 3, 101);
gmshModelGeoAddLine(112, 6, 102);
gmshModelGeoAddLine(113, 5, 103);
gmshModelGeoAddLine(114, 103, 100);
gmshModelGeoAddLine(115, 100, 101);
gmshModelGeoAddLine(116, 101, 102);
gmshModelGeoAddLine(117, 102, 103);
gmshModelGeoAddLineLoop(118, [115, -111, 3, 110]);
gmshModelGeoAddPlaneSurface(119, [118]);
gmshModelGeoAddLineLoop(120, [111, 116, -112, -7]);
gmshModelGeoAddPlaneSurface(121, [120]);
gmshModelGeoAddLineLoop(122, [112, 117, -113, -8]);
gmshModelGeoAddPlaneSurface(123, [122]);
gmshModelGeoAddLineLoop(124, [114, -110, 5, 113]);
gmshModelGeoAddPlaneSurface(125, [124]);
gmshModelGeoAddLineLoop(126, [115, 116, 117, 114]);
gmshModelGeoAddPlaneSurface(127, [126]);
# The API to create surface loops ("shells") and volumes is similar to the
# one used to create line loops and surfaces.
gmshModelGeoAddSurfaceLoop(128, [127, 119, 121, 123, 125, 11]);
gmshModelGeoAddVolume(129, [128]);
# Extrusion works as expected, by providing a vector of (dim, tag) pairs as
# input, the translation vector, and a vector of (dim, tag) pairs as output.
ov2 = PairVector()
gmshModelGeoExtrude([ov[1]], 0, 0, 0.12, ov2);
# Mesh sizes associated to geometrical points can be set by passing a vector of
# (dim, tag) pairs for the corresponding points.
gmshModelGeoSetMeshSize([(0,103), (0,105), (0,109), (0,102), (0,28),
(0, 24), (0,6), (0,5)], lc * 3);
gmshModelAddPhysicalGroup(3, 1, [129,130]);
gmshModelSetPhysicalName(3, 1, "The volume");
gmshModelGeoSynchronize();
gmshModelMesh(3);
gmshExport("t2.msh");
gmshFinalize();
0% Loading or .
You are about to add 0 people to the discussion. Proceed with caution.
Please register or to comment