Select Git revision
mainElasticity.cpp
Forked from
gmsh / gmsh
Source project has a limited visibility.
bezierBasis.cpp 30.76 KiB
// Gmsh - Copyright (C) 1997-2016 C. Geuzaine, J.-F. Remacle
//
// See the LICENSE.txt file for license information. Please report all
// bugs and problems to the public mailing list <gmsh@onelab.info>.
#include <map>
#include <algorithm>
#include "bezierBasis.h"
#include "GmshDefines.h"
#include "GmshMessage.h"
#include "polynomialBasis.h"
#include "pyramidalBasis.h"
#include "pointsGenerators.h"
#include "BasisFactory.h"
#include "Numeric.h"
namespace {
// Sub Control Points
std::vector< fullMatrix<double> > generateSubPointsLine(int order)
{
std::vector< fullMatrix<double> > subPoints(2);
subPoints[0] = gmshGenerateMonomialsLine(order);
subPoints[0].scale(.5/order);
subPoints[1].copy(subPoints[0]);
subPoints[1].add(.5);
return subPoints;
}
std::vector< fullMatrix<double> > generateSubPointsTriangle(int order)
{
std::vector< fullMatrix<double> > subPoints(4);
fullMatrix<double> prox;
subPoints[0] = gmshGenerateMonomialsTriangle(order);
subPoints[0].scale(.5/order);
subPoints[1].copy(subPoints[0]);
prox.setAsProxy(subPoints[1], 0, 1);
prox.add(.5);
subPoints[2].copy(subPoints[0]);
prox.setAsProxy(subPoints[2], 1, 1);
prox.add(.5);
subPoints[3].copy(subPoints[0]);
subPoints[3].scale(-1.);
subPoints[3].add(.5);
return subPoints;
}
std::vector< fullMatrix<double> > generateSubPointsQuad(int order)
{
std::vector< fullMatrix<double> > subPoints(4);
fullMatrix<double> prox;
subPoints[0] = gmshGenerateMonomialsQuadrangle(order);
subPoints[0].scale(.5/order);
subPoints[1].copy(subPoints[0]);
prox.setAsProxy(subPoints[1], 0, 1);
prox.add(.5);
subPoints[2].copy(subPoints[0]);
prox.setAsProxy(subPoints[2], 1, 1);
prox.add(.5);
subPoints[3].copy(subPoints[1]);
prox.setAsProxy(subPoints[3], 1, 1);
prox.add(.5);
return subPoints;
}
std::vector< fullMatrix<double> > generateSubPointsTetrahedron(int order)
{
std::vector< fullMatrix<double> > subPoints(8);
fullMatrix<double> prox1;
fullMatrix<double> prox2;
subPoints[0] = gmshGenerateMonomialsTetrahedron(order);
subPoints[0].scale(.5/order);
subPoints[1].copy(subPoints[0]);
prox1.setAsProxy(subPoints[1], 0, 1);
prox1.add(.5);
subPoints[2].copy(subPoints[0]);
prox1.setAsProxy(subPoints[2], 1, 1);
prox1.add(.5);
subPoints[3].copy(subPoints[0]);
prox1.setAsProxy(subPoints[3], 2, 1);
prox1.add(.5);
// u := .5-u-w
// v := .5-v-w
// w := w
subPoints[4].copy(subPoints[0]);
prox1.setAsProxy(subPoints[4], 0, 2);
prox1.scale(-1.);
prox1.add(.5);
prox1.setAsProxy(subPoints[4], 0, 1);
prox2.setAsProxy(subPoints[4], 2, 1);
prox1.add(prox2, -1.);
prox1.setAsProxy(subPoints[4], 1, 1);
prox1.add(prox2, -1.);
// u := u
// v := .5-v
// w := w+v
subPoints[5].copy(subPoints[0]);
prox1.setAsProxy(subPoints[5], 2, 1);
prox2.setAsProxy(subPoints[5], 1, 1);
prox1.add(prox2);
prox2.scale(-1.);
prox2.add(.5);
// u := .5-u
// v := v
// w := w+u
subPoints[6].copy(subPoints[0]);
prox1.setAsProxy(subPoints[6], 2, 1);
prox2.setAsProxy(subPoints[6], 0, 1);
prox1.add(prox2);
prox2.scale(-1.);
prox2.add(.5);
// u := u+w
// v := v+w
// w := .5-w
subPoints[7].copy(subPoints[0]);
prox1.setAsProxy(subPoints[7], 0, 1);
prox2.setAsProxy(subPoints[7], 2, 1);
prox1.add(prox2);
prox1.setAsProxy(subPoints[7], 1, 1);
prox1.add(prox2);
prox2.scale(-1.);
prox2.add(.5);
return subPoints;
}
std::vector< fullMatrix<double> > generateSubPointsPrism(int order)
{
std::vector< fullMatrix<double> > subPoints(8);
fullMatrix<double> prox;
subPoints[0] = gmshGenerateMonomialsPrism(order);
subPoints[0].scale(.5/order);
subPoints[1].copy(subPoints[0]);
prox.setAsProxy(subPoints[1], 0, 1);
prox.add(.5);
subPoints[2].copy(subPoints[0]);
prox.setAsProxy(subPoints[2], 1, 1);
prox.add(.5);
subPoints[3].copy(subPoints[0]);
prox.setAsProxy(subPoints[3], 0, 2);
prox.scale(-1.);
prox.add(.5);
subPoints[4].copy(subPoints[0]);
prox.setAsProxy(subPoints[4], 2, 1);
prox.add(.5);
subPoints[5].copy(subPoints[1]);
prox.setAsProxy(subPoints[5], 2, 1);
prox.add(.5);
subPoints[6].copy(subPoints[2]);
prox.setAsProxy(subPoints[6], 2, 1);
prox.add(.5);
subPoints[7].copy(subPoints[3]);
prox.setAsProxy(subPoints[7], 2, 1);
prox.add(.5);
return subPoints;
}
std::vector< fullMatrix<double> > generateSubPointsHex(int order)
{
std::vector< fullMatrix<double> > subPoints(8);
fullMatrix<double> prox;
subPoints[0] = gmshGenerateMonomialsHexahedron(order);
subPoints[0].scale(.5/order);
subPoints[1].copy(subPoints[0]);
prox.setAsProxy(subPoints[1], 0, 1);
prox.add(.5);
subPoints[2].copy(subPoints[0]);
prox.setAsProxy(subPoints[2], 1, 1);
prox.add(.5);
subPoints[3].copy(subPoints[1]);
prox.setAsProxy(subPoints[3], 1, 1);
prox.add(.5);
subPoints[4].copy(subPoints[0]);
prox.setAsProxy(subPoints[4], 2, 1);
prox.add(.5);
subPoints[5].copy(subPoints[1]);
prox.setAsProxy(subPoints[5], 2, 1);
prox.add(.5);
subPoints[6].copy(subPoints[2]);
prox.setAsProxy(subPoints[6], 2, 1);
prox.add(.5);
subPoints[7].copy(subPoints[3]);
prox.setAsProxy(subPoints[7], 2, 1);
prox.add(.5);
return subPoints;
}
std::vector< fullMatrix<double> > generateSubPointsPyr(int nij, int nk)
{
if (nk == 0) {
std::vector< fullMatrix<double> > subPoints(4);
fullMatrix<double> prox;
subPoints[0] = gmshGenerateMonomialsPyramidGeneral(false, nij, nk);
subPoints[0].scale(.5/nij);
subPoints[1].copy(subPoints[0]);
prox.setAsProxy(subPoints[1], 0, 1);
prox.add(.5);
subPoints[2].copy(subPoints[0]);
prox.setAsProxy(subPoints[2], 1, 1);
prox.add(.5);
subPoints[3].copy(subPoints[1]);
prox.setAsProxy(subPoints[3], 1, 1);
prox.add(.5);
return subPoints;
}
else {
std::vector< fullMatrix<double> > subPoints(8);
fullMatrix<double> ref, prox;
subPoints[0] = gmshGenerateMonomialsPyramidGeneral(false, nij, nk);
prox.setAsProxy(subPoints[0], 2, 1);
prox.scale(-1);
prox.add(nk);
subPoints[0].scale(.5/std::max(nij,nk));
subPoints[1].copy(subPoints[0]);
prox.setAsProxy(subPoints[1], 0, 1);
prox.add(.5);
subPoints[2].copy(subPoints[0]);
prox.setAsProxy(subPoints[2], 1, 1);
prox.add(.5);
subPoints[3].copy(subPoints[1]);
prox.setAsProxy(subPoints[3], 1, 1);
prox.add(.5);
subPoints[4].copy(subPoints[0]);
prox.setAsProxy(subPoints[4], 2, 1);
prox.add(.5);
subPoints[5].copy(subPoints[1]);
prox.setAsProxy(subPoints[5], 2, 1);
prox.add(.5);
subPoints[6].copy(subPoints[2]);
prox.setAsProxy(subPoints[6], 2, 1);
prox.add(.5);
subPoints[7].copy(subPoints[3]);
prox.setAsProxy(subPoints[7], 2, 1);
prox.add(.5);
for (int i = 0; i < 8; ++i) {
prox.setAsProxy(subPoints[i], 2, 1);
prox.scale(-1);
prox.add(1);
}
return subPoints;
}
}
// Matrices generation
int nChoosek(int n, int k)
{
if (n < k || k < 0) {
Msg::Error("Wrong argument for combination. (%d, %d)", n, k);
return 1;
}
if (k > n/2) k = n-k;
if (k == 1)
return n;
if (k == 0)
return 1;
int c = 1;
for (int i = 1; i <= k; i++, n--) (c *= n) /= i;
return c;
}
fullMatrix<double> generateBez2LagMatrix
(const fullMatrix<double> &exponent, const fullMatrix<double> &point,
int order, int dimSimplex)
{
if(exponent.size1() != point.size1() || exponent.size2() != point.size2()){
Msg::Fatal("Wrong sizes for bez2lag matrix generation %d %d -- %d %d",
exponent.size1(),point.size1(),
exponent.size2(),point.size2());
return fullMatrix<double>(1, 1);
}
int ndofs = exponent.size1();
int dim = exponent.size2();
fullMatrix<double> bez2Lag(ndofs, ndofs);
for (int i = 0; i < ndofs; i++) {
for (int j = 0; j < ndofs; j++) {
double dd = 1.;
{
double pointCompl = 1.;
int exponentCompl = order;
for (int k = 0; k < dimSimplex; k++) {
dd *= nChoosek(exponentCompl, (int) exponent(i, k))
* pow(point(j, k), exponent(i, k));
pointCompl -= point(j, k);
exponentCompl -= (int) exponent(i, k);
}
dd *= pow(pointCompl, exponentCompl);
}
for (int k = dimSimplex; k < dim; k++)
dd *= nChoosek(order, (int) exponent(i, k))
* pow(point(j, k), exponent(i, k))
* pow(1. - point(j, k), order - exponent(i, k));
bez2Lag(j, i) = dd;
}
}
return bez2Lag;
}
fullMatrix<double> generateBez2LagMatrixPyramid
(const fullMatrix<double> &exponent, const fullMatrix<double> &point,
bool pyr, int nij, int nk)
{
if(exponent.size1() != point.size1() || exponent.size2() != point.size2() ||
exponent.size2() != 3){
Msg::Fatal("Wrong sizes for pyramid's bez2lag matrix generation %d %d -- %d %d",
exponent.size1(), point.size1(),
exponent.size2(), point.size2());
return fullMatrix<double>(1, 1);
}
const int ndofs = exponent.size1();
int n01 = nij;
fullMatrix<double> bez2Lag(ndofs, ndofs);
for (int i = 0; i < ndofs; i++) {
for (int j = 0; j < ndofs; j++) {
if (pyr) n01 = exponent(j, 2) + nij;
bez2Lag(i, j) =
nChoosek(n01, exponent(j, 0))
* nChoosek(n01, exponent(j, 1))
* nChoosek(nk , exponent(j, 2))
* pow_int(point(i, 0), exponent(j, 0))
* pow_int(point(i, 1), exponent(j, 1))
* pow_int(point(i, 2), exponent(j, 2))
* pow_int(1. - point(i, 0), n01 - exponent(j, 0))
* pow_int(1. - point(i, 1), n01 - exponent(j, 1))
* pow_int(1. - point(i, 2), nk - exponent(j, 2));
}
}
return bez2Lag;
}
fullMatrix<double> generateSubDivisor
(const fullMatrix<double> &exponents, const std::vector< fullMatrix<double> > &subPoints,
const fullMatrix<double> &lag2Bez, int order, int dimSimplex)
{
if (exponents.size1() != lag2Bez.size1() || exponents.size1() != lag2Bez.size2()){
Msg::Fatal("Wrong sizes for Bezier Divisor %d %d -- %d %d",
exponents.size1(), lag2Bez.size1(),
exponents.size1(), lag2Bez.size2());
return fullMatrix<double>(1, 1);
}
int nbPts = lag2Bez.size1();
int nbSubPts = nbPts * subPoints.size();
fullMatrix<double> intermediate2(nbPts, nbPts);
fullMatrix<double> subDivisor(nbSubPts, nbPts);
for (unsigned int i = 0; i < subPoints.size(); i++) {
fullMatrix<double> intermediate1 =
generateBez2LagMatrix(exponents, subPoints[i], order, dimSimplex);
lag2Bez.mult(intermediate1, intermediate2);
subDivisor.copy(intermediate2, 0, nbPts, 0, nbPts, i*nbPts, 0);
}
return subDivisor;
}
fullMatrix<double> generateSubDivisorPyramid
(const fullMatrix<double> &exponents, const std::vector< fullMatrix<double> > &subPoints,
const fullMatrix<double> &lag2Bez, bool pyr, int nij, int nk)
{
if (exponents.size1() != lag2Bez.size1() || exponents.size1() != lag2Bez.size2()){
Msg::Fatal("Wrong sizes for Bezier Divisor %d %d -- %d %d",
exponents.size1(), lag2Bez.size1(),
exponents.size1(), lag2Bez.size2());
return fullMatrix<double>(1, 1);
}
int nbPts = lag2Bez.size1();
int nbSubPts = nbPts * subPoints.size();
fullMatrix<double> intermediate2(nbPts, nbPts);
fullMatrix<double> subDivisor(nbSubPts, nbPts);
for (unsigned int i = 0; i < subPoints.size(); i++) {
fullMatrix<double> intermediate1 =
generateBez2LagMatrixPyramid(exponents, subPoints[i],
pyr, nij, nk);
lag2Bez.mult(intermediate1, intermediate2);
subDivisor.copy(intermediate2, 0, nbPts, 0, nbPts, i*nbPts, 0);
}
return subDivisor;
}
void double2int(const fullMatrix<double> &matDouble, fullMatrix<int> &matInt)
{
matInt.resize(matDouble.size1(), matDouble.size2());
for (int i = 0; i < matDouble.size1(); ++i) {
for (int j = 0; j < matDouble.size2(); ++j) {
matInt(i, j) = static_cast<int>(matDouble(i, j) + .5);
}
}
}
}
bezierBasis::bezierBasis(FuncSpaceData data) : _data(data), _raiser(NULL)
{
if (_data.elementType() == TYPE_PYR)
_constructPyr();
else
_construct();
}
bezierBasis::~bezierBasis()
{
delete _raiser;
}
void bezierBasis::generateBezierPoints(fullMatrix<double> &points) const
{
gmshGenerateMonomials(_data, points);
points.scale(1./_data.spaceOrder());
if (_data.elementType() == TYPE_PYR && _data.nk() < _data.spaceOrder()) {
fullMatrix<double> prox;
prox.setAsProxy(points, 2, 1);
prox.add(1-static_cast<double>(_data.nk())/_data.spaceOrder());
}
}
void bezierBasis::_FEpoints2BezPoints(fullMatrix<double> &points) const
{
switch (_data.elementType()) {
case TYPE_TRI:
case TYPE_TET:
break;
case TYPE_QUA:
case TYPE_HEX:
points.add(1);
points.scale(.5);
break;
case TYPE_PRI:
{
fullMatrix<double> tmp;
tmp.setAsProxy(points, 2, 1);
tmp.add(1);
tmp.scale(.5);
}
break;
case TYPE_PYR:
for (int i = 0; i < points.size1(); ++i) {
points(i, 2) = 1. - points(i, 2);
points(i, 0) = .5 * (1 + points(i, 0) / points(i, 2));
points(i, 1) = .5 * (1 + points(i, 1) / points(i, 2));
}
break;
default:
Msg::Error("_FEpoints2BezPoints not implemented for "
"type of element %d", _data.elementType());
return;
}
}
void bezierBasis::interpolate(const fullMatrix<double> &coeffs,
const fullMatrix<double> &uvw,
fullMatrix<double> &result,
bool bezCoord) const
{
if (result.size1() != uvw.size1() || result.size2() != coeffs.size2())
result.resize(uvw.size1(), coeffs.size2());
fullMatrix<double> bezuvw = uvw;
if (!bezCoord) _FEpoints2BezPoints(bezuvw);
const int numCoeff = _exponents.size1();
const int dim = _exponents.size2();
int order[3];
for (int m = 0; m < uvw.size1(); ++m) {
for (int n = 0; n < coeffs.size2(); ++n) result(m, n) = 0;
for (int i = 0; i < numCoeff; i++) {
_data.getOrderForBezier(order, _exponents(i, dim-1));
double dd = 1;
double pointCompl = 1.;
int exponentCompl = order[0];
for (int k = 0; k < _dimSimplex; k++) {
dd *= nChoosek(exponentCompl, (int) _exponents(i, k))
* pow(bezuvw(m, k), _exponents(i, k));
pointCompl -= bezuvw(m, k);
exponentCompl -= (int) _exponents(i, k);
}
dd *= pow_int(pointCompl, exponentCompl);
for (int k = _dimSimplex; k < dim; k++) {
dd *= nChoosek(order[k], (int) _exponents(i, k))
* pow_int(bezuvw(m, k), _exponents(i, k))
* pow_int(1. - bezuvw(m, k), order[k] - _exponents(i, k));
}
for (int n = 0; n < coeffs.size2(); ++n)
result(m, n) += coeffs(i, n) * dd;
}
}
}
void bezierBasis::lag2Bez(const fullMatrix<double> &lag,
fullMatrix<double> &bez) const
{
if (lag.size1() != matrixLag2Bez.size1()) {
Msg::Error("matrix not the right size in lag2Bez function %d vs %d",
lag.size1(), matrixLag2Bez.size1());
}
if (bez.size1() != lag.size1() || bez.size2() != lag.size2()) {
bez.resize(lag.size1(), lag.size2());
}
matrixLag2Bez.mult(lag, bez);
}
void bezierBasis::subdivideBezCoeff(const fullMatrix<double> &coeff,
fullMatrix<double> &subCoeff) const
{
if (subCoeff.size1() != subDivisor.size1()
|| subCoeff.size2() != coeff.size2() ) {
subCoeff.resize(subDivisor.size1(), coeff.size2());
}
subDivisor.mult(coeff, subCoeff);
}
void bezierBasis::subdivideBezCoeff(const fullVector<double> &coeff,
fullVector<double> &subCoeff) const
{
if (subCoeff.size() != subDivisor.size1()) {
subCoeff.resize(subDivisor.size1());
}
subDivisor.mult(coeff, subCoeff);
}
void bezierBasis::_construct()
{
if (_data.elementType() == TYPE_PYR) {
Msg::Fatal("This bezierBasis constructor is not for pyramids !");
}
std::vector< fullMatrix<double> > subPoints;
int order = _data.spaceOrder();
switch (_data.elementType()) {
case TYPE_PNT :
_numLagCoeff = 1;
_dimSimplex = 0;
_exponents = gmshGenerateMonomialsLine(0);
subPoints.push_back(gmshGeneratePointsLine(0));
break;
case TYPE_LIN : {
_numLagCoeff = order ? 2 : 1;
_dimSimplex = 0;
_exponents = gmshGenerateMonomialsLine(order);
subPoints = generateSubPointsLine(order);
break;
}
case TYPE_TRI : {
_numLagCoeff = order ? 3 : 1;
_dimSimplex = 2;
_exponents = gmshGenerateMonomialsTriangle(order);
subPoints = generateSubPointsTriangle(order);
break;
}
case TYPE_QUA : {
_numLagCoeff = order ? 4 : 1;
_dimSimplex = 0;
_exponents = gmshGenerateMonomialsQuadrangle(order);
subPoints = generateSubPointsQuad(order);
break;
}
case TYPE_TET : {
_numLagCoeff = order ? 4 : 1;
_dimSimplex = 3;
_exponents = gmshGenerateMonomialsTetrahedron(order);
subPoints = generateSubPointsTetrahedron(order);
break;
}
case TYPE_PRI : {
_numLagCoeff = order ? 6 : 1;
_dimSimplex = 2;
_exponents = gmshGenerateMonomialsPrism(order);
subPoints = generateSubPointsPrism(order);
break;
}
case TYPE_HEX : {
_numLagCoeff = order ? 8 : 1;
_dimSimplex = 0;
_exponents = gmshGenerateMonomialsHexahedron(order);
subPoints = generateSubPointsHex(order);
break;
}
default : {
Msg::Fatal("Unknown function space for parentType %d", _data.elementType());
return;
}
}
_numDivisions = static_cast<int>(subPoints.size());
fullMatrix<double> bezierPoints = _exponents;
if (order) bezierPoints.scale(1./order);
matrixBez2Lag = generateBez2LagMatrix(_exponents, bezierPoints, order, _dimSimplex);
matrixBez2Lag.invert(matrixLag2Bez);
subDivisor = generateSubDivisor(_exponents, subPoints, matrixLag2Bez, order, _dimSimplex);
}
void bezierBasis::_constructPyr()
{
if (_data.elementType() != TYPE_PYR) {
Msg::Fatal("This bezierBasis constructor is for pyramids !");
}
const bool pyr = _data.isPyramidalSpace();
const int nij = _data.nij(), nk = _data.nk();
_numLagCoeff = nk == 0 ? 4 : 8;
_dimSimplex = 0;
gmshGenerateMonomials(_data, _exponents);
fullMatrix<double> bezierPoints;
generateBezierPoints(bezierPoints);
matrixBez2Lag = generateBez2LagMatrixPyramid(_exponents, bezierPoints,
pyr, nij, nk);
matrixBez2Lag.invert(matrixLag2Bez);
if (pyr) {
_numDivisions = 0;
}
else {
std::vector< fullMatrix<double> > subPoints;
subPoints = generateSubPointsPyr(nij, nk);
_numDivisions = static_cast<int>(subPoints.size());
subDivisor = generateSubDivisorPyramid(_exponents, subPoints, matrixLag2Bez,
pyr, nij, nk);
}
return;
}
bezierBasisRaiser* bezierBasis::getRaiser() const
{
if (!_raiser) {
const_cast<bezierBasis*>(this)->_raiser = new bezierBasisRaiser(this);
}
return _raiser;
}
void bezierBasisRaiser::_fillRaiserData()
{
if (_bfs->getType() == TYPE_PYR) {
_fillRaiserDataPyr();
return;
}
fullMatrix<int> exp;
{
const fullMatrix<double> &expD = _bfs->_exponents;
double2int(expD, exp);
}
int order = _bfs->getOrder();
int ncoeff = exp.size1();
int dim = _bfs->getDim();
int dimSimplex = _bfs->getDimSimplex();
// Speedup: Since the coefficients (num/den) are invariant from a permutation
// of the indices (i, j) or (i, j, k), we fill only the raiser data for
// i <= j <= k (and adapt the value to take into account the multiplicity).
// Construction of raiser 2
fullMatrix<int> exp2;
{
fullMatrix<double> expD2;
FuncSpaceData dataRaiser2(_bfs->_data, 2*order);
gmshGenerateMonomials(dataRaiser2, expD2);
double2int(expD2, exp2);
_raiser2.resize(exp2.size1());
}
std::map<int, int> hashToInd2;
for (int i = 0; i < exp2.size1(); ++i) {
int hash = 0;
for (int l = 0; l < dim; l++) {
hash += exp2(i, l) * pow_int(2*order+1, l);
}
hashToInd2[hash] = i;
}
for (int i = 0; i < ncoeff; i++) {
for (int j = i; j < ncoeff; j++) {
double num = 1, den = 1;
{
int compl1 = order;
int compl2 = order;
int compltot = 2*order;
for (int l = 0; l < dimSimplex; l++) {
num *= nChoosek(compl1, exp(i, l)) *
nChoosek(compl2, exp(j, l));
den *= nChoosek(compltot, exp(i, l) + exp(j, l));
compl1 -= exp(i, l);
compl2 -= exp(j, l);
compltot -= exp(i, l) + exp(j, l);
}
for (int l = dimSimplex; l < dim; l++) {
num *= nChoosek(order, exp(i, l)) *
nChoosek(order, exp(j, l));
den *= nChoosek(2*order, exp(i, l) + exp(j, l));
}
}
// taking into account the multiplicity (reminder: i <= j)
if (i < j) num *= 2;
int hash = 0;
for (int l = 0; l < dim; l++) {
hash += (exp(i, l)+exp(j, l)) * pow_int(2*order+1, l);
}
_raiser2[hashToInd2[hash]].push_back(_Data(num/den, i, j));
}
}
// Construction of raiser 3
fullMatrix<int> exp3;
{
fullMatrix<double> expD3;
FuncSpaceData dataRaiser3(_bfs->_data, 3*order);
gmshGenerateMonomials(dataRaiser3, expD3);
double2int(expD3, exp3);
_raiser3.resize(exp3.size1());
}
std::map<int, int> hashToInd3;
for (int i = 0; i < exp3.size1(); ++i) {
int hash = 0;
for (int l = 0; l < dim; l++) {
hash += exp3(i, l) * pow_int(3*order+1, l);
}
hashToInd3[hash] = i;
}
for (int i = 0; i < ncoeff; i++) {
for (int j = i; j < ncoeff; j++) {
for (int k = j; k < ncoeff; ++k) {
double num = 1, den = 1;
{
int compl1 = order;
int compl2 = order;
int compl3 = order;
int compltot = 3*order;
for (int l = 0; l < dimSimplex; l++) {
num *= nChoosek(compl1, exp(i, l)) *
nChoosek(compl2, exp(j, l)) *
nChoosek(compl3, exp(k, l));
den *= nChoosek(compltot, exp(i, l) + exp(j, l) + exp(k, l));
compl1 -= exp(i, l);
compl2 -= exp(j, l);
compl3 -= exp(k, l);
compltot -= exp(i, l) + exp(j, l) + exp(k, l);
}
for (int l = dimSimplex; l < dim; l++) {
num *= nChoosek(order, exp(i, l)) *
nChoosek(order, exp(j, l)) *
nChoosek(order, exp(k, l));
den *= nChoosek(3*order, exp(i, l) + exp(j, l) + exp(k, l));
}
}
// taking into account the multiplicity (Reminder: i <= j <= k)
if (i < j && j < k) num *= 6;
else if (i < j || j < k) num *= 3;
int hash = 0;
for (int l = 0; l < dim; l++) {
hash += (exp(i, l)+exp(j, l)+exp(k, l)) * pow_int(3*order+1, l);
}
_raiser3[hashToInd3[hash]].push_back(_Data(num/den, i, j, k));
}
}
}
}
void bezierBasisRaiser::_fillRaiserDataPyr()
{
FuncSpaceData fsdata = _bfs->getFuncSpaceData();
if (fsdata.elementType() != TYPE_PYR) {
_fillRaiserData();
return;
}
if (fsdata.isPyramidalSpace()) {
Msg::Error("Bezier raiser not implemented for pyramidal space");
return;
}
fullMatrix<int> exp;
{
const fullMatrix<double> &expD = _bfs->_exponents;
double2int(expD, exp);
}
int ncoeff = exp.size1();
int order[3] = {fsdata.nij(), fsdata.nij(), fsdata.nk()};
// Speedup: Since the coefficients (num/den) are invariant from a permutation
// of the indices (i, j) or (i, j, k), we fill only the raiser data for
// i <= j <= k (and adapt the value to take into account the multiplicity).
// Construction of raiser 2
fullMatrix<int> exp2;
{
fullMatrix<double> expD2;
FuncSpaceData dataRaiser2(_bfs->_data, 2*order[0], 2*order[2]);
gmshGenerateMonomials(dataRaiser2, expD2);
double2int(expD2, exp2);
_raiser2.resize(exp2.size1());
}
std::map<int, int> hashToInd2;
for (int i = 0; i < exp2.size1(); ++i) {
int hash = 0;
for (int l = 0; l < 3; l++) {
hash += exp2(i, l) * pow_int(2*order[l]+1, l);
}
hashToInd2[hash] = i;
}
for (int i = 0; i < ncoeff; i++) {
for (int j = i; j < ncoeff; j++) {
double num = 1, den = 1;
for (int l = 0; l < 3; l++) {
num *= nChoosek(order[l], exp(i, l))
* nChoosek(order[l], exp(j, l));
den *= nChoosek(2*order[l], exp(i, l) + exp(j, l));
}
// taking into account the multiplicity (reminder: i <= j)
if (i < j) num *= 2;
int hash = 0;
for (int l = 0; l < 3; l++) {
hash += (exp(i, l)+exp(j, l)) * pow_int(2*order[l]+1, l);
}
_raiser2[hashToInd2[hash]].push_back(_Data(num/den, i, j));
}
}
// Construction of raiser 3
fullMatrix<int> exp3;
{
fullMatrix<double> expD3;
FuncSpaceData dataRaiser3(_bfs->_data, 3*order[0], 3*order[2]);
gmshGenerateMonomials(dataRaiser3, expD3);
double2int(expD3, exp3);
_raiser3.resize(exp3.size1());
}
std::map<int, int> hashToInd3;
for (int i = 0; i < exp3.size1(); ++i) {
int hash = 0;
for (int l = 0; l < 3; l++) {
hash += exp3(i, l) * pow_int(3*order[l]+1, l);
}
hashToInd3[hash] = i;
}
for (int i = 0; i < ncoeff; i++) {
for (int j = i; j < ncoeff; j++) {
for (int k = j; k < ncoeff; ++k) {
double num = 1, den = 1;
for (int l = 0; l < 3; l++) {
num *= nChoosek(order[l], exp(i, l))
* nChoosek(order[l], exp(j, l))
* nChoosek(order[l], exp(k, l));
den *= nChoosek(3*order[l], exp(i, l) + exp(j, l) + exp(k, l));
}
// taking into account the multiplicity (Reminder: i <= j <= k)
if (i < j && j < k) num *= 6;
else if (i < j || j < k) num *= 3;
int hash = 0;
for (int l = 0; l < 3; l++) {
hash += (exp(i, l)+exp(j, l)+exp(k, l)) * pow_int(3*order[l]+1, l);
}
_raiser3[hashToInd3[hash]].push_back(_Data(num/den, i, j, k));
}
}
}
}
void bezierBasisRaiser::computeCoeff(const fullVector<double> &coeffA,
const fullVector<double> &coeffB,
fullVector<double> &coeffSquare)
{
coeffSquare.resize(_raiser2.size(), true);
if (&coeffA == &coeffB) {
for (unsigned int ind = 0; ind < _raiser2.size(); ++ind) {
for (unsigned int l = 0; l < _raiser2[ind].size(); ++l) {
_Data &d = _raiser2[ind][l];
coeffSquare(ind) += d.val * coeffA(d.i) * coeffB(d.j);
}
}
}
else {
for (unsigned int ind = 0; ind < _raiser2.size(); ++ind) {
for (unsigned int l = 0; l < _raiser2[ind].size(); ++l) {
_Data &d = _raiser2[ind][l];
coeffSquare(ind) += d.val/2 * (coeffA(d.i) * coeffB(d.j) +
coeffA(d.j) * coeffB(d.i));
}
}
}
}
void bezierBasisRaiser::computeCoeff(const fullVector<double> &coeffA,
const fullVector<double> &coeffB,
const fullVector<double> &coeffC,
fullVector<double> &coeffCubic)
{
coeffCubic.resize(_raiser3.size(), true);
if (&coeffA == &coeffB && &coeffB == &coeffC) {
for (unsigned int ind = 0; ind < _raiser3.size(); ++ind) {
for (unsigned int l = 0; l < _raiser3[ind].size(); ++l) {
_Data &d = _raiser3[ind][l];
coeffCubic(ind) += d.val * coeffA(d.i) * coeffB(d.j) * coeffC(d.k);
}
}
}
else if (&coeffA != &coeffB && &coeffB != &coeffC) {
for (unsigned int ind = 0; ind < _raiser3.size(); ++ind) {
for (unsigned int l = 0; l < _raiser3[ind].size(); ++l) {
_Data &d = _raiser3[ind][l];
coeffCubic(ind) += d.val/6 * (coeffA(d.i) * coeffB(d.j) * coeffC(d.k) +
coeffA(d.i) * coeffB(d.k) * coeffC(d.j) +
coeffA(d.j) * coeffB(d.i) * coeffC(d.k) +
coeffA(d.j) * coeffB(d.k) * coeffC(d.i) +
coeffA(d.k) * coeffB(d.i) * coeffC(d.j) +
coeffA(d.k) * coeffB(d.j) * coeffC(d.i));
}
}
}
else
Msg::Error("bezierBasisRaiser::computeCoeff not implemented for A == B != C "
"or A != B == C");
}
void bezierBasisRaiser::computeCoeff(const fullMatrix<double> &coeffA,
const fullMatrix<double> &coeffB,
fullMatrix<double> &coeffSquare)
{
coeffSquare.resize(_raiser2.size(), coeffA.size2(), true);
if (&coeffA == &coeffB) {
for (unsigned int ind = 0; ind < _raiser2.size(); ++ind) {
for (unsigned int l = 0; l < _raiser2[ind].size(); ++l) {
_Data &d = _raiser2[ind][l];
for (int ind2 = 0; ind2 < coeffA.size2(); ++ind2) {
coeffSquare(ind, ind2) += d.val * coeffA(d.i, ind2)
* coeffB(d.j, ind2);
}
}
}
}
else {
for (unsigned int ind = 0; ind < _raiser2.size(); ++ind) {
for (unsigned int l = 0; l < _raiser2[ind].size(); ++l) {
_Data &d = _raiser2[ind][l];
double val = d.val/2;
for (int ind2 = 0; ind2 < coeffA.size2(); ++ind2) {
coeffSquare(ind, ind2) += val *
(coeffA(d.i, ind2) * coeffB(d.j, ind2) +
coeffA(d.j, ind2) * coeffB(d.i, ind2));
}
}
}
}
}
void bezierBasisRaiser::computeCoeff(const fullVector<double> &coeffA,
const fullMatrix<double> &coeffB,
const fullMatrix<double> &coeffC,
fullMatrix<double> &coeffCubic)
{
coeffCubic.resize(_raiser3.size(), coeffB.size2(), true);
if (&coeffB == &coeffC) {
for (unsigned int ind = 0; ind < _raiser3.size(); ++ind) {
for (unsigned int l = 0; l < _raiser3[ind].size(); ++l) {
_Data &d = _raiser3[ind][l];
double val = d.val/3;
for (int ind2 = 0; ind2 < coeffB.size2(); ++ind2) {
coeffCubic(ind, ind2) += val *
(coeffA(d.i) * coeffB(d.j, ind2) * coeffC(d.k, ind2) +
coeffA(d.j) * coeffB(d.i, ind2) * coeffC(d.k, ind2) +
coeffA(d.k) * coeffB(d.i, ind2) * coeffC(d.j, ind2));
}
}
}
}
else {
for (unsigned int ind = 0; ind < _raiser3.size(); ++ind) {
for (unsigned int l = 0; l < _raiser3[ind].size(); ++l) {
_Data &d = _raiser3[ind][l];
double val = d.val/6;
for (int ind2 = 0; ind2 < coeffB.size2(); ++ind2) {
coeffCubic(ind, ind2) += val *
(coeffA(d.i) * coeffB(d.j, ind2) * coeffC(d.k, ind2) +
coeffA(d.i) * coeffB(d.k, ind2) * coeffC(d.j, ind2) +
coeffA(d.j) * coeffB(d.i, ind2) * coeffC(d.k, ind2) +
coeffA(d.j) * coeffB(d.k, ind2) * coeffC(d.i, ind2) +
coeffA(d.k) * coeffB(d.i, ind2) * coeffC(d.j, ind2) +
coeffA(d.k) * coeffB(d.j, ind2) * coeffC(d.i, ind2));
}
}
}
}
}