Skip to content
Snippets Groups Projects
Select Git revision
  • 06e03271eaef1cd223b5c290a3850e8f57b34f60
  • master default protected
  • alphashapes
  • quadMeshingTools
  • cygwin_conv_path
  • macos_arm64
  • add-transfiniteautomatic-to-geo
  • patch_releases_4_10
  • HierarchicalHDiv
  • isuruf-master-patch-63355
  • hyperbolic
  • hexdom
  • hxt_update
  • jf
  • 1618-pythonocc-and-gmsh-api-integration
  • octreeSizeField
  • hexbl
  • alignIrregularVertices
  • getEdges
  • patch_releases_4_8
  • isuruf-master-patch-51992
  • gmsh_4_11_0
  • gmsh_4_10_5
  • gmsh_4_10_4
  • gmsh_4_10_3
  • gmsh_4_10_2
  • gmsh_4_10_1
  • gmsh_4_10_0
  • gmsh_4_9_5
  • gmsh_4_9_4
  • gmsh_4_9_3
  • gmsh_4_9_2
  • gmsh_4_9_1
  • gmsh_4_9_0
  • gmsh_4_8_4
  • gmsh_4_8_3
  • gmsh_4_8_2
  • gmsh_4_8_1
  • gmsh_4_8_0
  • gmsh_4_7_1
  • gmsh_4_7_0
41 results

OptHomRun.cpp

Blame
  • Forked from gmsh / gmsh
    Source project has a limited visibility.
    gmsh.py 293.14 KiB
    # Gmsh - Copyright (C) 1997-2021 C. Geuzaine, J.-F. Remacle
    #
    # See the LICENSE.txt file for license information. Please report all
    # issues on https://gitlab.onelab.info/gmsh/gmsh/issues.
    
    # This file defines the Gmsh Python API (v4.8.1).
    #
    # Do not edit it directly: it is automatically generated by `api/gen.py'.
    #
    # By design, the Gmsh Python API is purely functional, and only uses elementary
    # Python types (as well as `numpy' arrays if `numpy' is available). See
    # `tutorial/python' and `demos/api' for examples.
    
    from ctypes import *
    from ctypes.util import find_library
    import signal
    import os
    import platform
    from math import pi
    
    GMSH_API_VERSION = "4.8.1"
    GMSH_API_VERSION_MAJOR = 4
    GMSH_API_VERSION_MINOR = 8
    GMSH_API_VERSION_PATCH = 1
    
    __version__ = GMSH_API_VERSION
    
    oldsig = signal.signal(signal.SIGINT, signal.SIG_DFL)
    libdir = os.path.dirname(os.path.realpath(__file__))
    if platform.system() == "Windows":
        libpath = os.path.join(libdir, "gmsh-4.8.dll")
    elif platform.system() == "Darwin":
        libpath = os.path.join(libdir, "libgmsh.dylib")
    else:
        libpath = os.path.join(libdir, "libgmsh.so")
    
    if not os.path.exists(libpath):
        libpath = find_library("gmsh")
    
    lib = CDLL(libpath)
    
    use_numpy = False
    try:
        import numpy
        try:
            from weakref import finalize as weakreffinalize
        except:
            from backports.weakref import finalize as weakreffinalize
        use_numpy = True
    except:
        pass
    
    # Utility functions, not part of the Gmsh Python API
    
    def _ostring(s):
        sp = s.value.decode("utf-8")
        lib.gmshFree(s)
        return sp
    
    def _ovectorpair(ptr, size):
        v = list((ptr[i * 2], ptr[i * 2 + 1]) for i in range(size//2))
        lib.gmshFree(ptr)
        return v
    
    def _ovectorint(ptr, size):
        if use_numpy:
            if size == 0 :
                lib.gmshFree(ptr)
                return numpy.ndarray((0,),numpy.int32)
            v = numpy.ctypeslib.as_array(ptr, (size, ))
            weakreffinalize(v, lib.gmshFree, ptr)
        else:
            v = list(ptr[i] for i in range(size))
            lib.gmshFree(ptr)
        return v
    
    def _ovectorsize(ptr, size):
        if use_numpy:
            if size == 0 :
                lib.gmshFree(ptr)
                return numpy.ndarray((0,),numpy.uintp)
            v = numpy.ctypeslib.as_array(ptr, (size, ))
            weakreffinalize(v, lib.gmshFree, ptr)
        else:
            v = list(ptr[i] for i in range(size))
            lib.gmshFree(ptr)
        return v
    
    def _ovectordouble(ptr, size):
        if use_numpy:
            if size == 0 :
                lib.gmshFree(ptr)
                return numpy.ndarray((0,),numpy.float64)
            v = numpy.ctypeslib.as_array(ptr, (size, ))
            weakreffinalize(v, lib.gmshFree, ptr)
        else:
            v = list(ptr[i] for i in range(size))
            lib.gmshFree(ptr)
        return v
    
    def _ovectorstring(ptr, size):
        v = list(_ostring(cast(ptr[i], c_char_p)) for i in range(size))
        lib.gmshFree(ptr)
        return v
    
    def _ovectorvectorint(ptr, size, n):
        v = [_ovectorint(pointer(ptr[i].contents), size[i]) for i in range(n.value)]
        lib.gmshFree(size)
        lib.gmshFree(ptr)
        return v
    
    def _ovectorvectorsize(ptr, size, n):
        v = [_ovectorsize(pointer(ptr[i].contents), size[i]) for i in range(n.value)]
        lib.gmshFree(size)
        lib.gmshFree(ptr)
        return v
    
    def _ovectorvectordouble(ptr, size, n):
        v = [_ovectordouble(pointer(ptr[i].contents), size[i]) for i in range(n.value)]
        lib.gmshFree(size)
        lib.gmshFree(ptr)
        return v
    
    def _ovectorvectorpair(ptr, size, n):
        v = [_ovectorpair(pointer(ptr[i].contents), size[i]) for i in range(n.value)]
        lib.gmshFree(size)
        lib.gmshFree(ptr)
        return v
    
    def _ivectorint(o):
        if use_numpy:
            array = numpy.ascontiguousarray(o, numpy.int32)
            if(len(o) and array.ndim != 1):
                raise Exception("Invalid data for input vector of integers")
            ct = array.ctypes
            ct.array = array
            return ct, c_size_t(len(o))
        else:
            return (c_int * len(o))(*o), c_size_t(len(o))
    
    def _ivectorsize(o):
        if use_numpy:
            array = numpy.ascontiguousarray(o, numpy.uintp)
            if(len(o) and array.ndim != 1):
                raise Exception("Invalid data for input vector of sizes")
            ct = array.ctypes
            ct.array = array
            return ct, c_size_t(len(o))
        else:
            return (c_size_t * len(o))(*o), c_size_t(len(o))
    
    def _ivectordouble(o):
        if use_numpy:
            array = numpy.ascontiguousarray(o, numpy.float64)
            if(len(o) and array.ndim != 1):
                raise Exception("Invalid data for input vector of doubles")
            ct = array.ctypes
            ct.array = array
            return  ct, c_size_t(len(o))
        else:
            return (c_double * len(o))(*o), c_size_t(len(o))
    
    def _ivectorpair(o):
        if use_numpy:
            array = numpy.ascontiguousarray(o, numpy.int32)
            if(len(o) and (array.ndim != 2 or array.shape[1] != 2)):
                raise Exception("Invalid data for input vector of pairs")
            ct = array.ctypes
            ct.array = array
            return ct, c_size_t(len(o) * 2)
        else:
            if(len(o) and len(o[0]) != 2):
                raise Exception("Invalid data for input vector of pairs")
            return ((c_int * 2) * len(o))(*o), c_size_t(len(o) * 2)
    
    def _ivectorstring(o):
        return (c_char_p * len(o))(*(s.encode() for s in o)), c_size_t(len(o))
    
    def _ivectorvectorint(os):
        n = len(os)
        parrays = [_ivectorint(o) for o in os]
        sizes = (c_size_t * n)(*(a[1] for a in parrays))
        arrays = (POINTER(c_int) * n)(*(cast(a[0], POINTER(c_int)) for a in parrays))
        arrays.ref = [a[0] for a in parrays]
        size = c_size_t(n)
        return arrays, sizes, size
    
    def _ivectorvectorsize(os):
        n = len(os)
        parrays = [_ivectorsize(o) for o in os]
        sizes = (c_size_t * n)(*(a[1] for a in parrays))
        arrays = (POINTER(c_size_t) * n)(*(cast(a[0], POINTER(c_size_t)) for a in parrays))
        arrays.ref = [a[0] for a in parrays]
        size = c_size_t(n)
        return arrays, sizes, size
    
    def _ivectorvectordouble(os):
        n = len(os)
        parrays = [_ivectordouble(o) for o in os]
        sizes = (c_size_t * n)(*(a[1] for a in parrays))
        arrays = (POINTER(c_double) * n)(*(cast(a[0], POINTER(c_double)) for a in parrays))
        arrays.ref = [a[0] for a in parrays]
        size = c_size_t(n)
        return arrays, sizes, size
    
    def _iargcargv(o):
        return c_int(len(o)), (c_char_p * len(o))(*(s.encode() for s in o))
    
    # Gmsh Python API begins here
    
    def initialize(argv=[], readConfigFiles=True):
        """
        gmsh.initialize(argv=[], readConfigFiles=True)
    
        Initialize Gmsh API. This must be called before any call to the other
        functions in the API. If `argc' and `argv' (or just `argv' in Python or
        Julia) are provided, they will be handled in the same way as the command
        line arguments in the Gmsh app. If `readConfigFiles' is set, read system
        Gmsh configuration files (gmshrc and gmsh-options). Initializing the API
        sets the options "General.Terminal" to 1 and "General.AbortOnError" to 2.
        """
        api_argc_, api_argv_ = _iargcargv(argv)
        ierr = c_int()
        lib.gmshInitialize(
            api_argc_, api_argv_,
            c_int(bool(readConfigFiles)),
            byref(ierr))
        if ierr.value != 0:
            raise Exception(logger.getLastError())
    
    def finalize():
        """
        gmsh.finalize()
    
        Finalize the Gmsh API. This must be called when you are done using the Gmsh
        API.
        """
        ierr = c_int()
        lib.gmshFinalize(
            byref(ierr))
        if oldsig is not None:
            signal.signal(signal.SIGINT, oldsig)
        if ierr.value != 0:
            raise Exception(logger.getLastError())
    
    def open(fileName):
        """
        gmsh.open(fileName)
    
        Open a file. Equivalent to the `File->Open' menu in the Gmsh app. Handling
        of the file depends on its extension and/or its contents: opening a file
        with model data will create a new model.
        """
        ierr = c_int()
        lib.gmshOpen(
            c_char_p(fileName.encode()),
            byref(ierr))
        if ierr.value != 0:
            raise Exception(logger.getLastError())
    
    def merge(fileName):
        """
        gmsh.merge(fileName)
    
        Merge a file. Equivalent to the `File->Merge' menu in the Gmsh app.
        Handling of the file depends on its extension and/or its contents. Merging
        a file with model data will add the data to the current model.
        """
        ierr = c_int()
        lib.gmshMerge(
            c_char_p(fileName.encode()),
            byref(ierr))
        if ierr.value != 0:
            raise Exception(logger.getLastError())
    
    def write(fileName):
        """
        gmsh.write(fileName)
    
        Write a file. The export format is determined by the file extension.
        """
        ierr = c_int()
        lib.gmshWrite(
            c_char_p(fileName.encode()),
            byref(ierr))
        if ierr.value != 0:
            raise Exception(logger.getLastError())
    
    def clear():
        """
        gmsh.clear()
    
        Clear all loaded models and post-processing data, and add a new empty
        model.
        """
        ierr = c_int()
        lib.gmshClear(
            byref(ierr))
        if ierr.value != 0:
            raise Exception(logger.getLastError())
    
    
    class option:
        """
        Option handling functions
        """
    
        @staticmethod
        def setNumber(name, value):
            """
            gmsh.option.setNumber(name, value)
    
            Set a numerical option to `value'. `name' is of the form "category.option"
            or "category[num].option". Available categories and options are listed in
            the Gmsh reference manual.
            """
            ierr = c_int()
            lib.gmshOptionSetNumber(
                c_char_p(name.encode()),
                c_double(value),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_number = setNumber
    
        @staticmethod
        def getNumber(name):
            """
            gmsh.option.getNumber(name)
    
            Get the `value' of a numerical option. `name' is of the form
            "category.option" or "category[num].option". Available categories and
            options are listed in the Gmsh reference manual.
    
            Return `value'.
            """
            api_value_ = c_double()
            ierr = c_int()
            lib.gmshOptionGetNumber(
                c_char_p(name.encode()),
                byref(api_value_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_value_.value
        get_number = getNumber
    
        @staticmethod
        def setString(name, value):
            """
            gmsh.option.setString(name, value)
    
            Set a string option to `value'. `name' is of the form "category.option" or
            "category[num].option". Available categories and options are listed in the
            Gmsh reference manual.
            """
            ierr = c_int()
            lib.gmshOptionSetString(
                c_char_p(name.encode()),
                c_char_p(value.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_string = setString
    
        @staticmethod
        def getString(name):
            """
            gmsh.option.getString(name)
    
            Get the `value' of a string option. `name' is of the form "category.option"
            or "category[num].option". Available categories and options are listed in
            the Gmsh reference manual.
    
            Return `value'.
            """
            api_value_ = c_char_p()
            ierr = c_int()
            lib.gmshOptionGetString(
                c_char_p(name.encode()),
                byref(api_value_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ostring(api_value_)
        get_string = getString
    
        @staticmethod
        def setColor(name, r, g, b, a=255):
            """
            gmsh.option.setColor(name, r, g, b, a=255)
    
            Set a color option to the RGBA value (`r', `g', `b', `a'), where where `r',
            `g', `b' and `a' should be integers between 0 and 255. `name' is of the
            form "category.option" or "category[num].option". Available categories and
            options are listed in the Gmsh reference manual, with the "Color." middle
            string removed.
            """
            ierr = c_int()
            lib.gmshOptionSetColor(
                c_char_p(name.encode()),
                c_int(r),
                c_int(g),
                c_int(b),
                c_int(a),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_color = setColor
    
        @staticmethod
        def getColor(name):
            """
            gmsh.option.getColor(name)
    
            Get the `r', `g', `b', `a' value of a color option. `name' is of the form
            "category.option" or "category[num].option". Available categories and
            options are listed in the Gmsh reference manual, with the "Color." middle
            string removed.
    
            Return `r', `g', `b', `a'.
            """
            api_r_ = c_int()
            api_g_ = c_int()
            api_b_ = c_int()
            api_a_ = c_int()
            ierr = c_int()
            lib.gmshOptionGetColor(
                c_char_p(name.encode()),
                byref(api_r_),
                byref(api_g_),
                byref(api_b_),
                byref(api_a_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                api_r_.value,
                api_g_.value,
                api_b_.value,
                api_a_.value)
        get_color = getColor
    
    
    class model:
        """
        Model functions
        """
    
        @staticmethod
        def add(name):
            """
            gmsh.model.add(name)
    
            Add a new model, with name `name', and set it as the current model.
            """
            ierr = c_int()
            lib.gmshModelAdd(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def remove():
            """
            gmsh.model.remove()
    
            Remove the current model.
            """
            ierr = c_int()
            lib.gmshModelRemove(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def list():
            """
            gmsh.model.list()
    
            List the names of all models.
    
            Return `names'.
            """
            api_names_, api_names_n_ = POINTER(POINTER(c_char))(), c_size_t()
            ierr = c_int()
            lib.gmshModelList(
                byref(api_names_), byref(api_names_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorstring(api_names_, api_names_n_.value)
    
        @staticmethod
        def getCurrent():
            """
            gmsh.model.getCurrent()
    
            Get the name of the current model.
    
            Return `name'.
            """
            api_name_ = c_char_p()
            ierr = c_int()
            lib.gmshModelGetCurrent(
                byref(api_name_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ostring(api_name_)
        get_current = getCurrent
    
        @staticmethod
        def setCurrent(name):
            """
            gmsh.model.setCurrent(name)
    
            Set the current model to the model with name `name'. If several models have
            the same name, select the one that was added first.
            """
            ierr = c_int()
            lib.gmshModelSetCurrent(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_current = setCurrent
    
        @staticmethod
        def getFileName():
            """
            gmsh.model.getFileName()
    
            Get the file name (if any) associated with the current model. A file name
            is associated when a model is read from a file on disk.
    
            Return `fileName'.
            """
            api_fileName_ = c_char_p()
            ierr = c_int()
            lib.gmshModelGetFileName(
                byref(api_fileName_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ostring(api_fileName_)
        get_file_name = getFileName
    
        @staticmethod
        def setFileName(fileName):
            """
            gmsh.model.setFileName(fileName)
    
            Set the file name associated with the current model.
            """
            ierr = c_int()
            lib.gmshModelSetFileName(
                c_char_p(fileName.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_file_name = setFileName
    
        @staticmethod
        def getEntities(dim=-1):
            """
            gmsh.model.getEntities(dim=-1)
    
            Get all the entities in the current model. If `dim' is >= 0, return only
            the entities of the specified dimension (e.g. points if `dim' == 0). The
            entities are returned as a vector of (dim, tag) integer pairs.
    
            Return `dimTags'.
            """
            api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetEntities(
                byref(api_dimTags_), byref(api_dimTags_n_),
                c_int(dim),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorpair(api_dimTags_, api_dimTags_n_.value)
        get_entities = getEntities
    
        @staticmethod
        def setEntityName(dim, tag, name):
            """
            gmsh.model.setEntityName(dim, tag, name)
    
            Set the name of the entity of dimension `dim' and tag `tag'.
            """
            ierr = c_int()
            lib.gmshModelSetEntityName(
                c_int(dim),
                c_int(tag),
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_entity_name = setEntityName
    
        @staticmethod
        def getEntityName(dim, tag):
            """
            gmsh.model.getEntityName(dim, tag)
    
            Get the name of the entity of dimension `dim' and tag `tag'.
    
            Return `name'.
            """
            api_name_ = c_char_p()
            ierr = c_int()
            lib.gmshModelGetEntityName(
                c_int(dim),
                c_int(tag),
                byref(api_name_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ostring(api_name_)
        get_entity_name = getEntityName
    
        @staticmethod
        def getPhysicalGroups(dim=-1):
            """
            gmsh.model.getPhysicalGroups(dim=-1)
    
            Get all the physical groups in the current model. If `dim' is >= 0, return
            only the entities of the specified dimension (e.g. physical points if `dim'
            == 0). The entities are returned as a vector of (dim, tag) integer pairs.
    
            Return `dimTags'.
            """
            api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetPhysicalGroups(
                byref(api_dimTags_), byref(api_dimTags_n_),
                c_int(dim),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorpair(api_dimTags_, api_dimTags_n_.value)
        get_physical_groups = getPhysicalGroups
    
        @staticmethod
        def getEntitiesForPhysicalGroup(dim, tag):
            """
            gmsh.model.getEntitiesForPhysicalGroup(dim, tag)
    
            Get the tags of the model entities making up the physical group of
            dimension `dim' and tag `tag'.
    
            Return `tags'.
            """
            api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetEntitiesForPhysicalGroup(
                c_int(dim),
                c_int(tag),
                byref(api_tags_), byref(api_tags_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorint(api_tags_, api_tags_n_.value)
        get_entities_for_physical_group = getEntitiesForPhysicalGroup
    
        @staticmethod
        def getPhysicalGroupsForEntity(dim, tag):
            """
            gmsh.model.getPhysicalGroupsForEntity(dim, tag)
    
            Get the tags of the physical groups (if any) to which the model entity of
            dimension `dim' and tag `tag' belongs.
    
            Return `physicalTags'.
            """
            api_physicalTags_, api_physicalTags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetPhysicalGroupsForEntity(
                c_int(dim),
                c_int(tag),
                byref(api_physicalTags_), byref(api_physicalTags_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorint(api_physicalTags_, api_physicalTags_n_.value)
        get_physical_groups_for_entity = getPhysicalGroupsForEntity
    
        @staticmethod
        def addPhysicalGroup(dim, tags, tag=-1):
            """
            gmsh.model.addPhysicalGroup(dim, tags, tag=-1)
    
            Add a physical group of dimension `dim', grouping the model entities with
            tags `tags'. Return the tag of the physical group, equal to `tag' if `tag'
            is positive, or a new tag if `tag' < 0.
    
            Return an integer value.
            """
            api_tags_, api_tags_n_ = _ivectorint(tags)
            ierr = c_int()
            api_result_ = lib.gmshModelAddPhysicalGroup(
                c_int(dim),
                api_tags_, api_tags_n_,
                c_int(tag),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        add_physical_group = addPhysicalGroup
    
        @staticmethod
        def removePhysicalGroups(dimTags=[]):
            """
            gmsh.model.removePhysicalGroups(dimTags=[])
    
            Remove the physical groups `dimTags' from the current model. If `dimTags'
            is empty, remove all groups.
            """
            api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
            ierr = c_int()
            lib.gmshModelRemovePhysicalGroups(
                api_dimTags_, api_dimTags_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        remove_physical_groups = removePhysicalGroups
    
        @staticmethod
        def setPhysicalName(dim, tag, name):
            """
            gmsh.model.setPhysicalName(dim, tag, name)
    
            Set the name of the physical group of dimension `dim' and tag `tag'.
            """
            ierr = c_int()
            lib.gmshModelSetPhysicalName(
                c_int(dim),
                c_int(tag),
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_physical_name = setPhysicalName
    
        @staticmethod
        def removePhysicalName(name):
            """
            gmsh.model.removePhysicalName(name)
    
            Remove the physical name `name' from the current model.
            """
            ierr = c_int()
            lib.gmshModelRemovePhysicalName(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        remove_physical_name = removePhysicalName
    
        @staticmethod
        def getPhysicalName(dim, tag):
            """
            gmsh.model.getPhysicalName(dim, tag)
    
            Get the name of the physical group of dimension `dim' and tag `tag'.
    
            Return `name'.
            """
            api_name_ = c_char_p()
            ierr = c_int()
            lib.gmshModelGetPhysicalName(
                c_int(dim),
                c_int(tag),
                byref(api_name_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ostring(api_name_)
        get_physical_name = getPhysicalName
    
        @staticmethod
        def getBoundary(dimTags, combined=True, oriented=True, recursive=False):
            """
            gmsh.model.getBoundary(dimTags, combined=True, oriented=True, recursive=False)
    
            Get the boundary of the model entities `dimTags'. Return in `outDimTags'
            the boundary of the individual entities (if `combined' is false) or the
            boundary of the combined geometrical shape formed by all input entities (if
            `combined' is true). Return tags multiplied by the sign of the boundary
            entity if `oriented' is true. Apply the boundary operator recursively down
            to dimension 0 (i.e. to points) if `recursive' is true.
    
            Return `outDimTags'.
            """
            api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
            api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetBoundary(
                api_dimTags_, api_dimTags_n_,
                byref(api_outDimTags_), byref(api_outDimTags_n_),
                c_int(bool(combined)),
                c_int(bool(oriented)),
                c_int(bool(recursive)),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
        get_boundary = getBoundary
    
        @staticmethod
        def getAdjacencies(dim, tag):
            """
            gmsh.model.getAdjacencies(dim, tag)
    
            Get the upward and downward adjacencies of the model entity of dimension
            `dim' and tag `tag'. The `upward' vector returns the adjacent entities of
            dimension `dim' + 1; the `downward' vector returns the adjacent entities of
            dimension `dim' - 1.
    
            Return `upward', `downward'.
            """
            api_upward_, api_upward_n_ = POINTER(c_int)(), c_size_t()
            api_downward_, api_downward_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetAdjacencies(
                c_int(dim),
                c_int(tag),
                byref(api_upward_), byref(api_upward_n_),
                byref(api_downward_), byref(api_downward_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ovectorint(api_upward_, api_upward_n_.value),
                _ovectorint(api_downward_, api_downward_n_.value))
        get_adjacencies = getAdjacencies
    
        @staticmethod
        def getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1):
            """
            gmsh.model.getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1)
    
            Get the model entities in the bounding box defined by the two points
            (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0,
            return only the entities of the specified dimension (e.g. points if `dim'
            == 0).
    
            Return `tags'.
            """
            api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetEntitiesInBoundingBox(
                c_double(xmin),
                c_double(ymin),
                c_double(zmin),
                c_double(xmax),
                c_double(ymax),
                c_double(zmax),
                byref(api_tags_), byref(api_tags_n_),
                c_int(dim),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorpair(api_tags_, api_tags_n_.value)
        get_entities_in_bounding_box = getEntitiesInBoundingBox
    
        @staticmethod
        def getBoundingBox(dim, tag):
            """
            gmsh.model.getBoundingBox(dim, tag)
    
            Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of
            the model entity of dimension `dim' and tag `tag'. If `dim' and `tag' are
            negative, get the bounding box of the whole model.
    
            Return `xmin', `ymin', `zmin', `xmax', `ymax', `zmax'.
            """
            api_xmin_ = c_double()
            api_ymin_ = c_double()
            api_zmin_ = c_double()
            api_xmax_ = c_double()
            api_ymax_ = c_double()
            api_zmax_ = c_double()
            ierr = c_int()
            lib.gmshModelGetBoundingBox(
                c_int(dim),
                c_int(tag),
                byref(api_xmin_),
                byref(api_ymin_),
                byref(api_zmin_),
                byref(api_xmax_),
                byref(api_ymax_),
                byref(api_zmax_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                api_xmin_.value,
                api_ymin_.value,
                api_zmin_.value,
                api_xmax_.value,
                api_ymax_.value,
                api_zmax_.value)
        get_bounding_box = getBoundingBox
    
        @staticmethod
        def getDimension():
            """
            gmsh.model.getDimension()
    
            Get the geometrical dimension of the current model.
    
            Return an integer value.
            """
            ierr = c_int()
            api_result_ = lib.gmshModelGetDimension(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        get_dimension = getDimension
    
        @staticmethod
        def addDiscreteEntity(dim, tag=-1, boundary=[]):
            """
            gmsh.model.addDiscreteEntity(dim, tag=-1, boundary=[])
    
            Add a discrete model entity (defined by a mesh) of dimension `dim' in the
            current model. Return the tag of the new discrete entity, equal to `tag' if
            `tag' is positive, or a new tag if `tag' < 0. `boundary' specifies the tags
            of the entities on the boundary of the discrete entity, if any. Specifying
            `boundary' allows Gmsh to construct the topology of the overall model.
    
            Return an integer value.
            """
            api_boundary_, api_boundary_n_ = _ivectorint(boundary)
            ierr = c_int()
            api_result_ = lib.gmshModelAddDiscreteEntity(
                c_int(dim),
                c_int(tag),
                api_boundary_, api_boundary_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        add_discrete_entity = addDiscreteEntity
    
        @staticmethod
        def removeEntities(dimTags, recursive=False):
            """
            gmsh.model.removeEntities(dimTags, recursive=False)
    
            Remove the entities `dimTags' of the current model. If `recursive' is true,
            remove all the entities on their boundaries, down to dimension 0.
            """
            api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
            ierr = c_int()
            lib.gmshModelRemoveEntities(
                api_dimTags_, api_dimTags_n_,
                c_int(bool(recursive)),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        remove_entities = removeEntities
    
        @staticmethod
        def removeEntityName(name):
            """
            gmsh.model.removeEntityName(name)
    
            Remove the entity name `name' from the current model.
            """
            ierr = c_int()
            lib.gmshModelRemoveEntityName(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        remove_entity_name = removeEntityName
    
        @staticmethod
        def getType(dim, tag):
            """
            gmsh.model.getType(dim, tag)
    
            Get the type of the entity of dimension `dim' and tag `tag'.
    
            Return `entityType'.
            """
            api_entityType_ = c_char_p()
            ierr = c_int()
            lib.gmshModelGetType(
                c_int(dim),
                c_int(tag),
                byref(api_entityType_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ostring(api_entityType_)
        get_type = getType
    
        @staticmethod
        def getParent(dim, tag):
            """
            gmsh.model.getParent(dim, tag)
    
            In a partitioned model, get the parent of the entity of dimension `dim' and
            tag `tag', i.e. from which the entity is a part of, if any. `parentDim' and
            `parentTag' are set to -1 if the entity has no parent.
    
            Return `parentDim', `parentTag'.
            """
            api_parentDim_ = c_int()
            api_parentTag_ = c_int()
            ierr = c_int()
            lib.gmshModelGetParent(
                c_int(dim),
                c_int(tag),
                byref(api_parentDim_),
                byref(api_parentTag_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                api_parentDim_.value,
                api_parentTag_.value)
        get_parent = getParent
    
        @staticmethod
        def getPartitions(dim, tag):
            """
            gmsh.model.getPartitions(dim, tag)
    
            In a partitioned model, return the tags of the partition(s) to which the
            entity belongs.
    
            Return `partitions'.
            """
            api_partitions_, api_partitions_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetPartitions(
                c_int(dim),
                c_int(tag),
                byref(api_partitions_), byref(api_partitions_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorint(api_partitions_, api_partitions_n_.value)
        get_partitions = getPartitions
    
        @staticmethod
        def getValue(dim, tag, parametricCoord):
            """
            gmsh.model.getValue(dim, tag, parametricCoord)
    
            Evaluate the parametrization of the entity of dimension `dim' and tag `tag'
            at the parametric coordinates `parametricCoord'. Only valid for `dim' equal
            to 0 (with empty `parametricCoord'), 1 (with `parametricCoord' containing
            parametric coordinates on the curve) or 2 (with `parametricCoord'
            containing pairs of u, v parametric coordinates on the surface,
            concatenated: [p1u, p1v, p2u, ...]). Return triplets of x, y, z coordinates
            in `coord', concatenated: [p1x, p1y, p1z, p2x, ...].
    
            Return `coord'.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetValue(
                c_int(dim),
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                byref(api_coord_), byref(api_coord_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_coord_, api_coord_n_.value)
        get_value = getValue
    
        @staticmethod
        def getDerivative(dim, tag, parametricCoord):
            """
            gmsh.model.getDerivative(dim, tag, parametricCoord)
    
            Evaluate the derivative of the parametrization of the entity of dimension
            `dim' and tag `tag' at the parametric coordinates `parametricCoord'. Only
            valid for `dim' equal to 1 (with `parametricCoord' containing parametric
            coordinates on the curve) or 2 (with `parametricCoord' containing pairs of
            u, v parametric coordinates on the surface, concatenated: [p1u, p1v, p2u,
            ...]). For `dim' equal to 1 return the x, y, z components of the derivative
            with respect to u [d1ux, d1uy, d1uz, d2ux, ...]; for `dim' equal to 2
            return the x, y, z components of the derivative with respect to u and v:
            [d1ux, d1uy, d1uz, d1vx, d1vy, d1vz, d2ux, ...].
    
            Return `derivatives'.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            api_derivatives_, api_derivatives_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetDerivative(
                c_int(dim),
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                byref(api_derivatives_), byref(api_derivatives_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_derivatives_, api_derivatives_n_.value)
        get_derivative = getDerivative
    
        @staticmethod
        def getSecondDerivative(dim, tag, parametricCoord):
            """
            gmsh.model.getSecondDerivative(dim, tag, parametricCoord)
    
            Evaluate the second derivative of the parametrization of the entity of
            dimension `dim' and tag `tag' at the parametric coordinates
            `parametricCoord'. Only valid for `dim' equal to 1 (with `parametricCoord'
            containing parametric coordinates on the curve) or 2 (with
            `parametricCoord' containing pairs of u, v parametric coordinates on the
            surface, concatenated: [p1u, p1v, p2u, ...]). For `dim' equal to 1 return
            the x, y, z components of the second derivative with respect to u [d1uux,
            d1uuy, d1uuz, d2uux, ...]; for `dim' equal to 2 return the x, y, z
            components of the second derivative with respect to u and v, and the mixed
            derivative with respect to u and v: [d1uux, d1uuy, d1uuz, d1vvx, d1vvy,
            d1vvz, d1uvx, d1uvy, d1uvz, d2uux, ...].
    
            Return `derivatives'.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            api_derivatives_, api_derivatives_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetSecondDerivative(
                c_int(dim),
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                byref(api_derivatives_), byref(api_derivatives_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_derivatives_, api_derivatives_n_.value)
        get_second_derivative = getSecondDerivative
    
        @staticmethod
        def getCurvature(dim, tag, parametricCoord):
            """
            gmsh.model.getCurvature(dim, tag, parametricCoord)
    
            Evaluate the (maximum) curvature of the entity of dimension `dim' and tag
            `tag' at the parametric coordinates `parametricCoord'. Only valid for `dim'
            equal to 1 (with `parametricCoord' containing parametric coordinates on the
            curve) or 2 (with `parametricCoord' containing pairs of u, v parametric
            coordinates on the surface, concatenated: [p1u, p1v, p2u, ...]).
    
            Return `curvatures'.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            api_curvatures_, api_curvatures_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetCurvature(
                c_int(dim),
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                byref(api_curvatures_), byref(api_curvatures_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_curvatures_, api_curvatures_n_.value)
        get_curvature = getCurvature
    
        @staticmethod
        def getPrincipalCurvatures(tag, parametricCoord):
            """
            gmsh.model.getPrincipalCurvatures(tag, parametricCoord)
    
            Evaluate the principal curvatures of the surface with tag `tag' at the
            parametric coordinates `parametricCoord', as well as their respective
            directions. `parametricCoord' are given by pair of u and v coordinates,
            concatenated: [p1u, p1v, p2u, ...].
    
            Return `curvatureMax', `curvatureMin', `directionMax', `directionMin'.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            api_curvatureMax_, api_curvatureMax_n_ = POINTER(c_double)(), c_size_t()
            api_curvatureMin_, api_curvatureMin_n_ = POINTER(c_double)(), c_size_t()
            api_directionMax_, api_directionMax_n_ = POINTER(c_double)(), c_size_t()
            api_directionMin_, api_directionMin_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetPrincipalCurvatures(
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                byref(api_curvatureMax_), byref(api_curvatureMax_n_),
                byref(api_curvatureMin_), byref(api_curvatureMin_n_),
                byref(api_directionMax_), byref(api_directionMax_n_),
                byref(api_directionMin_), byref(api_directionMin_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ovectordouble(api_curvatureMax_, api_curvatureMax_n_.value),
                _ovectordouble(api_curvatureMin_, api_curvatureMin_n_.value),
                _ovectordouble(api_directionMax_, api_directionMax_n_.value),
                _ovectordouble(api_directionMin_, api_directionMin_n_.value))
        get_principal_curvatures = getPrincipalCurvatures
    
        @staticmethod
        def getNormal(tag, parametricCoord):
            """
            gmsh.model.getNormal(tag, parametricCoord)
    
            Get the normal to the surface with tag `tag' at the parametric coordinates
            `parametricCoord'. `parametricCoord' are given by pairs of u and v
            coordinates, concatenated: [p1u, p1v, p2u, ...]. `normals' are returned as
            triplets of x, y, z components, concatenated: [n1x, n1y, n1z, n2x, ...].
    
            Return `normals'.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            api_normals_, api_normals_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetNormal(
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                byref(api_normals_), byref(api_normals_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_normals_, api_normals_n_.value)
        get_normal = getNormal
    
        @staticmethod
        def getParametrization(dim, tag, coord):
            """
            gmsh.model.getParametrization(dim, tag, coord)
    
            Get the parametric coordinates `parametricCoord' for the points `coord' on
            the entity of dimension `dim' and tag `tag'. `coord' are given as triplets
            of x, y, z coordinates, concatenated: [p1x, p1y, p1z, p2x, ...].
            `parametricCoord' returns the parametric coordinates t on the curve (if
            `dim' = 1) or pairs of u and v coordinates concatenated on the surface (if
            `dim' = 2), i.e. [p1t, p2t, ...] or [p1u, p1v, p2u, ...].
    
            Return `parametricCoord'.
            """
            api_coord_, api_coord_n_ = _ivectordouble(coord)
            api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetParametrization(
                c_int(dim),
                c_int(tag),
                api_coord_, api_coord_n_,
                byref(api_parametricCoord_), byref(api_parametricCoord_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value)
        get_parametrization = getParametrization
    
        @staticmethod
        def getParametrizationBounds(dim, tag):
            """
            gmsh.model.getParametrizationBounds(dim, tag)
    
            Get the `min' and `max' bounds of the parametric coordinates for the entity
            of dimension `dim' and tag `tag'.
    
            Return `min', `max'.
            """
            api_min_, api_min_n_ = POINTER(c_double)(), c_size_t()
            api_max_, api_max_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetParametrizationBounds(
                c_int(dim),
                c_int(tag),
                byref(api_min_), byref(api_min_n_),
                byref(api_max_), byref(api_max_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ovectordouble(api_min_, api_min_n_.value),
                _ovectordouble(api_max_, api_max_n_.value))
        get_parametrization_bounds = getParametrizationBounds
    
        @staticmethod
        def isInside(dim, tag, parametricCoord):
            """
            gmsh.model.isInside(dim, tag, parametricCoord)
    
            Check if the parametric coordinates provided in `parametricCoord'
            correspond to points inside the entitiy of dimension `dim' and tag `tag',
            and return the number of points inside. This feature is only available for
            a subset of curves and surfaces, depending on the underyling geometrical
            representation.
    
            Return an integer value.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            ierr = c_int()
            api_result_ = lib.gmshModelIsInside(
                c_int(dim),
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        is_inside = isInside
    
        @staticmethod
        def getClosestPoint(dim, tag, coord):
            """
            gmsh.model.getClosestPoint(dim, tag, coord)
    
            Get the points `closestCoord' on the entity of dimension `dim' and tag
            `tag' to the points `coord', by orthogonal projection. `coord' and
            `closestCoord' are given as triplets of x, y, z coordinates, concatenated:
            [p1x, p1y, p1z, p2x, ...]. `parametricCoord' returns the parametric
            coordinates t on the curve (if `dim' = 1) or pairs of u and v coordinates
            concatenated on the surface (if `dim' = 2), i.e. [p1t, p2t, ...] or [p1u,
            p1v, p2u, ...].
    
            Return `closestCoord', `parametricCoord'.
            """
            api_coord_, api_coord_n_ = _ivectordouble(coord)
            api_closestCoord_, api_closestCoord_n_ = POINTER(c_double)(), c_size_t()
            api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelGetClosestPoint(
                c_int(dim),
                c_int(tag),
                api_coord_, api_coord_n_,
                byref(api_closestCoord_), byref(api_closestCoord_n_),
                byref(api_parametricCoord_), byref(api_parametricCoord_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ovectordouble(api_closestCoord_, api_closestCoord_n_.value),
                _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value))
        get_closest_point = getClosestPoint
    
        @staticmethod
        def reparametrizeOnSurface(dim, tag, parametricCoord, surfaceTag, which=0):
            """
            gmsh.model.reparametrizeOnSurface(dim, tag, parametricCoord, surfaceTag, which=0)
    
            Reparametrize the boundary entity (point or curve, i.e. with `dim' == 0 or
            `dim' == 1) of tag `tag' on the surface `surfaceTag'. If `dim' == 1,
            reparametrize all the points corresponding to the parametric coordinates
            `parametricCoord'. Multiple matches in case of periodic surfaces can be
            selected with `which'. This feature is only available for a subset of
            entities, depending on the underyling geometrical representation.
    
            Return `surfaceParametricCoord'.
            """
            api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
            api_surfaceParametricCoord_, api_surfaceParametricCoord_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshModelReparametrizeOnSurface(
                c_int(dim),
                c_int(tag),
                api_parametricCoord_, api_parametricCoord_n_,
                c_int(surfaceTag),
                byref(api_surfaceParametricCoord_), byref(api_surfaceParametricCoord_n_),
                c_int(which),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_surfaceParametricCoord_, api_surfaceParametricCoord_n_.value)
        reparametrize_on_surface = reparametrizeOnSurface
    
        @staticmethod
        def setVisibility(dimTags, value, recursive=False):
            """
            gmsh.model.setVisibility(dimTags, value, recursive=False)
    
            Set the visibility of the model entities `dimTags' to `value'. Apply the
            visibility setting recursively if `recursive' is true.
            """
            api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
            ierr = c_int()
            lib.gmshModelSetVisibility(
                api_dimTags_, api_dimTags_n_,
                c_int(value),
                c_int(bool(recursive)),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_visibility = setVisibility
    
        @staticmethod
        def getVisibility(dim, tag):
            """
            gmsh.model.getVisibility(dim, tag)
    
            Get the visibility of the model entity of dimension `dim' and tag `tag'.
    
            Return `value'.
            """
            api_value_ = c_int()
            ierr = c_int()
            lib.gmshModelGetVisibility(
                c_int(dim),
                c_int(tag),
                byref(api_value_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_value_.value
        get_visibility = getVisibility
    
        @staticmethod
        def setVisibilityPerWindow(value, windowIndex=0):
            """
            gmsh.model.setVisibilityPerWindow(value, windowIndex=0)
    
            Set the global visibility of the model per window to `value', where
            `windowIndex' identifies the window in the window list.
            """
            ierr = c_int()
            lib.gmshModelSetVisibilityPerWindow(
                c_int(value),
                c_int(windowIndex),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_visibility_per_window = setVisibilityPerWindow
    
        @staticmethod
        def setColor(dimTags, r, g, b, a=255, recursive=False):
            """
            gmsh.model.setColor(dimTags, r, g, b, a=255, recursive=False)
    
            Set the color of the model entities `dimTags' to the RGBA value (`r', `g',
            `b', `a'), where `r', `g', `b' and `a' should be integers between 0 and
            255. Apply the color setting recursively if `recursive' is true.
            """
            api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
            ierr = c_int()
            lib.gmshModelSetColor(
                api_dimTags_, api_dimTags_n_,
                c_int(r),
                c_int(g),
                c_int(b),
                c_int(a),
                c_int(bool(recursive)),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_color = setColor
    
        @staticmethod
        def getColor(dim, tag):
            """
            gmsh.model.getColor(dim, tag)
    
            Get the color of the model entity of dimension `dim' and tag `tag'.
    
            Return `r', `g', `b', `a'.
            """
            api_r_ = c_int()
            api_g_ = c_int()
            api_b_ = c_int()
            api_a_ = c_int()
            ierr = c_int()
            lib.gmshModelGetColor(
                c_int(dim),
                c_int(tag),
                byref(api_r_),
                byref(api_g_),
                byref(api_b_),
                byref(api_a_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                api_r_.value,
                api_g_.value,
                api_b_.value,
                api_a_.value)
        get_color = getColor
    
        @staticmethod
        def setCoordinates(tag, x, y, z):
            """
            gmsh.model.setCoordinates(tag, x, y, z)
    
            Set the `x', `y', `z' coordinates of a geometrical point.
            """
            ierr = c_int()
            lib.gmshModelSetCoordinates(
                c_int(tag),
                c_double(x),
                c_double(y),
                c_double(z),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_coordinates = setCoordinates
    
    
        class mesh:
            """
            Mesh functions
            """
    
            @staticmethod
            def generate(dim=3):
                """
                gmsh.model.mesh.generate(dim=3)
    
                Generate a mesh of the current model, up to dimension `dim' (0, 1, 2 or 3).
                """
                ierr = c_int()
                lib.gmshModelMeshGenerate(
                    c_int(dim),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def partition(numPart):
                """
                gmsh.model.mesh.partition(numPart)
    
                Partition the mesh of the current model into `numPart' partitions.
                """
                ierr = c_int()
                lib.gmshModelMeshPartition(
                    c_int(numPart),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def unpartition():
                """
                gmsh.model.mesh.unpartition()
    
                Unpartition the mesh of the current model.
                """
                ierr = c_int()
                lib.gmshModelMeshUnpartition(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def optimize(method, force=False, niter=1, dimTags=[]):
                """
                gmsh.model.mesh.optimize(method, force=False, niter=1, dimTags=[])
    
                Optimize the mesh of the current model using `method' (empty for default
                tetrahedral mesh optimizer, "Netgen" for Netgen optimizer, "HighOrder" for
                direct high-order mesh optimizer, "HighOrderElastic" for high-order elastic
                smoother, "HighOrderFastCurving" for fast curving algorithm, "Laplace2D"
                for Laplace smoothing, "Relocate2D" and "Relocate3D" for node relocation).
                If `force' is set apply the optimization also to discrete entities. If
                `dimTags' is given, only apply the optimizer to the given entities.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshOptimize(
                    c_char_p(method.encode()),
                    c_int(bool(force)),
                    c_int(niter),
                    api_dimTags_, api_dimTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def recombine():
                """
                gmsh.model.mesh.recombine()
    
                Recombine the mesh of the current model.
                """
                ierr = c_int()
                lib.gmshModelMeshRecombine(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def refine():
                """
                gmsh.model.mesh.refine()
    
                Refine the mesh of the current model by uniformly splitting the elements.
                """
                ierr = c_int()
                lib.gmshModelMeshRefine(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def setOrder(order):
                """
                gmsh.model.mesh.setOrder(order)
    
                Set the order of the elements in the mesh of the current model to `order'.
                """
                ierr = c_int()
                lib.gmshModelMeshSetOrder(
                    c_int(order),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_order = setOrder
    
            @staticmethod
            def getLastEntityError():
                """
                gmsh.model.mesh.getLastEntityError()
    
                Get the last entities (if any) where a meshing error occurred. Currently
                only populated by the new 3D meshing algorithms.
    
                Return `dimTags'.
                """
                api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetLastEntityError(
                    byref(api_dimTags_), byref(api_dimTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_dimTags_, api_dimTags_n_.value)
            get_last_entity_error = getLastEntityError
    
            @staticmethod
            def getLastNodeError():
                """
                gmsh.model.mesh.getLastNodeError()
    
                Get the last nodes (if any) where a meshing error occurred. Currently only
                populated by the new 3D meshing algorithms.
    
                Return `nodeTags'.
                """
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetLastNodeError(
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorsize(api_nodeTags_, api_nodeTags_n_.value)
            get_last_node_error = getLastNodeError
    
            @staticmethod
            def clear(dimTags=[]):
                """
                gmsh.model.mesh.clear(dimTags=[])
    
                Clear the mesh, i.e. delete all the nodes and elements, for the entities
                `dimTags'. if `dimTags' is empty, clear the whole mesh. Note that the mesh
                of an entity can only be cleared if this entity is not on the boundary of
                another entity with a non-empty mesh.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshClear(
                    api_dimTags_, api_dimTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def getNodes(dim=-1, tag=-1, includeBoundary=False, returnParametricCoord=True):
                """
                gmsh.model.mesh.getNodes(dim=-1, tag=-1, includeBoundary=False, returnParametricCoord=True)
    
                Get the nodes classified on the entity of dimension `dim' and tag `tag'. If
                `tag' < 0, get the nodes for all entities of dimension `dim'. If `dim' and
                `tag' are negative, get all the nodes in the mesh. `nodeTags' contains the
                node tags (their unique, strictly positive identification numbers). `coord'
                is a vector of length 3 times the length of `nodeTags' that contains the x,
                y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...]. If
                `dim' >= 0 and `returnParamtricCoord' is set, `parametricCoord' contains
                the parametric coordinates ([u1, u2, ...] or [u1, v1, u2, ...]) of the
                nodes, if available. The length of `parametricCoord' can be 0 or `dim'
                times the length of `nodeTags'. If `includeBoundary' is set, also return
                the nodes classified on the boundary of the entity (which will be
                reparametrized on the entity if `dim' >= 0 in order to compute their
                parametric coordinates).
    
                Return `nodeTags', `coord', `parametricCoord'.
                """
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetNodes(
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    byref(api_coord_), byref(api_coord_n_),
                    byref(api_parametricCoord_), byref(api_parametricCoord_n_),
                    c_int(dim),
                    c_int(tag),
                    c_int(bool(includeBoundary)),
                    c_int(bool(returnParametricCoord)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorsize(api_nodeTags_, api_nodeTags_n_.value),
                    _ovectordouble(api_coord_, api_coord_n_.value),
                    _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value))
            get_nodes = getNodes
    
            @staticmethod
            def getNodesByElementType(elementType, tag=-1, returnParametricCoord=True):
                """
                gmsh.model.mesh.getNodesByElementType(elementType, tag=-1, returnParametricCoord=True)
    
                Get the nodes classified on the entity of tag `tag', for all the elements
                of type `elementType'. The other arguments are treated as in `getNodes'.
    
                Return `nodeTags', `coord', `parametricCoord'.
                """
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetNodesByElementType(
                    c_int(elementType),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    byref(api_coord_), byref(api_coord_n_),
                    byref(api_parametricCoord_), byref(api_parametricCoord_n_),
                    c_int(tag),
                    c_int(bool(returnParametricCoord)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorsize(api_nodeTags_, api_nodeTags_n_.value),
                    _ovectordouble(api_coord_, api_coord_n_.value),
                    _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value))
            get_nodes_by_element_type = getNodesByElementType
    
            @staticmethod
            def getNode(nodeTag):
                """
                gmsh.model.mesh.getNode(nodeTag)
    
                Get the coordinates and the parametric coordinates (if any) of the node
                with tag `tag'. This function relies on an internal cache (a vector in case
                of dense node numbering, a map otherwise); for large meshes accessing nodes
                in bulk is often preferable.
    
                Return `coord', `parametricCoord'.
                """
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                api_parametricCoord_, api_parametricCoord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetNode(
                    c_size_t(nodeTag),
                    byref(api_coord_), byref(api_coord_n_),
                    byref(api_parametricCoord_), byref(api_parametricCoord_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectordouble(api_coord_, api_coord_n_.value),
                    _ovectordouble(api_parametricCoord_, api_parametricCoord_n_.value))
            get_node = getNode
    
            @staticmethod
            def setNode(nodeTag, coord, parametricCoord):
                """
                gmsh.model.mesh.setNode(nodeTag, coord, parametricCoord)
    
                Set the coordinates and the parametric coordinates (if any) of the node
                with tag `tag'. This function relies on an internal cache (a vector in case
                of dense node numbering, a map otherwise); for large meshes accessing nodes
                in bulk is often preferable.
                """
                api_coord_, api_coord_n_ = _ivectordouble(coord)
                api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
                ierr = c_int()
                lib.gmshModelMeshSetNode(
                    c_size_t(nodeTag),
                    api_coord_, api_coord_n_,
                    api_parametricCoord_, api_parametricCoord_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_node = setNode
    
            @staticmethod
            def rebuildNodeCache(onlyIfNecessary=True):
                """
                gmsh.model.mesh.rebuildNodeCache(onlyIfNecessary=True)
    
                Rebuild the node cache.
                """
                ierr = c_int()
                lib.gmshModelMeshRebuildNodeCache(
                    c_int(bool(onlyIfNecessary)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            rebuild_node_cache = rebuildNodeCache
    
            @staticmethod
            def rebuildElementCache(onlyIfNecessary=True):
                """
                gmsh.model.mesh.rebuildElementCache(onlyIfNecessary=True)
    
                Rebuild the element cache.
                """
                ierr = c_int()
                lib.gmshModelMeshRebuildElementCache(
                    c_int(bool(onlyIfNecessary)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            rebuild_element_cache = rebuildElementCache
    
            @staticmethod
            def getNodesForPhysicalGroup(dim, tag):
                """
                gmsh.model.mesh.getNodesForPhysicalGroup(dim, tag)
    
                Get the nodes from all the elements belonging to the physical group of
                dimension `dim' and tag `tag'. `nodeTags' contains the node tags; `coord'
                is a vector of length 3 times the length of `nodeTags' that contains the x,
                y, z coordinates of the nodes, concatenated: [n1x, n1y, n1z, n2x, ...].
    
                Return `nodeTags', `coord'.
                """
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetNodesForPhysicalGroup(
                    c_int(dim),
                    c_int(tag),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    byref(api_coord_), byref(api_coord_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorsize(api_nodeTags_, api_nodeTags_n_.value),
                    _ovectordouble(api_coord_, api_coord_n_.value))
            get_nodes_for_physical_group = getNodesForPhysicalGroup
    
            @staticmethod
            def addNodes(dim, tag, nodeTags, coord, parametricCoord=[]):
                """
                gmsh.model.mesh.addNodes(dim, tag, nodeTags, coord, parametricCoord=[])
    
                Add nodes classified on the model entity of dimension `dim' and tag `tag'.
                `nodeTags' contains the node tags (their unique, strictly positive
                identification numbers). `coord' is a vector of length 3 times the length
                of `nodeTags' that contains the x, y, z coordinates of the nodes,
                concatenated: [n1x, n1y, n1z, n2x, ...]. The optional `parametricCoord'
                vector contains the parametric coordinates of the nodes, if any. The length
                of `parametricCoord' can be 0 or `dim' times the length of `nodeTags'. If
                the `nodeTags' vector is empty, new tags are automatically assigned to the
                nodes.
                """
                api_nodeTags_, api_nodeTags_n_ = _ivectorsize(nodeTags)
                api_coord_, api_coord_n_ = _ivectordouble(coord)
                api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
                ierr = c_int()
                lib.gmshModelMeshAddNodes(
                    c_int(dim),
                    c_int(tag),
                    api_nodeTags_, api_nodeTags_n_,
                    api_coord_, api_coord_n_,
                    api_parametricCoord_, api_parametricCoord_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            add_nodes = addNodes
    
            @staticmethod
            def reclassifyNodes():
                """
                gmsh.model.mesh.reclassifyNodes()
    
                Reclassify all nodes on their associated model entity, based on the
                elements. Can be used when importing nodes in bulk (e.g. by associating
                them all to a single volume), to reclassify them correctly on model
                surfaces, curves, etc. after the elements have been set.
                """
                ierr = c_int()
                lib.gmshModelMeshReclassifyNodes(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            reclassify_nodes = reclassifyNodes
    
            @staticmethod
            def relocateNodes(dim=-1, tag=-1):
                """
                gmsh.model.mesh.relocateNodes(dim=-1, tag=-1)
    
                Relocate the nodes classified on the entity of dimension `dim' and tag
                `tag' using their parametric coordinates. If `tag' < 0, relocate the nodes
                for all entities of dimension `dim'. If `dim' and `tag' are negative,
                relocate all the nodes in the mesh.
                """
                ierr = c_int()
                lib.gmshModelMeshRelocateNodes(
                    c_int(dim),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            relocate_nodes = relocateNodes
    
            @staticmethod
            def getElements(dim=-1, tag=-1):
                """
                gmsh.model.mesh.getElements(dim=-1, tag=-1)
    
                Get the elements classified on the entity of dimension `dim' and tag `tag'.
                If `tag' < 0, get the elements for all entities of dimension `dim'. If
                `dim' and `tag' are negative, get all the elements in the mesh.
                `elementTypes' contains the MSH types of the elements (e.g. `2' for 3-node
                triangles: see `getElementProperties' to obtain the properties for a given
                element type). `elementTags' is a vector of the same length as
                `elementTypes'; each entry is a vector containing the tags (unique,
                strictly positive identifiers) of the elements of the corresponding type.
                `nodeTags' is also a vector of the same length as `elementTypes'; each
                entry is a vector of length equal to the number of elements of the given
                type times the number N of nodes for this type of element, that contains
                the node tags of all the elements of the given type, concatenated: [e1n1,
                e1n2, ..., e1nN, e2n1, ...].
    
                Return `elementTypes', `elementTags', `nodeTags'.
                """
                api_elementTypes_, api_elementTypes_n_ = POINTER(c_int)(), c_size_t()
                api_elementTags_, api_elementTags_n_, api_elementTags_nn_ = POINTER(POINTER(c_size_t))(), POINTER(c_size_t)(), c_size_t()
                api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_ = POINTER(POINTER(c_size_t))(), POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetElements(
                    byref(api_elementTypes_), byref(api_elementTypes_n_),
                    byref(api_elementTags_), byref(api_elementTags_n_), byref(api_elementTags_nn_),
                    byref(api_nodeTags_), byref(api_nodeTags_n_), byref(api_nodeTags_nn_),
                    c_int(dim),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorint(api_elementTypes_, api_elementTypes_n_.value),
                    _ovectorvectorsize(api_elementTags_, api_elementTags_n_, api_elementTags_nn_),
                    _ovectorvectorsize(api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_))
            get_elements = getElements
    
            @staticmethod
            def getElement(elementTag):
                """
                gmsh.model.mesh.getElement(elementTag)
    
                Get the type and node tags of the element with tag `tag'. This function
                relies on an internal cache (a vector in case of dense element numbering, a
                map otherwise); for large meshes accessing elements in bulk is often
                preferable.
    
                Return `elementType', `nodeTags'.
                """
                api_elementType_ = c_int()
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetElement(
                    c_size_t(elementTag),
                    byref(api_elementType_),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    api_elementType_.value,
                    _ovectorsize(api_nodeTags_, api_nodeTags_n_.value))
            get_element = getElement
    
            @staticmethod
            def getElementByCoordinates(x, y, z, dim=-1, strict=False):
                """
                gmsh.model.mesh.getElementByCoordinates(x, y, z, dim=-1, strict=False)
    
                Search the mesh for an element located at coordinates (`x', `y', `z'). This
                function performs a search in a spatial octree. If an element is found,
                return its tag, type and node tags, as well as the local coordinates (`u',
                `v', `w') within the reference element corresponding to search location. If
                `dim' is >= 0, only search for elements of the given dimension. If `strict'
                is not set, use a tolerance to find elements near the search location.
    
                Return `elementTag', `elementType', `nodeTags', `u', `v', `w'.
                """
                api_elementTag_ = c_size_t()
                api_elementType_ = c_int()
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_u_ = c_double()
                api_v_ = c_double()
                api_w_ = c_double()
                ierr = c_int()
                lib.gmshModelMeshGetElementByCoordinates(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    byref(api_elementTag_),
                    byref(api_elementType_),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    byref(api_u_),
                    byref(api_v_),
                    byref(api_w_),
                    c_int(dim),
                    c_int(bool(strict)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    api_elementTag_.value,
                    api_elementType_.value,
                    _ovectorsize(api_nodeTags_, api_nodeTags_n_.value),
                    api_u_.value,
                    api_v_.value,
                    api_w_.value)
            get_element_by_coordinates = getElementByCoordinates
    
            @staticmethod
            def getElementsByCoordinates(x, y, z, dim=-1, strict=False):
                """
                gmsh.model.mesh.getElementsByCoordinates(x, y, z, dim=-1, strict=False)
    
                Search the mesh for element(s) located at coordinates (`x', `y', `z'). This
                function performs a search in a spatial octree. Return the tags of all
                found elements in `elementTags'. Additional information about the elements
                can be accessed through `getElement' and `getLocalCoordinatesInElement'. If
                `dim' is >= 0, only search for elements of the given dimension. If `strict'
                is not set, use a tolerance to find elements near the search location.
    
                Return `elementTags'.
                """
                api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetElementsByCoordinates(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    byref(api_elementTags_), byref(api_elementTags_n_),
                    c_int(dim),
                    c_int(bool(strict)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorsize(api_elementTags_, api_elementTags_n_.value)
            get_elements_by_coordinates = getElementsByCoordinates
    
            @staticmethod
            def getLocalCoordinatesInElement(elementTag, x, y, z):
                """
                gmsh.model.mesh.getLocalCoordinatesInElement(elementTag, x, y, z)
    
                Return the local coordinates (`u', `v', `w') within the element
                `elementTag' corresponding to the model coordinates (`x', `y', `z'). This
                function relies on an internal cache (a vector in case of dense element
                numbering, a map otherwise); for large meshes accessing elements in bulk is
                often preferable.
    
                Return `u', `v', `w'.
                """
                api_u_ = c_double()
                api_v_ = c_double()
                api_w_ = c_double()
                ierr = c_int()
                lib.gmshModelMeshGetLocalCoordinatesInElement(
                    c_size_t(elementTag),
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    byref(api_u_),
                    byref(api_v_),
                    byref(api_w_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    api_u_.value,
                    api_v_.value,
                    api_w_.value)
            get_local_coordinates_in_element = getLocalCoordinatesInElement
    
            @staticmethod
            def getElementTypes(dim=-1, tag=-1):
                """
                gmsh.model.mesh.getElementTypes(dim=-1, tag=-1)
    
                Get the types of elements in the entity of dimension `dim' and tag `tag'.
                If `tag' < 0, get the types for all entities of dimension `dim'. If `dim'
                and `tag' are negative, get all the types in the mesh.
    
                Return `elementTypes'.
                """
                api_elementTypes_, api_elementTypes_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetElementTypes(
                    byref(api_elementTypes_), byref(api_elementTypes_n_),
                    c_int(dim),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorint(api_elementTypes_, api_elementTypes_n_.value)
            get_element_types = getElementTypes
    
            @staticmethod
            def getElementType(familyName, order, serendip=False):
                """
                gmsh.model.mesh.getElementType(familyName, order, serendip=False)
    
                Return an element type given its family name `familyName' ("Point", "Line",
                "Triangle", "Quadrangle", "Tetrahedron", "Pyramid", "Prism", "Hexahedron")
                and polynomial order `order'. If `serendip' is true, return the
                corresponding serendip element type (element without interior nodes).
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelMeshGetElementType(
                    c_char_p(familyName.encode()),
                    c_int(order),
                    c_int(bool(serendip)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            get_element_type = getElementType
    
            @staticmethod
            def getElementProperties(elementType):
                """
                gmsh.model.mesh.getElementProperties(elementType)
    
                Get the properties of an element of type `elementType': its name
                (`elementName'), dimension (`dim'), order (`order'), number of nodes
                (`numNodes'), local coordinates of the nodes in the reference element
                (`localNodeCoord' vector, of length `dim' times `numNodes') and number of
                primary (first order) nodes (`numPrimaryNodes').
    
                Return `elementName', `dim', `order', `numNodes', `localNodeCoord', `numPrimaryNodes'.
                """
                api_elementName_ = c_char_p()
                api_dim_ = c_int()
                api_order_ = c_int()
                api_numNodes_ = c_int()
                api_localNodeCoord_, api_localNodeCoord_n_ = POINTER(c_double)(), c_size_t()
                api_numPrimaryNodes_ = c_int()
                ierr = c_int()
                lib.gmshModelMeshGetElementProperties(
                    c_int(elementType),
                    byref(api_elementName_),
                    byref(api_dim_),
                    byref(api_order_),
                    byref(api_numNodes_),
                    byref(api_localNodeCoord_), byref(api_localNodeCoord_n_),
                    byref(api_numPrimaryNodes_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ostring(api_elementName_),
                    api_dim_.value,
                    api_order_.value,
                    api_numNodes_.value,
                    _ovectordouble(api_localNodeCoord_, api_localNodeCoord_n_.value),
                    api_numPrimaryNodes_.value)
            get_element_properties = getElementProperties
    
            @staticmethod
            def getElementsByType(elementType, tag=-1, task=0, numTasks=1):
                """
                gmsh.model.mesh.getElementsByType(elementType, tag=-1, task=0, numTasks=1)
    
                Get the elements of type `elementType' classified on the entity of tag
                `tag'. If `tag' < 0, get the elements for all entities. `elementTags' is a
                vector containing the tags (unique, strictly positive identifiers) of the
                elements of the corresponding type. `nodeTags' is a vector of length equal
                to the number of elements of the given type times the number N of nodes for
                this type of element, that contains the node tags of all the elements of
                the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1, ...]. If
                `numTasks' > 1, only compute and return the part of the data indexed by
                `task'.
    
                Return `elementTags', `nodeTags'.
                """
                api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetElementsByType(
                    c_int(elementType),
                    byref(api_elementTags_), byref(api_elementTags_n_),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    c_int(tag),
                    c_size_t(task),
                    c_size_t(numTasks),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorsize(api_elementTags_, api_elementTags_n_.value),
                    _ovectorsize(api_nodeTags_, api_nodeTags_n_.value))
            get_elements_by_type = getElementsByType
    
            @staticmethod
            def addElements(dim, tag, elementTypes, elementTags, nodeTags):
                """
                gmsh.model.mesh.addElements(dim, tag, elementTypes, elementTags, nodeTags)
    
                Add elements classified on the entity of dimension `dim' and tag `tag'.
                `types' contains the MSH types of the elements (e.g. `2' for 3-node
                triangles: see the Gmsh reference manual). `elementTags' is a vector of the
                same length as `types'; each entry is a vector containing the tags (unique,
                strictly positive identifiers) of the elements of the corresponding type.
                `nodeTags' is also a vector of the same length as `types'; each entry is a
                vector of length equal to the number of elements of the given type times
                the number N of nodes per element, that contains the node tags of all the
                elements of the given type, concatenated: [e1n1, e1n2, ..., e1nN, e2n1,
                ...].
                """
                api_elementTypes_, api_elementTypes_n_ = _ivectorint(elementTypes)
                api_elementTags_, api_elementTags_n_, api_elementTags_nn_ = _ivectorvectorsize(elementTags)
                api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_ = _ivectorvectorsize(nodeTags)
                ierr = c_int()
                lib.gmshModelMeshAddElements(
                    c_int(dim),
                    c_int(tag),
                    api_elementTypes_, api_elementTypes_n_,
                    api_elementTags_, api_elementTags_n_, api_elementTags_nn_,
                    api_nodeTags_, api_nodeTags_n_, api_nodeTags_nn_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            add_elements = addElements
    
            @staticmethod
            def addElementsByType(tag, elementType, elementTags, nodeTags):
                """
                gmsh.model.mesh.addElementsByType(tag, elementType, elementTags, nodeTags)
    
                Add elements of type `elementType' classified on the entity of tag `tag'.
                `elementTags' contains the tags (unique, strictly positive identifiers) of
                the elements of the corresponding type. `nodeTags' is a vector of length
                equal to the number of elements times the number N of nodes per element,
                that contains the node tags of all the elements, concatenated: [e1n1, e1n2,
                ..., e1nN, e2n1, ...]. If the `elementTag' vector is empty, new tags are
                automatically assigned to the elements.
                """
                api_elementTags_, api_elementTags_n_ = _ivectorsize(elementTags)
                api_nodeTags_, api_nodeTags_n_ = _ivectorsize(nodeTags)
                ierr = c_int()
                lib.gmshModelMeshAddElementsByType(
                    c_int(tag),
                    c_int(elementType),
                    api_elementTags_, api_elementTags_n_,
                    api_nodeTags_, api_nodeTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            add_elements_by_type = addElementsByType
    
            @staticmethod
            def getIntegrationPoints(elementType, integrationType):
                """
                gmsh.model.mesh.getIntegrationPoints(elementType, integrationType)
    
                Get the numerical quadrature information for the given element type
                `elementType' and integration rule `integrationType' (e.g. "Gauss4" for a
                Gauss quadrature suited for integrating 4th order polynomials).
                `localCoord' contains the u, v, w coordinates of the G integration points
                in the reference element: [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `weights'
                contains the associated weights: [g1q, ..., gGq].
    
                Return `localCoord', `weights'.
                """
                api_localCoord_, api_localCoord_n_ = POINTER(c_double)(), c_size_t()
                api_weights_, api_weights_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetIntegrationPoints(
                    c_int(elementType),
                    c_char_p(integrationType.encode()),
                    byref(api_localCoord_), byref(api_localCoord_n_),
                    byref(api_weights_), byref(api_weights_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectordouble(api_localCoord_, api_localCoord_n_.value),
                    _ovectordouble(api_weights_, api_weights_n_.value))
            get_integration_points = getIntegrationPoints
    
            @staticmethod
            def getJacobians(elementType, localCoord, tag=-1, task=0, numTasks=1):
                """
                gmsh.model.mesh.getJacobians(elementType, localCoord, tag=-1, task=0, numTasks=1)
    
                Get the Jacobians of all the elements of type `elementType' classified on
                the entity of tag `tag', at the G evaluation points `localCoord' given as
                concatenated triplets of coordinates in the reference element [g1u, g1v,
                g1w, ..., gGu, gGv, gGw]. Data is returned by element, with elements in the
                same order as in `getElements' and `getElementsByType'. `jacobians'
                contains for each element the 9 entries of the 3x3 Jacobian matrix at each
                evaluation point. The matrix is returned by column: [e1g1Jxu, e1g1Jyu,
                e1g1Jzu, e1g1Jxv, ..., e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with
                Jxu=dx/du, Jyu=dy/du, etc. `determinants' contains for each element the
                determinant of the Jacobian matrix at each evaluation point: [e1g1, e1g2,
                ... e1gG, e2g1, ...]. `coord' contains for each element the x, y, z
                coordinates of the evaluation points. If `tag' < 0, get the Jacobian data
                for all entities. If `numTasks' > 1, only compute and return the part of
                the data indexed by `task'.
    
                Return `jacobians', `determinants', `coord'.
                """
                api_localCoord_, api_localCoord_n_ = _ivectordouble(localCoord)
                api_jacobians_, api_jacobians_n_ = POINTER(c_double)(), c_size_t()
                api_determinants_, api_determinants_n_ = POINTER(c_double)(), c_size_t()
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetJacobians(
                    c_int(elementType),
                    api_localCoord_, api_localCoord_n_,
                    byref(api_jacobians_), byref(api_jacobians_n_),
                    byref(api_determinants_), byref(api_determinants_n_),
                    byref(api_coord_), byref(api_coord_n_),
                    c_int(tag),
                    c_size_t(task),
                    c_size_t(numTasks),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectordouble(api_jacobians_, api_jacobians_n_.value),
                    _ovectordouble(api_determinants_, api_determinants_n_.value),
                    _ovectordouble(api_coord_, api_coord_n_.value))
            get_jacobians = getJacobians
    
            @staticmethod
            def getJacobian(elementTag, localCoord):
                """
                gmsh.model.mesh.getJacobian(elementTag, localCoord)
    
                Get the Jacobian for a single element `elementTag', at the G evaluation
                points `localCoord' given as concatenated triplets of coordinates in the
                reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]. `jacobians' contains
                the 9 entries of the 3x3 Jacobian matrix at each evaluation point. The
                matrix is returned by column: [e1g1Jxu, e1g1Jyu, e1g1Jzu, e1g1Jxv, ...,
                e1g1Jzw, e1g2Jxu, ..., e1gGJzw, e2g1Jxu, ...], with Jxu=dx/du, Jyu=dy/du,
                etc. `determinants' contains the determinant of the Jacobian matrix at each
                evaluation point. `coord' contains the x, y, z coordinates of the
                evaluation points. This function relies on an internal cache (a vector in
                case of dense element numbering, a map otherwise); for large meshes
                accessing Jacobians in bulk is often preferable.
    
                Return `jacobians', `determinants', `coord'.
                """
                api_localCoord_, api_localCoord_n_ = _ivectordouble(localCoord)
                api_jacobians_, api_jacobians_n_ = POINTER(c_double)(), c_size_t()
                api_determinants_, api_determinants_n_ = POINTER(c_double)(), c_size_t()
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetJacobian(
                    c_size_t(elementTag),
                    api_localCoord_, api_localCoord_n_,
                    byref(api_jacobians_), byref(api_jacobians_n_),
                    byref(api_determinants_), byref(api_determinants_n_),
                    byref(api_coord_), byref(api_coord_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectordouble(api_jacobians_, api_jacobians_n_.value),
                    _ovectordouble(api_determinants_, api_determinants_n_.value),
                    _ovectordouble(api_coord_, api_coord_n_.value))
            get_jacobian = getJacobian
    
            @staticmethod
            def getBasisFunctions(elementType, localCoord, functionSpaceType, wantedOrientations=[]):
                """
                gmsh.model.mesh.getBasisFunctions(elementType, localCoord, functionSpaceType, wantedOrientations=[])
    
                Get the basis functions of the element of type `elementType' at the
                evaluation points `localCoord' (given as concatenated triplets of
                coordinates in the reference element [g1u, g1v, g1w, ..., gGu, gGv, gGw]),
                for the function space `functionSpaceType' (e.g. "Lagrange" or
                "GradLagrange" for Lagrange basis functions or their gradient, in the u, v,
                w coordinates of the reference element; or "H1Legendre3" or
                "GradH1Legendre3" for 3rd order hierarchical H1 Legendre functions).
                `numComponents' returns the number C of components of a basis function.
                `basisFunctions' returns the value of the N basis functions at the
                evaluation points, i.e. [g1f1, g1f2, ..., g1fN, g2f1, ...] when C == 1 or
                [g1f1u, g1f1v, g1f1w, g1f2u, ..., g1fNw, g2f1u, ...] when C == 3. For basis
                functions that depend on the orientation of the elements, all values for
                the first orientation are returned first, followed by values for the
                second, etc. `numOrientations' returns the overall number of orientations.
                If `wantedOrientations' is not empty, only return the values for the
                desired orientation indices.
    
                Return `numComponents', `basisFunctions', `numOrientations'.
                """
                api_localCoord_, api_localCoord_n_ = _ivectordouble(localCoord)
                api_numComponents_ = c_int()
                api_basisFunctions_, api_basisFunctions_n_ = POINTER(c_double)(), c_size_t()
                api_numOrientations_ = c_int()
                api_wantedOrientations_, api_wantedOrientations_n_ = _ivectorint(wantedOrientations)
                ierr = c_int()
                lib.gmshModelMeshGetBasisFunctions(
                    c_int(elementType),
                    api_localCoord_, api_localCoord_n_,
                    c_char_p(functionSpaceType.encode()),
                    byref(api_numComponents_),
                    byref(api_basisFunctions_), byref(api_basisFunctions_n_),
                    byref(api_numOrientations_),
                    api_wantedOrientations_, api_wantedOrientations_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    api_numComponents_.value,
                    _ovectordouble(api_basisFunctions_, api_basisFunctions_n_.value),
                    api_numOrientations_.value)
            get_basis_functions = getBasisFunctions
    
            @staticmethod
            def getBasisFunctionsOrientationForElements(elementType, functionSpaceType, tag=-1, task=0, numTasks=1):
                """
                gmsh.model.mesh.getBasisFunctionsOrientationForElements(elementType, functionSpaceType, tag=-1, task=0, numTasks=1)
    
                Get the orientation index of the elements of type `elementType' in the
                entity of tag `tag'. The arguments have the same meaning as in
                `getBasisFunctions'. `basisFunctionsOrientation' is a vector giving for
                each element the orientation index in the values returned by
                `getBasisFunctions'. For Lagrange basis functions the call is superfluous
                as it will return a vector of zeros.
    
                Return `basisFunctionsOrientation'.
                """
                api_basisFunctionsOrientation_, api_basisFunctionsOrientation_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetBasisFunctionsOrientationForElements(
                    c_int(elementType),
                    c_char_p(functionSpaceType.encode()),
                    byref(api_basisFunctionsOrientation_), byref(api_basisFunctionsOrientation_n_),
                    c_int(tag),
                    c_size_t(task),
                    c_size_t(numTasks),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorint(api_basisFunctionsOrientation_, api_basisFunctionsOrientation_n_.value)
            get_basis_functions_orientation_for_elements = getBasisFunctionsOrientationForElements
    
            @staticmethod
            def getBasisFunctionsOrientationForElement(elementTag, functionSpaceType):
                """
                gmsh.model.mesh.getBasisFunctionsOrientationForElement(elementTag, functionSpaceType)
    
                Get the orientation of a single element `elementTag'.
    
                Return `basisFunctionsOrientation'.
                """
                api_basisFunctionsOrientation_ = c_int()
                ierr = c_int()
                lib.gmshModelMeshGetBasisFunctionsOrientationForElement(
                    c_size_t(elementTag),
                    c_char_p(functionSpaceType.encode()),
                    byref(api_basisFunctionsOrientation_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_basisFunctionsOrientation_.value
            get_basis_functions_orientation_for_element = getBasisFunctionsOrientationForElement
    
            @staticmethod
            def getNumberOfOrientations(elementType, functionSpaceType):
                """
                gmsh.model.mesh.getNumberOfOrientations(elementType, functionSpaceType)
    
                Get the number of possible orientations for elements of type `elementType'
                and function space named `functionSpaceType'.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelMeshGetNumberOfOrientations(
                    c_int(elementType),
                    c_char_p(functionSpaceType.encode()),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            get_number_of_orientations = getNumberOfOrientations
    
            @staticmethod
            def getEdges(nodeTags):
                """
                gmsh.model.mesh.getEdges(nodeTags)
    
                Get the global unique mesh edge identifiers `edgeTags' and orientations
                `edgeOrientation' for an input list of node tag pairs defining these edges,
                concatenated in the vector `nodeTags'.
    
                Return `edgeTags', `edgeOrientations'.
                """
                api_nodeTags_, api_nodeTags_n_ = _ivectorsize(nodeTags)
                api_edgeTags_, api_edgeTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_edgeOrientations_, api_edgeOrientations_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetEdges(
                    api_nodeTags_, api_nodeTags_n_,
                    byref(api_edgeTags_), byref(api_edgeTags_n_),
                    byref(api_edgeOrientations_), byref(api_edgeOrientations_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorsize(api_edgeTags_, api_edgeTags_n_.value),
                    _ovectorint(api_edgeOrientations_, api_edgeOrientations_n_.value))
            get_edges = getEdges
    
            @staticmethod
            def getFaces(faceType, nodeTags):
                """
                gmsh.model.mesh.getFaces(faceType, nodeTags)
    
                Get the global unique mesh face identifiers `faceTags' and orientations
                `faceOrientations' for an input list of node tag triplets (if `faceType' ==
                3) or quadruplets (if `faceType' == 4) defining these faces, concatenated
                in the vector `nodeTags'.
    
                Return `faceTags', `faceOrientations'.
                """
                api_nodeTags_, api_nodeTags_n_ = _ivectorsize(nodeTags)
                api_faceTags_, api_faceTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_faceOrientations_, api_faceOrientations_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetFaces(
                    c_int(faceType),
                    api_nodeTags_, api_nodeTags_n_,
                    byref(api_faceTags_), byref(api_faceTags_n_),
                    byref(api_faceOrientations_), byref(api_faceOrientations_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorsize(api_faceTags_, api_faceTags_n_.value),
                    _ovectorint(api_faceOrientations_, api_faceOrientations_n_.value))
            get_faces = getFaces
    
            @staticmethod
            def createEdges(dimTags=[]):
                """
                gmsh.model.mesh.createEdges(dimTags=[])
    
                Create unique mesh edges for the entities `dimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshCreateEdges(
                    api_dimTags_, api_dimTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            create_edges = createEdges
    
            @staticmethod
            def createFaces(dimTags=[]):
                """
                gmsh.model.mesh.createFaces(dimTags=[])
    
                Create unique mesh faces for the entities `dimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshCreateFaces(
                    api_dimTags_, api_dimTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            create_faces = createFaces
    
            @staticmethod
            def getLocalMultipliersForHcurl0(elementType, tag=-1):
                """
                gmsh.model.mesh.getLocalMultipliersForHcurl0(elementType, tag=-1)
    
                Get the local multipliers (to guarantee H(curl)-conformity) of the order 0
                H(curl) basis functions. Warning: this is an experimental feature and will
                probably change in a future release.
    
                Return `localMultipliers'.
                """
                api_localMultipliers_, api_localMultipliers_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetLocalMultipliersForHcurl0(
                    c_int(elementType),
                    byref(api_localMultipliers_), byref(api_localMultipliers_n_),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorint(api_localMultipliers_, api_localMultipliers_n_.value)
            get_local_multipliers_for_hcurl0 = getLocalMultipliersForHcurl0
    
            @staticmethod
            def getKeysForElements(elementType, functionSpaceType, tag=-1, returnCoord=True):
                """
                gmsh.model.mesh.getKeysForElements(elementType, functionSpaceType, tag=-1, returnCoord=True)
    
                Generate the `keys' for the elements of type `elementType' in the entity of
                tag `tag', for the `functionSpaceType' function space. Each key uniquely
                identifies a basis function in the function space. If `returnCoord' is set,
                the `coord' vector contains the x, y, z coordinates locating basis
                functions for sorting purposes. Warning: this is an experimental feature
                and will probably change in a future release.
    
                Return `keys', `coord'.
                """
                api_keys_, api_keys_n_ = POINTER(c_int)(), c_size_t()
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetKeysForElements(
                    c_int(elementType),
                    c_char_p(functionSpaceType.encode()),
                    byref(api_keys_), byref(api_keys_n_),
                    byref(api_coord_), byref(api_coord_n_),
                    c_int(tag),
                    c_int(bool(returnCoord)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorpair(api_keys_, api_keys_n_.value),
                    _ovectordouble(api_coord_, api_coord_n_.value))
            get_keys_for_elements = getKeysForElements
    
            @staticmethod
            def getKeysForElement(elementTag, functionSpaceType, returnCoord=True):
                """
                gmsh.model.mesh.getKeysForElement(elementTag, functionSpaceType, returnCoord=True)
    
                Get the keys for a single element `elementTag'.
    
                Return `keys', `coord'.
                """
                api_keys_, api_keys_n_ = POINTER(c_int)(), c_size_t()
                api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetKeysForElement(
                    c_size_t(elementTag),
                    c_char_p(functionSpaceType.encode()),
                    byref(api_keys_), byref(api_keys_n_),
                    byref(api_coord_), byref(api_coord_n_),
                    c_int(bool(returnCoord)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorpair(api_keys_, api_keys_n_.value),
                    _ovectordouble(api_coord_, api_coord_n_.value))
            get_keys_for_element = getKeysForElement
    
            @staticmethod
            def getNumberOfKeysForElements(elementType, functionSpaceType):
                """
                gmsh.model.mesh.getNumberOfKeysForElements(elementType, functionSpaceType)
    
                Get the number of keys by elements of type `elementType' for function space
                named `functionSpaceType'.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelMeshGetNumberOfKeysForElements(
                    c_int(elementType),
                    c_char_p(functionSpaceType.encode()),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            get_number_of_keys_for_elements = getNumberOfKeysForElements
    
            @staticmethod
            def getInformationForElements(keys, elementType, functionSpaceType):
                """
                gmsh.model.mesh.getInformationForElements(keys, elementType, functionSpaceType)
    
                Get information about the `keys'. `infoKeys' returns information about the
                functions associated with the `keys'. `infoKeys[0].first' describes the
                type of function (0 for  vertex function, 1 for edge function, 2 for face
                function and 3 for bubble function). `infoKeys[0].second' gives the order
                of the function associated with the key. Warning: this is an experimental
                feature and will probably change in a future release.
    
                Return `infoKeys'.
                """
                api_keys_, api_keys_n_ = _ivectorpair(keys)
                api_infoKeys_, api_infoKeys_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetInformationForElements(
                    api_keys_, api_keys_n_,
                    c_int(elementType),
                    c_char_p(functionSpaceType.encode()),
                    byref(api_infoKeys_), byref(api_infoKeys_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_infoKeys_, api_infoKeys_n_.value)
            get_information_for_elements = getInformationForElements
    
            @staticmethod
            def getBarycenters(elementType, tag, fast, primary, task=0, numTasks=1):
                """
                gmsh.model.mesh.getBarycenters(elementType, tag, fast, primary, task=0, numTasks=1)
    
                Get the barycenters of all elements of type `elementType' classified on the
                entity of tag `tag'. If `primary' is set, only the primary nodes of the
                elements are taken into account for the barycenter calculation. If `fast'
                is set, the function returns the sum of the primary node coordinates
                (without normalizing by the number of nodes). If `tag' < 0, get the
                barycenters for all entities. If `numTasks' > 1, only compute and return
                the part of the data indexed by `task'.
    
                Return `barycenters'.
                """
                api_barycenters_, api_barycenters_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetBarycenters(
                    c_int(elementType),
                    c_int(tag),
                    c_int(bool(fast)),
                    c_int(bool(primary)),
                    byref(api_barycenters_), byref(api_barycenters_n_),
                    c_size_t(task),
                    c_size_t(numTasks),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectordouble(api_barycenters_, api_barycenters_n_.value)
            get_barycenters = getBarycenters
    
            @staticmethod
            def getElementEdgeNodes(elementType, tag=-1, primary=False, task=0, numTasks=1):
                """
                gmsh.model.mesh.getElementEdgeNodes(elementType, tag=-1, primary=False, task=0, numTasks=1)
    
                Get the nodes on the edges of all elements of type `elementType' classified
                on the entity of tag `tag'. `nodeTags' contains the node tags of the edges
                for all the elements: [e1a1n1, e1a1n2, e1a2n1, ...]. Data is returned by
                element, with elements in the same order as in `getElements' and
                `getElementsByType'. If `primary' is set, only the primary (begin/end)
                nodes of the edges are returned. If `tag' < 0, get the edge nodes for all
                entities. If `numTasks' > 1, only compute and return the part of the data
                indexed by `task'.
    
                Return `nodeTags'.
                """
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetElementEdgeNodes(
                    c_int(elementType),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    c_int(tag),
                    c_int(bool(primary)),
                    c_size_t(task),
                    c_size_t(numTasks),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorsize(api_nodeTags_, api_nodeTags_n_.value)
            get_element_edge_nodes = getElementEdgeNodes
    
            @staticmethod
            def getElementFaceNodes(elementType, faceType, tag=-1, primary=False, task=0, numTasks=1):
                """
                gmsh.model.mesh.getElementFaceNodes(elementType, faceType, tag=-1, primary=False, task=0, numTasks=1)
    
                Get the nodes on the faces of type `faceType' (3 for triangular faces, 4
                for quadrangular faces) of all elements of type `elementType' classified on
                the entity of tag `tag'. `nodeTags' contains the node tags of the faces for
                all elements: [e1f1n1, ..., e1f1nFaceType, e1f2n1, ...]. Data is returned
                by element, with elements in the same order as in `getElements' and
                `getElementsByType'. If `primary' is set, only the primary (corner) nodes
                of the faces are returned. If `tag' < 0, get the face nodes for all
                entities. If `numTasks' > 1, only compute and return the part of the data
                indexed by `task'.
    
                Return `nodeTags'.
                """
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetElementFaceNodes(
                    c_int(elementType),
                    c_int(faceType),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    c_int(tag),
                    c_int(bool(primary)),
                    c_size_t(task),
                    c_size_t(numTasks),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorsize(api_nodeTags_, api_nodeTags_n_.value)
            get_element_face_nodes = getElementFaceNodes
    
            @staticmethod
            def getGhostElements(dim, tag):
                """
                gmsh.model.mesh.getGhostElements(dim, tag)
    
                Get the ghost elements `elementTags' and their associated `partitions'
                stored in the ghost entity of dimension `dim' and tag `tag'.
    
                Return `elementTags', `partitions'.
                """
                api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_partitions_, api_partitions_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetGhostElements(
                    c_int(dim),
                    c_int(tag),
                    byref(api_elementTags_), byref(api_elementTags_n_),
                    byref(api_partitions_), byref(api_partitions_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorsize(api_elementTags_, api_elementTags_n_.value),
                    _ovectorint(api_partitions_, api_partitions_n_.value))
            get_ghost_elements = getGhostElements
    
            @staticmethod
            def setSize(dimTags, size):
                """
                gmsh.model.mesh.setSize(dimTags, size)
    
                Set a mesh size constraint on the model entities `dimTags'. Currently only
                entities of dimension 0 (points) are handled.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshSetSize(
                    api_dimTags_, api_dimTags_n_,
                    c_double(size),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_size = setSize
    
            @staticmethod
            def setSizeAtParametricPoints(dim, tag, parametricCoord, sizes):
                """
                gmsh.model.mesh.setSizeAtParametricPoints(dim, tag, parametricCoord, sizes)
    
                Set mesh size constraints at the given parametric points `parametricCoord'
                on the model entity of dimension `dim' and tag `tag'. Currently only
                entities of dimension 1 (lines) are handled.
                """
                api_parametricCoord_, api_parametricCoord_n_ = _ivectordouble(parametricCoord)
                api_sizes_, api_sizes_n_ = _ivectordouble(sizes)
                ierr = c_int()
                lib.gmshModelMeshSetSizeAtParametricPoints(
                    c_int(dim),
                    c_int(tag),
                    api_parametricCoord_, api_parametricCoord_n_,
                    api_sizes_, api_sizes_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_size_at_parametric_points = setSizeAtParametricPoints
    
            @staticmethod
            def setSizeCallback(callback):
                """
                gmsh.model.mesh.setSizeCallback(callback)
    
                Set a global mesh size callback. The callback should take 5 arguments
                (`dim', `tag', `x', `y' and `z') and return the value of the mesh size at
                coordinates (`x', `y', `z').
                """
                global api_callback_type_
                api_callback_type_ = CFUNCTYPE(c_double, c_int, c_int, c_double, c_double, c_double, c_void_p)
                global api_callback_
                api_callback_ = api_callback_type_(lambda dim, tag, x, y, z, _ : callback(dim, tag, x, y, z))
                ierr = c_int()
                lib.gmshModelMeshSetSizeCallback(
                    api_callback_, None,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_size_callback = setSizeCallback
    
            @staticmethod
            def removeSizeCallback():
                """
                gmsh.model.mesh.removeSizeCallback()
    
                Remove the global mesh size callback.
                """
                ierr = c_int()
                lib.gmshModelMeshRemoveSizeCallback(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            remove_size_callback = removeSizeCallback
    
            @staticmethod
            def setTransfiniteCurve(tag, numNodes, meshType="Progression", coef=1.):
                """
                gmsh.model.mesh.setTransfiniteCurve(tag, numNodes, meshType="Progression", coef=1.)
    
                Set a transfinite meshing constraint on the curve `tag', with `numNodes'
                nodes distributed according to `meshType' and `coef'. Currently supported
                types are "Progression" (geometrical progression with power `coef'), "Bump"
                (refinement toward both extremities of the curve) and "Beta" (beta law).
                """
                ierr = c_int()
                lib.gmshModelMeshSetTransfiniteCurve(
                    c_int(tag),
                    c_int(numNodes),
                    c_char_p(meshType.encode()),
                    c_double(coef),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_transfinite_curve = setTransfiniteCurve
    
            @staticmethod
            def setTransfiniteSurface(tag, arrangement="Left", cornerTags=[]):
                """
                gmsh.model.mesh.setTransfiniteSurface(tag, arrangement="Left", cornerTags=[])
    
                Set a transfinite meshing constraint on the surface `tag'. `arrangement'
                describes the arrangement of the triangles when the surface is not flagged
                as recombined: currently supported values are "Left", "Right",
                "AlternateLeft" and "AlternateRight". `cornerTags' can be used to specify
                the (3 or 4) corners of the transfinite interpolation explicitly;
                specifying the corners explicitly is mandatory if the surface has more that
                3 or 4 points on its boundary.
                """
                api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags)
                ierr = c_int()
                lib.gmshModelMeshSetTransfiniteSurface(
                    c_int(tag),
                    c_char_p(arrangement.encode()),
                    api_cornerTags_, api_cornerTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_transfinite_surface = setTransfiniteSurface
    
            @staticmethod
            def setTransfiniteVolume(tag, cornerTags=[]):
                """
                gmsh.model.mesh.setTransfiniteVolume(tag, cornerTags=[])
    
                Set a transfinite meshing constraint on the surface `tag'. `cornerTags' can
                be used to specify the (6 or 8) corners of the transfinite interpolation
                explicitly.
                """
                api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags)
                ierr = c_int()
                lib.gmshModelMeshSetTransfiniteVolume(
                    c_int(tag),
                    api_cornerTags_, api_cornerTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_transfinite_volume = setTransfiniteVolume
    
            @staticmethod
            def setTransfiniteAutomatic(dimTags=[], cornerAngle=2.35, recombine=True):
                """
                gmsh.model.mesh.setTransfiniteAutomatic(dimTags=[], cornerAngle=2.35, recombine=True)
    
                Set transfinite meshing constraints on the model entities in `dimTag'.
                Transfinite meshing constraints are added to the curves of the quadrangular
                surfaces and to the faces of 6-sided volumes. Quadragular faces with a
                corner angle superior to `cornerAngle' (in radians) are ignored. The number
                of points is automatically determined from the sizing constraints. If
                `dimTag' is empty, the constraints are applied to all entities in the
                model. If `recombine' is true, the recombine flag is automatically set on
                the transfinite surfaces.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshSetTransfiniteAutomatic(
                    api_dimTags_, api_dimTags_n_,
                    c_double(cornerAngle),
                    c_int(bool(recombine)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_transfinite_automatic = setTransfiniteAutomatic
    
            @staticmethod
            def setRecombine(dim, tag):
                """
                gmsh.model.mesh.setRecombine(dim, tag)
    
                Set a recombination meshing constraint on the model entity of dimension
                `dim' and tag `tag'. Currently only entities of dimension 2 (to recombine
                triangles into quadrangles) are supported.
                """
                ierr = c_int()
                lib.gmshModelMeshSetRecombine(
                    c_int(dim),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_recombine = setRecombine
    
            @staticmethod
            def setSmoothing(dim, tag, val):
                """
                gmsh.model.mesh.setSmoothing(dim, tag, val)
    
                Set a smoothing meshing constraint on the model entity of dimension `dim'
                and tag `tag'. `val' iterations of a Laplace smoother are applied.
                """
                ierr = c_int()
                lib.gmshModelMeshSetSmoothing(
                    c_int(dim),
                    c_int(tag),
                    c_int(val),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_smoothing = setSmoothing
    
            @staticmethod
            def setReverse(dim, tag, val=True):
                """
                gmsh.model.mesh.setReverse(dim, tag, val=True)
    
                Set a reverse meshing constraint on the model entity of dimension `dim' and
                tag `tag'. If `val' is true, the mesh orientation will be reversed with
                respect to the natural mesh orientation (i.e. the orientation consistent
                with the orientation of the geometry). If `val' is false, the mesh is left
                as-is.
                """
                ierr = c_int()
                lib.gmshModelMeshSetReverse(
                    c_int(dim),
                    c_int(tag),
                    c_int(bool(val)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_reverse = setReverse
    
            @staticmethod
            def setAlgorithm(dim, tag, val):
                """
                gmsh.model.mesh.setAlgorithm(dim, tag, val)
    
                Set the meshing algorithm on the model entity of dimension `dim' and tag
                `tag'. Currently only supported for `dim' == 2.
                """
                ierr = c_int()
                lib.gmshModelMeshSetAlgorithm(
                    c_int(dim),
                    c_int(tag),
                    c_int(val),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_algorithm = setAlgorithm
    
            @staticmethod
            def setSizeFromBoundary(dim, tag, val):
                """
                gmsh.model.mesh.setSizeFromBoundary(dim, tag, val)
    
                Force the mesh size to be extended from the boundary, or not, for the model
                entity of dimension `dim' and tag `tag'. Currently only supported for `dim'
                == 2.
                """
                ierr = c_int()
                lib.gmshModelMeshSetSizeFromBoundary(
                    c_int(dim),
                    c_int(tag),
                    c_int(val),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_size_from_boundary = setSizeFromBoundary
    
            @staticmethod
            def setCompound(dim, tags):
                """
                gmsh.model.mesh.setCompound(dim, tags)
    
                Set a compound meshing constraint on the model entities of dimension `dim'
                and tags `tags'. During meshing, compound entities are treated as a single
                discrete entity, which is automatically reparametrized.
                """
                api_tags_, api_tags_n_ = _ivectorint(tags)
                ierr = c_int()
                lib.gmshModelMeshSetCompound(
                    c_int(dim),
                    api_tags_, api_tags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_compound = setCompound
    
            @staticmethod
            def setOutwardOrientation(tag):
                """
                gmsh.model.mesh.setOutwardOrientation(tag)
    
                Set meshing constraints on the bounding surfaces of the volume of tag `tag'
                so that all surfaces are oriented with outward pointing normals. Currently
                only available with the OpenCASCADE kernel, as it relies on the STL
                triangulation.
                """
                ierr = c_int()
                lib.gmshModelMeshSetOutwardOrientation(
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_outward_orientation = setOutwardOrientation
    
            @staticmethod
            def removeConstraints(dimTags=[]):
                """
                gmsh.model.mesh.removeConstraints(dimTags=[])
    
                Remove all meshing constraints from the model entities `dimTags'. If
                `dimTags' is empty, remove all constraings.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshRemoveConstraints(
                    api_dimTags_, api_dimTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            remove_constraints = removeConstraints
    
            @staticmethod
            def embed(dim, tags, inDim, inTag):
                """
                gmsh.model.mesh.embed(dim, tags, inDim, inTag)
    
                Embed the model entities of dimension `dim' and tags `tags' in the
                (`inDim', `inTag') model entity. The dimension `dim' can 0, 1 or 2 and must
                be strictly smaller than `inDim', which must be either 2 or 3. The embedded
                entities should not intersect each other or be part of the boundary of the
                entity `inTag', whose mesh will conform to the mesh of the embedded
                entities. With the OpenCASCADE kernel, if the `fragment' operation is
                applied to entities of different dimensions, the lower dimensional entities
                will be automatically embedded in the higher dimensional entities if they
                are not on their boundary.
                """
                api_tags_, api_tags_n_ = _ivectorint(tags)
                ierr = c_int()
                lib.gmshModelMeshEmbed(
                    c_int(dim),
                    api_tags_, api_tags_n_,
                    c_int(inDim),
                    c_int(inTag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def removeEmbedded(dimTags, dim=-1):
                """
                gmsh.model.mesh.removeEmbedded(dimTags, dim=-1)
    
                Remove embedded entities from the model entities `dimTags'. if `dim' is >=
                0, only remove embedded entities of the given dimension (e.g. embedded
                points if `dim' == 0).
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshRemoveEmbedded(
                    api_dimTags_, api_dimTags_n_,
                    c_int(dim),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            remove_embedded = removeEmbedded
    
            @staticmethod
            def getEmbedded(dim, tag):
                """
                gmsh.model.mesh.getEmbedded(dim, tag)
    
                Get the entities (if any) embedded in the model entity of dimension `dim'
                and tag `tag'.
    
                Return `dimTags'.
                """
                api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetEmbedded(
                    c_int(dim),
                    c_int(tag),
                    byref(api_dimTags_), byref(api_dimTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_dimTags_, api_dimTags_n_.value)
            get_embedded = getEmbedded
    
            @staticmethod
            def reorderElements(elementType, tag, ordering):
                """
                gmsh.model.mesh.reorderElements(elementType, tag, ordering)
    
                Reorder the elements of type `elementType' classified on the entity of tag
                `tag' according to `ordering'.
                """
                api_ordering_, api_ordering_n_ = _ivectorsize(ordering)
                ierr = c_int()
                lib.gmshModelMeshReorderElements(
                    c_int(elementType),
                    c_int(tag),
                    api_ordering_, api_ordering_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            reorder_elements = reorderElements
    
            @staticmethod
            def renumberNodes():
                """
                gmsh.model.mesh.renumberNodes()
    
                Renumber the node tags in a continuous sequence.
                """
                ierr = c_int()
                lib.gmshModelMeshRenumberNodes(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            renumber_nodes = renumberNodes
    
            @staticmethod
            def renumberElements():
                """
                gmsh.model.mesh.renumberElements()
    
                Renumber the element tags in a continuous sequence.
                """
                ierr = c_int()
                lib.gmshModelMeshRenumberElements(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            renumber_elements = renumberElements
    
            @staticmethod
            def setPeriodic(dim, tags, tagsMaster, affineTransform):
                """
                gmsh.model.mesh.setPeriodic(dim, tags, tagsMaster, affineTransform)
    
                Set the meshes of the entities of dimension `dim' and tag `tags' as
                periodic copies of the meshes of entities `tagsMaster', using the affine
                transformation specified in `affineTransformation' (16 entries of a 4x4
                matrix, by row). If used after meshing, generate the periodic node
                correspondence information assuming the meshes of entities `tags'
                effectively match the meshes of entities `tagsMaster' (useful for
                structured and extruded meshes). Currently only available for @code{dim} ==
                1 and @code{dim} == 2.
                """
                api_tags_, api_tags_n_ = _ivectorint(tags)
                api_tagsMaster_, api_tagsMaster_n_ = _ivectorint(tagsMaster)
                api_affineTransform_, api_affineTransform_n_ = _ivectordouble(affineTransform)
                ierr = c_int()
                lib.gmshModelMeshSetPeriodic(
                    c_int(dim),
                    api_tags_, api_tags_n_,
                    api_tagsMaster_, api_tagsMaster_n_,
                    api_affineTransform_, api_affineTransform_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_periodic = setPeriodic
    
            @staticmethod
            def getPeriodicNodes(dim, tag, includeHighOrderNodes=False):
                """
                gmsh.model.mesh.getPeriodicNodes(dim, tag, includeHighOrderNodes=False)
    
                Get the master entity `tagMaster', the node tags `nodeTags' and their
                corresponding master node tags `nodeTagsMaster', and the affine transform
                `affineTransform' for the entity of dimension `dim' and tag `tag'. If
                `includeHighOrderNodes' is set, include high-order nodes in the returned
                data.
    
                Return `tagMaster', `nodeTags', `nodeTagsMaster', `affineTransform'.
                """
                api_tagMaster_ = c_int()
                api_nodeTags_, api_nodeTags_n_ = POINTER(c_size_t)(), c_size_t()
                api_nodeTagsMaster_, api_nodeTagsMaster_n_ = POINTER(c_size_t)(), c_size_t()
                api_affineTransform_, api_affineTransform_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshGetPeriodicNodes(
                    c_int(dim),
                    c_int(tag),
                    byref(api_tagMaster_),
                    byref(api_nodeTags_), byref(api_nodeTags_n_),
                    byref(api_nodeTagsMaster_), byref(api_nodeTagsMaster_n_),
                    byref(api_affineTransform_), byref(api_affineTransform_n_),
                    c_int(bool(includeHighOrderNodes)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    api_tagMaster_.value,
                    _ovectorsize(api_nodeTags_, api_nodeTags_n_.value),
                    _ovectorsize(api_nodeTagsMaster_, api_nodeTagsMaster_n_.value),
                    _ovectordouble(api_affineTransform_, api_affineTransform_n_.value))
            get_periodic_nodes = getPeriodicNodes
    
            @staticmethod
            def removeDuplicateNodes():
                """
                gmsh.model.mesh.removeDuplicateNodes()
    
                Remove duplicate nodes in the mesh of the current model.
                """
                ierr = c_int()
                lib.gmshModelMeshRemoveDuplicateNodes(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            remove_duplicate_nodes = removeDuplicateNodes
    
            @staticmethod
            def splitQuadrangles(quality=1., tag=-1):
                """
                gmsh.model.mesh.splitQuadrangles(quality=1., tag=-1)
    
                Split (into two triangles) all quadrangles in surface `tag' whose quality
                is lower than `quality'. If `tag' < 0, split quadrangles in all surfaces.
                """
                ierr = c_int()
                lib.gmshModelMeshSplitQuadrangles(
                    c_double(quality),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            split_quadrangles = splitQuadrangles
    
            @staticmethod
            def classifySurfaces(angle, boundary=True, forReparametrization=False, curveAngle=pi, exportDiscrete=True):
                """
                gmsh.model.mesh.classifySurfaces(angle, boundary=True, forReparametrization=False, curveAngle=pi, exportDiscrete=True)
    
                Classify ("color") the surface mesh based on the angle threshold `angle'
                (in radians), and create new discrete surfaces, curves and points
                accordingly. If `boundary' is set, also create discrete curves on the
                boundary if the surface is open. If `forReparametrization' is set, create
                edges and surfaces that can be reparametrized using a single map. If
                `curveAngle' is less than Pi, also force curves to be split according to
                `curveAngle'. If `exportDiscrete' is set, clear any built-in CAD kernel
                entities and export the discrete entities in the built-in CAD kernel.
                """
                ierr = c_int()
                lib.gmshModelMeshClassifySurfaces(
                    c_double(angle),
                    c_int(bool(boundary)),
                    c_int(bool(forReparametrization)),
                    c_double(curveAngle),
                    c_int(bool(exportDiscrete)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            classify_surfaces = classifySurfaces
    
            @staticmethod
            def createGeometry(dimTags=[]):
                """
                gmsh.model.mesh.createGeometry(dimTags=[])
    
                Create a geometry for the discrete entities `dimTags' (represented solely
                by a mesh, without an underlying CAD description), i.e. create a
                parametrization for discrete curves and surfaces, assuming that each can be
                parametrized with a single map. If `dimTags' is empty, create a geometry
                for all the discrete entities.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelMeshCreateGeometry(
                    api_dimTags_, api_dimTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            create_geometry = createGeometry
    
            @staticmethod
            def createTopology(makeSimplyConnected=True, exportDiscrete=True):
                """
                gmsh.model.mesh.createTopology(makeSimplyConnected=True, exportDiscrete=True)
    
                Create a boundary representation from the mesh if the model does not have
                one (e.g. when imported from mesh file formats with no BRep representation
                of the underlying model). If `makeSimplyConnected' is set, enforce simply
                connected discrete surfaces and volumes. If `exportDiscrete' is set, clear
                any built-in CAD kernel entities and export the discrete entities in the
                built-in CAD kernel.
                """
                ierr = c_int()
                lib.gmshModelMeshCreateTopology(
                    c_int(bool(makeSimplyConnected)),
                    c_int(bool(exportDiscrete)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            create_topology = createTopology
    
            @staticmethod
            def computeHomology(domainTags=[], subdomainTags=[], dims=[]):
                """
                gmsh.model.mesh.computeHomology(domainTags=[], subdomainTags=[], dims=[])
    
                Compute a basis representation for homology spaces after a mesh has been
                generated. The computation domain is given in a list of physical group tags
                `domainTags'; if empty, the whole mesh is the domain. The computation
                subdomain for relative homology computation is given in a list of physical
                group tags `subdomainTags'; if empty, absolute homology is computed. The
                dimensions homology bases to be computed are given in the list `dim'; if
                empty, all bases are computed. Resulting basis representation chains are
                stored as physical groups in the mesh.
                """
                api_domainTags_, api_domainTags_n_ = _ivectorint(domainTags)
                api_subdomainTags_, api_subdomainTags_n_ = _ivectorint(subdomainTags)
                api_dims_, api_dims_n_ = _ivectorint(dims)
                ierr = c_int()
                lib.gmshModelMeshComputeHomology(
                    api_domainTags_, api_domainTags_n_,
                    api_subdomainTags_, api_subdomainTags_n_,
                    api_dims_, api_dims_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            compute_homology = computeHomology
    
            @staticmethod
            def computeCohomology(domainTags=[], subdomainTags=[], dims=[]):
                """
                gmsh.model.mesh.computeCohomology(domainTags=[], subdomainTags=[], dims=[])
    
                Compute a basis representation for cohomology spaces after a mesh has been
                generated. The computation domain is given in a list of physical group tags
                `domainTags'; if empty, the whole mesh is the domain. The computation
                subdomain for relative cohomology computation is given in a list of
                physical group tags `subdomainTags'; if empty, absolute cohomology is
                computed. The dimensions homology bases to be computed are given in the
                list `dim'; if empty, all bases are computed. Resulting basis
                representation cochains are stored as physical groups in the mesh.
                """
                api_domainTags_, api_domainTags_n_ = _ivectorint(domainTags)
                api_subdomainTags_, api_subdomainTags_n_ = _ivectorint(subdomainTags)
                api_dims_, api_dims_n_ = _ivectorint(dims)
                ierr = c_int()
                lib.gmshModelMeshComputeCohomology(
                    api_domainTags_, api_domainTags_n_,
                    api_subdomainTags_, api_subdomainTags_n_,
                    api_dims_, api_dims_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            compute_cohomology = computeCohomology
    
            @staticmethod
            def computeCrossField():
                """
                gmsh.model.mesh.computeCrossField()
    
                Compute a cross field for the current mesh. The function creates 3 views:
                the H function, the Theta function and cross directions. Return the tags of
                the views.
    
                Return `viewTags'.
                """
                api_viewTags_, api_viewTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshComputeCrossField(
                    byref(api_viewTags_), byref(api_viewTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorint(api_viewTags_, api_viewTags_n_.value)
            compute_cross_field = computeCrossField
    
            @staticmethod
            def triangulate(coord):
                """
                gmsh.model.mesh.triangulate(coord)
    
                Triangulate the points given in the `coord' vector as pairs of u, v
                coordinates, and return the node tags (with numbering starting at 1) of the
                resulting triangles in `tri'.
    
                Return `tri'.
                """
                api_coord_, api_coord_n_ = _ivectordouble(coord)
                api_tri_, api_tri_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshTriangulate(
                    api_coord_, api_coord_n_,
                    byref(api_tri_), byref(api_tri_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorsize(api_tri_, api_tri_n_.value)
    
            @staticmethod
            def tetrahedralize(coord):
                """
                gmsh.model.mesh.tetrahedralize(coord)
    
                Tetrahedralize the points given in the `coord' vector as triplets of x, y,
                z coordinates, and return the node tags (with numbering starting at 1) of
                the resulting tetrahedra in `tetra'.
    
                Return `tetra'.
                """
                api_coord_, api_coord_n_ = _ivectordouble(coord)
                api_tetra_, api_tetra_n_ = POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelMeshTetrahedralize(
                    api_coord_, api_coord_n_,
                    byref(api_tetra_), byref(api_tetra_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorsize(api_tetra_, api_tetra_n_.value)
    
    
            class field:
                """
                Mesh size field functions
                """
    
                @staticmethod
                def add(fieldType, tag=-1):
                    """
                    gmsh.model.mesh.field.add(fieldType, tag=-1)
    
                    Add a new mesh size field of type `fieldType'. If `tag' is positive, assign
                    the tag explicitly; otherwise a new tag is assigned automatically. Return
                    the field tag.
    
                    Return an integer value.
                    """
                    ierr = c_int()
                    api_result_ = lib.gmshModelMeshFieldAdd(
                        c_char_p(fieldType.encode()),
                        c_int(tag),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                    return api_result_
    
                @staticmethod
                def remove(tag):
                    """
                    gmsh.model.mesh.field.remove(tag)
    
                    Remove the field with tag `tag'.
                    """
                    ierr = c_int()
                    lib.gmshModelMeshFieldRemove(
                        c_int(tag),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
    
                @staticmethod
                def setNumber(tag, option, value):
                    """
                    gmsh.model.mesh.field.setNumber(tag, option, value)
    
                    Set the numerical option `option' to value `value' for field `tag'.
                    """
                    ierr = c_int()
                    lib.gmshModelMeshFieldSetNumber(
                        c_int(tag),
                        c_char_p(option.encode()),
                        c_double(value),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_number = setNumber
    
                @staticmethod
                def setString(tag, option, value):
                    """
                    gmsh.model.mesh.field.setString(tag, option, value)
    
                    Set the string option `option' to value `value' for field `tag'.
                    """
                    ierr = c_int()
                    lib.gmshModelMeshFieldSetString(
                        c_int(tag),
                        c_char_p(option.encode()),
                        c_char_p(value.encode()),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_string = setString
    
                @staticmethod
                def setNumbers(tag, option, value):
                    """
                    gmsh.model.mesh.field.setNumbers(tag, option, value)
    
                    Set the numerical list option `option' to value `value' for field `tag'.
                    """
                    api_value_, api_value_n_ = _ivectordouble(value)
                    ierr = c_int()
                    lib.gmshModelMeshFieldSetNumbers(
                        c_int(tag),
                        c_char_p(option.encode()),
                        api_value_, api_value_n_,
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_numbers = setNumbers
    
                @staticmethod
                def setAsBackgroundMesh(tag):
                    """
                    gmsh.model.mesh.field.setAsBackgroundMesh(tag)
    
                    Set the field `tag' as the background mesh size field.
                    """
                    ierr = c_int()
                    lib.gmshModelMeshFieldSetAsBackgroundMesh(
                        c_int(tag),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_as_background_mesh = setAsBackgroundMesh
    
                @staticmethod
                def setAsBoundaryLayer(tag):
                    """
                    gmsh.model.mesh.field.setAsBoundaryLayer(tag)
    
                    Set the field `tag' as a boundary layer size field.
                    """
                    ierr = c_int()
                    lib.gmshModelMeshFieldSetAsBoundaryLayer(
                        c_int(tag),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_as_boundary_layer = setAsBoundaryLayer
    
    
        class geo:
            """
            Built-in CAD kernel functions
            """
    
            @staticmethod
            def addPoint(x, y, z, meshSize=0., tag=-1):
                """
                gmsh.model.geo.addPoint(x, y, z, meshSize=0., tag=-1)
    
                Add a geometrical point in the built-in CAD representation, at coordinates
                (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint at that
                point. If `tag' is positive, set the tag explicitly; otherwise a new tag is
                selected automatically. Return the tag of the point. (Note that the point
                will be added in the current model only after `synchronize' is called. This
                behavior holds for all the entities added in the geo module.)
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddPoint(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(meshSize),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_point = addPoint
    
            @staticmethod
            def addLine(startTag, endTag, tag=-1):
                """
                gmsh.model.geo.addLine(startTag, endTag, tag=-1)
    
                Add a straight line segment in the built-in CAD representation, between the
                two points with tags `startTag' and `endTag'. If `tag' is positive, set the
                tag explicitly; otherwise a new tag is selected automatically. Return the
                tag of the line.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddLine(
                    c_int(startTag),
                    c_int(endTag),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_line = addLine
    
            @staticmethod
            def addCircleArc(startTag, centerTag, endTag, tag=-1, nx=0., ny=0., nz=0.):
                """
                gmsh.model.geo.addCircleArc(startTag, centerTag, endTag, tag=-1, nx=0., ny=0., nz=0.)
    
                Add a circle arc (strictly smaller than Pi) in the built-in CAD
                representation, between the two points with tags `startTag' and `endTag',
                and with center `centerTag'. If `tag' is positive, set the tag explicitly;
                otherwise a new tag is selected automatically. If (`nx', `ny', `nz') != (0,
                0, 0), explicitly set the plane of the circle arc. Return the tag of the
                circle arc.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddCircleArc(
                    c_int(startTag),
                    c_int(centerTag),
                    c_int(endTag),
                    c_int(tag),
                    c_double(nx),
                    c_double(ny),
                    c_double(nz),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_circle_arc = addCircleArc
    
            @staticmethod
            def addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1, nx=0., ny=0., nz=0.):
                """
                gmsh.model.geo.addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1, nx=0., ny=0., nz=0.)
    
                Add an ellipse arc (strictly smaller than Pi) in the built-in CAD
                representation, between the two points `startTag' and `endTag', and with
                center `centerTag' and major axis point `majorTag'. If `tag' is positive,
                set the tag explicitly; otherwise a new tag is selected automatically. If
                (`nx', `ny', `nz') != (0, 0, 0), explicitly set the plane of the circle
                arc. Return the tag of the ellipse arc.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddEllipseArc(
                    c_int(startTag),
                    c_int(centerTag),
                    c_int(majorTag),
                    c_int(endTag),
                    c_int(tag),
                    c_double(nx),
                    c_double(ny),
                    c_double(nz),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_ellipse_arc = addEllipseArc
    
            @staticmethod
            def addSpline(pointTags, tag=-1):
                """
                gmsh.model.geo.addSpline(pointTags, tag=-1)
    
                Add a spline (Catmull-Rom) curve in the built-in CAD representation, going
                through the points `pointTags'. If `tag' is positive, set the tag
                explicitly; otherwise a new tag is selected automatically. Create a
                periodic curve if the first and last points are the same. Return the tag of
                the spline curve.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddSpline(
                    api_pointTags_, api_pointTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_spline = addSpline
    
            @staticmethod
            def addBSpline(pointTags, tag=-1):
                """
                gmsh.model.geo.addBSpline(pointTags, tag=-1)
    
                Add a cubic b-spline curve in the built-in CAD representation, with
                `pointTags' control points. If `tag' is positive, set the tag explicitly;
                otherwise a new tag is selected automatically. Creates a periodic curve if
                the first and last points are the same. Return the tag of the b-spline
                curve.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddBSpline(
                    api_pointTags_, api_pointTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bspline = addBSpline
    
            @staticmethod
            def addBezier(pointTags, tag=-1):
                """
                gmsh.model.geo.addBezier(pointTags, tag=-1)
    
                Add a Bezier curve in the built-in CAD representation, with `pointTags'
                control points. If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically.  Return the tag of the Bezier curve.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddBezier(
                    api_pointTags_, api_pointTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bezier = addBezier
    
            @staticmethod
            def addPolyline(pointTags, tag=-1):
                """
                gmsh.model.geo.addPolyline(pointTags, tag=-1)
    
                Add a polyline curve in the built-in CAD representation, going through the
                points `pointTags'. If `tag' is positive, set the tag explicitly; otherwise
                a new tag is selected automatically. Create a periodic curve if the first
                and last points are the same. Return the tag of the polyline curve.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddPolyline(
                    api_pointTags_, api_pointTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_polyline = addPolyline
    
            @staticmethod
            def addCompoundSpline(curveTags, numIntervals=5, tag=-1):
                """
                gmsh.model.geo.addCompoundSpline(curveTags, numIntervals=5, tag=-1)
    
                Add a spline (Catmull-Rom) curve in the built-in CAD representation, going
                through points sampling the curves in `curveTags'. The density of sampling
                points on each curve is governed by `numIntervals'. If `tag' is positive,
                set the tag explicitly; otherwise a new tag is selected automatically.
                Return the tag of the spline.
    
                Return an integer value.
                """
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddCompoundSpline(
                    api_curveTags_, api_curveTags_n_,
                    c_int(numIntervals),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_compound_spline = addCompoundSpline
    
            @staticmethod
            def addCompoundBSpline(curveTags, numIntervals=20, tag=-1):
                """
                gmsh.model.geo.addCompoundBSpline(curveTags, numIntervals=20, tag=-1)
    
                Add a b-spline curve in the built-in CAD representation, with control
                points sampling the curves in `curveTags'. The density of sampling points
                on each curve is governed by `numIntervals'. If `tag' is positive, set the
                tag explicitly; otherwise a new tag is selected automatically. Return the
                tag of the b-spline.
    
                Return an integer value.
                """
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddCompoundBSpline(
                    api_curveTags_, api_curveTags_n_,
                    c_int(numIntervals),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_compound_bspline = addCompoundBSpline
    
            @staticmethod
            def addCurveLoop(curveTags, tag=-1, reorient=False):
                """
                gmsh.model.geo.addCurveLoop(curveTags, tag=-1, reorient=False)
    
                Add a curve loop (a closed wire) in the built-in CAD representation, formed
                by the curves `curveTags'. `curveTags' should contain (signed) tags of
                model entities of dimension 1 forming a closed loop: a negative tag
                signifies that the underlying curve is considered with reversed
                orientation. If `tag' is positive, set the tag explicitly; otherwise a new
                tag is selected automatically. If `reorient' is set, automatically reorient
                the curves if necessary. Return the tag of the curve loop.
    
                Return an integer value.
                """
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddCurveLoop(
                    api_curveTags_, api_curveTags_n_,
                    c_int(tag),
                    c_int(bool(reorient)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_curve_loop = addCurveLoop
    
            @staticmethod
            def addCurveLoops(curveTags):
                """
                gmsh.model.geo.addCurveLoops(curveTags)
    
                Add curve loops in the built-in CAD representation based on the curves
                `curveTags'. Return the `tags' of found curve loops, if any.
    
                Return `tags'.
                """
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelGeoAddCurveLoops(
                    api_curveTags_, api_curveTags_n_,
                    byref(api_tags_), byref(api_tags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorint(api_tags_, api_tags_n_.value)
            add_curve_loops = addCurveLoops
    
            @staticmethod
            def addPlaneSurface(wireTags, tag=-1):
                """
                gmsh.model.geo.addPlaneSurface(wireTags, tag=-1)
    
                Add a plane surface in the built-in CAD representation, defined by one or
                more curve loops `wireTags'. The first curve loop defines the exterior
                contour; additional curve loop define holes. If `tag' is positive, set the
                tag explicitly; otherwise a new tag is selected automatically. Return the
                tag of the surface.
    
                Return an integer value.
                """
                api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddPlaneSurface(
                    api_wireTags_, api_wireTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_plane_surface = addPlaneSurface
    
            @staticmethod
            def addSurfaceFilling(wireTags, tag=-1, sphereCenterTag=-1):
                """
                gmsh.model.geo.addSurfaceFilling(wireTags, tag=-1, sphereCenterTag=-1)
    
                Add a surface in the built-in CAD representation, filling the curve loops
                in `wireTags' using transfinite interpolation. Currently only a single
                curve loop is supported; this curve loop should be composed by 3 or 4
                curves only. If `tag' is positive, set the tag explicitly; otherwise a new
                tag is selected automatically. Return the tag of the surface.
    
                Return an integer value.
                """
                api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddSurfaceFilling(
                    api_wireTags_, api_wireTags_n_,
                    c_int(tag),
                    c_int(sphereCenterTag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_surface_filling = addSurfaceFilling
    
            @staticmethod
            def addSurfaceLoop(surfaceTags, tag=-1):
                """
                gmsh.model.geo.addSurfaceLoop(surfaceTags, tag=-1)
    
                Add a surface loop (a closed shell) formed by `surfaceTags' in the built-in
                CAD representation.  If `tag' is positive, set the tag explicitly;
                otherwise a new tag is selected automatically. Return the tag of the shell.
    
                Return an integer value.
                """
                api_surfaceTags_, api_surfaceTags_n_ = _ivectorint(surfaceTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddSurfaceLoop(
                    api_surfaceTags_, api_surfaceTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_surface_loop = addSurfaceLoop
    
            @staticmethod
            def addVolume(shellTags, tag=-1):
                """
                gmsh.model.geo.addVolume(shellTags, tag=-1)
    
                Add a volume (a region) in the built-in CAD representation, defined by one
                or more shells `shellTags'. The first surface loop defines the exterior
                boundary; additional surface loop define holes. If `tag' is positive, set
                the tag explicitly; otherwise a new tag is selected automatically. Return
                the tag of the volume.
    
                Return an integer value.
                """
                api_shellTags_, api_shellTags_n_ = _ivectorint(shellTags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddVolume(
                    api_shellTags_, api_shellTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_volume = addVolume
    
            @staticmethod
            def extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False):
                """
                gmsh.model.geo.extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False)
    
                Extrude the entities `dimTags' in the built-in CAD representation, using a
                translation along (`dx', `dy', `dz'). Return extruded entities in
                `outDimTags'. If `numElements' is not empty, also extrude the mesh: the
                entries in `numElements' give the number of elements in each layer. If
                `height' is not empty, it provides the (cumulative) height of the different
                layers, normalized to 1. If `recombine' is set, recombine the mesh in the
                layers.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_numElements_, api_numElements_n_ = _ivectorint(numElements)
                api_heights_, api_heights_n_ = _ivectordouble(heights)
                ierr = c_int()
                lib.gmshModelGeoExtrude(
                    api_dimTags_, api_dimTags_n_,
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    api_numElements_, api_numElements_n_,
                    api_heights_, api_heights_n_,
                    c_int(bool(recombine)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False):
                """
                gmsh.model.geo.revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False)
    
                Extrude the entities `dimTags' in the built-in CAD representation, using a
                rotation of `angle' radians around the axis of revolution defined by the
                point (`x', `y', `z') and the direction (`ax', `ay', `az'). The angle
                should be strictly smaller than Pi. Return extruded entities in
                `outDimTags'. If `numElements' is not empty, also extrude the mesh: the
                entries in `numElements' give the number of elements in each layer. If
                `height' is not empty, it provides the (cumulative) height of the different
                layers, normalized to 1. If `recombine' is set, recombine the mesh in the
                layers.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_numElements_, api_numElements_n_ = _ivectorint(numElements)
                api_heights_, api_heights_n_ = _ivectordouble(heights)
                ierr = c_int()
                lib.gmshModelGeoRevolve(
                    api_dimTags_, api_dimTags_n_,
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(ax),
                    c_double(ay),
                    c_double(az),
                    c_double(angle),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    api_numElements_, api_numElements_n_,
                    api_heights_, api_heights_n_,
                    c_int(bool(recombine)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def twist(dimTags, x, y, z, dx, dy, dz, ax, ay, az, angle, numElements=[], heights=[], recombine=False):
                """
                gmsh.model.geo.twist(dimTags, x, y, z, dx, dy, dz, ax, ay, az, angle, numElements=[], heights=[], recombine=False)
    
                Extrude the entities `dimTags' in the built-in CAD representation, using a
                combined translation and rotation of `angle' radians, along (`dx', `dy',
                `dz') and around the axis of revolution defined by the point (`x', `y',
                `z') and the direction (`ax', `ay', `az'). The angle should be strictly
                smaller than Pi. Return extruded entities in `outDimTags'. If `numElements'
                is not empty, also extrude the mesh: the entries in `numElements' give the
                number of elements in each layer. If `height' is not empty, it provides the
                (cumulative) height of the different layers, normalized to 1. If
                `recombine' is set, recombine the mesh in the layers.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_numElements_, api_numElements_n_ = _ivectorint(numElements)
                api_heights_, api_heights_n_ = _ivectordouble(heights)
                ierr = c_int()
                lib.gmshModelGeoTwist(
                    api_dimTags_, api_dimTags_n_,
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    c_double(ax),
                    c_double(ay),
                    c_double(az),
                    c_double(angle),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    api_numElements_, api_numElements_n_,
                    api_heights_, api_heights_n_,
                    c_int(bool(recombine)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def extrudeBoundaryLayer(dimTags, numElements=[1], heights=[], recombine=False, second=False, viewIndex=-1):
                """
                gmsh.model.geo.extrudeBoundaryLayer(dimTags, numElements=[1], heights=[], recombine=False, second=False, viewIndex=-1)
    
                Extrude the entities `dimTags' in the built-in CAD representation along the
                normals of the mesh, creating discrete boundary layer entities. Return
                extruded entities in `outDimTags'. The entries in `numElements' give the
                number of elements in each layer. If `height' is not empty, it provides the
                height of the different layers. If `recombine' is set, recombine the mesh
                in the layers. A second boundary layer can be created from the same
                entities if `second' is set. If `viewIndex' is >= 0, use the corresponding
                view to either specify the normals (if the view contains a vector field) or
                scale the normals (if the view is scalar).
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_numElements_, api_numElements_n_ = _ivectorint(numElements)
                api_heights_, api_heights_n_ = _ivectordouble(heights)
                ierr = c_int()
                lib.gmshModelGeoExtrudeBoundaryLayer(
                    api_dimTags_, api_dimTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    api_numElements_, api_numElements_n_,
                    api_heights_, api_heights_n_,
                    c_int(bool(recombine)),
                    c_int(bool(second)),
                    c_int(viewIndex),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
            extrude_boundary_layer = extrudeBoundaryLayer
    
            @staticmethod
            def translate(dimTags, dx, dy, dz):
                """
                gmsh.model.geo.translate(dimTags, dx, dy, dz)
    
                Translate the entities `dimTags' in the built-in CAD representation along
                (`dx', `dy', `dz').
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelGeoTranslate(
                    api_dimTags_, api_dimTags_n_,
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def rotate(dimTags, x, y, z, ax, ay, az, angle):
                """
                gmsh.model.geo.rotate(dimTags, x, y, z, ax, ay, az, angle)
    
                Rotate the entities `dimTags' in the built-in CAD representation by `angle'
                radians around the axis of revolution defined by the point (`x', `y', `z')
                and the direction (`ax', `ay', `az').
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelGeoRotate(
                    api_dimTags_, api_dimTags_n_,
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(ax),
                    c_double(ay),
                    c_double(az),
                    c_double(angle),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def dilate(dimTags, x, y, z, a, b, c):
                """
                gmsh.model.geo.dilate(dimTags, x, y, z, a, b, c)
    
                Scale the entities `dimTag' in the built-in CAD representation by factors
                `a', `b' and `c' along the three coordinate axes; use (`x', `y', `z') as
                the center of the homothetic transformation.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelGeoDilate(
                    api_dimTags_, api_dimTags_n_,
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(a),
                    c_double(b),
                    c_double(c),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def mirror(dimTags, a, b, c, d):
                """
                gmsh.model.geo.mirror(dimTags, a, b, c, d)
    
                Mirror the entities `dimTag' in the built-in CAD representation, with
                respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelGeoMirror(
                    api_dimTags_, api_dimTags_n_,
                    c_double(a),
                    c_double(b),
                    c_double(c),
                    c_double(d),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def symmetrize(dimTags, a, b, c, d):
                """
                gmsh.model.geo.symmetrize(dimTags, a, b, c, d)
    
                Mirror the entities `dimTag' in the built-in CAD representation, with
                respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.
                (This is a synonym for `mirror', which will be deprecated in a future
                release.)
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelGeoSymmetrize(
                    api_dimTags_, api_dimTags_n_,
                    c_double(a),
                    c_double(b),
                    c_double(c),
                    c_double(d),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def copy(dimTags):
                """
                gmsh.model.geo.copy(dimTags)
    
                Copy the entities `dimTags' in the built-in CAD representation; the new
                entities are returned in `outDimTags'.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelGeoCopy(
                    api_dimTags_, api_dimTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def remove(dimTags, recursive=False):
                """
                gmsh.model.geo.remove(dimTags, recursive=False)
    
                Remove the entities `dimTags' in the built-in CAD representation. If
                `recursive' is true, remove all the entities on their boundaries, down to
                dimension 0.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelGeoRemove(
                    api_dimTags_, api_dimTags_n_,
                    c_int(bool(recursive)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def removeAllDuplicates():
                """
                gmsh.model.geo.removeAllDuplicates()
    
                Remove all duplicate entities in the built-in CAD representation (different
                entities at the same geometrical location).
                """
                ierr = c_int()
                lib.gmshModelGeoRemoveAllDuplicates(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            remove_all_duplicates = removeAllDuplicates
    
            @staticmethod
            def splitCurve(tag, pointTags):
                """
                gmsh.model.geo.splitCurve(tag, pointTags)
    
                Split the curve of tag `tag' in the built-in CAD representation, on the
                control points `pointTags'. Return the tags `curveTags' of the newly
                created curves.
    
                Return `curveTags'.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                api_curveTags_, api_curveTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelGeoSplitCurve(
                    c_int(tag),
                    api_pointTags_, api_pointTags_n_,
                    byref(api_curveTags_), byref(api_curveTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorint(api_curveTags_, api_curveTags_n_.value)
            split_curve = splitCurve
    
            @staticmethod
            def getMaxTag(dim):
                """
                gmsh.model.geo.getMaxTag(dim)
    
                Get the maximum tag of entities of dimension `dim' in the built-in CAD
                representation.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelGeoGetMaxTag(
                    c_int(dim),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            get_max_tag = getMaxTag
    
            @staticmethod
            def setMaxTag(dim, maxTag):
                """
                gmsh.model.geo.setMaxTag(dim, maxTag)
    
                Set the maximum tag `maxTag' for entities of dimension `dim' in the built-
                in CAD representation.
                """
                ierr = c_int()
                lib.gmshModelGeoSetMaxTag(
                    c_int(dim),
                    c_int(maxTag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_max_tag = setMaxTag
    
            @staticmethod
            def addPhysicalGroup(dim, tags, tag=-1):
                """
                gmsh.model.geo.addPhysicalGroup(dim, tags, tag=-1)
    
                Add a physical group of dimension `dim', grouping the entities with tags
                `tags' in the built-in CAD representation. Return the tag of the physical
                group, equal to `tag' if `tag' is positive, or a new tag if `tag' < 0.
    
                Return an integer value.
                """
                api_tags_, api_tags_n_ = _ivectorint(tags)
                ierr = c_int()
                api_result_ = lib.gmshModelGeoAddPhysicalGroup(
                    c_int(dim),
                    api_tags_, api_tags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_physical_group = addPhysicalGroup
    
            @staticmethod
            def removePhysicalGroups(dimTags=[]):
                """
                gmsh.model.geo.removePhysicalGroups(dimTags=[])
    
                Remove the physical groups `dimTags' from the built-in CAD representation.
                If `dimTags' is empty, remove all groups.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelGeoRemovePhysicalGroups(
                    api_dimTags_, api_dimTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            remove_physical_groups = removePhysicalGroups
    
            @staticmethod
            def synchronize():
                """
                gmsh.model.geo.synchronize()
    
                Synchronize the built-in CAD representation with the current Gmsh model.
                This can be called at any time, but since it involves a non trivial amount
                of processing, the number of synchronization points should normally be
                minimized. Without synchronization the entities in the built-in CAD
                representation are not available to any function outside of the built-in
                CAD kernel functions.
                """
                ierr = c_int()
                lib.gmshModelGeoSynchronize(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
    
            class mesh:
                """
                Built-in CAD kernel meshing constraints
                """
    
                @staticmethod
                def setSize(dimTags, size):
                    """
                    gmsh.model.geo.mesh.setSize(dimTags, size)
    
                    Set a mesh size constraint on the entities `dimTags' in the built-in CAD
                    kernel representation. Currently only entities of dimension 0 (points) are
                    handled.
                    """
                    api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetSize(
                        api_dimTags_, api_dimTags_n_,
                        c_double(size),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_size = setSize
    
                @staticmethod
                def setTransfiniteCurve(tag, nPoints, meshType="Progression", coef=1.):
                    """
                    gmsh.model.geo.mesh.setTransfiniteCurve(tag, nPoints, meshType="Progression", coef=1.)
    
                    Set a transfinite meshing constraint on the curve `tag' in the built-in CAD
                    kernel representation, with `numNodes' nodes distributed according to
                    `meshType' and `coef'. Currently supported types are "Progression"
                    (geometrical progression with power `coef') and "Bump" (refinement toward
                    both extremities of the curve).
                    """
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetTransfiniteCurve(
                        c_int(tag),
                        c_int(nPoints),
                        c_char_p(meshType.encode()),
                        c_double(coef),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_transfinite_curve = setTransfiniteCurve
    
                @staticmethod
                def setTransfiniteSurface(tag, arrangement="Left", cornerTags=[]):
                    """
                    gmsh.model.geo.mesh.setTransfiniteSurface(tag, arrangement="Left", cornerTags=[])
    
                    Set a transfinite meshing constraint on the surface `tag' in the built-in
                    CAD kernel representation. `arrangement' describes the arrangement of the
                    triangles when the surface is not flagged as recombined: currently
                    supported values are "Left", "Right", "AlternateLeft" and "AlternateRight".
                    `cornerTags' can be used to specify the (3 or 4) corners of the transfinite
                    interpolation explicitly; specifying the corners explicitly is mandatory if
                    the surface has more that 3 or 4 points on its boundary.
                    """
                    api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags)
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetTransfiniteSurface(
                        c_int(tag),
                        c_char_p(arrangement.encode()),
                        api_cornerTags_, api_cornerTags_n_,
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_transfinite_surface = setTransfiniteSurface
    
                @staticmethod
                def setTransfiniteVolume(tag, cornerTags=[]):
                    """
                    gmsh.model.geo.mesh.setTransfiniteVolume(tag, cornerTags=[])
    
                    Set a transfinite meshing constraint on the surface `tag' in the built-in
                    CAD kernel representation. `cornerTags' can be used to specify the (6 or 8)
                    corners of the transfinite interpolation explicitly.
                    """
                    api_cornerTags_, api_cornerTags_n_ = _ivectorint(cornerTags)
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetTransfiniteVolume(
                        c_int(tag),
                        api_cornerTags_, api_cornerTags_n_,
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_transfinite_volume = setTransfiniteVolume
    
                @staticmethod
                def setRecombine(dim, tag, angle=45.):
                    """
                    gmsh.model.geo.mesh.setRecombine(dim, tag, angle=45.)
    
                    Set a recombination meshing constraint on the entity of dimension `dim' and
                    tag `tag' in the built-in CAD kernel representation. Currently only
                    entities of dimension 2 (to recombine triangles into quadrangles) are
                    supported.
                    """
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetRecombine(
                        c_int(dim),
                        c_int(tag),
                        c_double(angle),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_recombine = setRecombine
    
                @staticmethod
                def setSmoothing(dim, tag, val):
                    """
                    gmsh.model.geo.mesh.setSmoothing(dim, tag, val)
    
                    Set a smoothing meshing constraint on the entity of dimension `dim' and tag
                    `tag' in the built-in CAD kernel representation. `val' iterations of a
                    Laplace smoother are applied.
                    """
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetSmoothing(
                        c_int(dim),
                        c_int(tag),
                        c_int(val),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_smoothing = setSmoothing
    
                @staticmethod
                def setReverse(dim, tag, val=True):
                    """
                    gmsh.model.geo.mesh.setReverse(dim, tag, val=True)
    
                    Set a reverse meshing constraint on the entity of dimension `dim' and tag
                    `tag' in the built-in CAD kernel representation. If `val' is true, the mesh
                    orientation will be reversed with respect to the natural mesh orientation
                    (i.e. the orientation consistent with the orientation of the geometry). If
                    `val' is false, the mesh is left as-is.
                    """
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetReverse(
                        c_int(dim),
                        c_int(tag),
                        c_int(bool(val)),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_reverse = setReverse
    
                @staticmethod
                def setAlgorithm(dim, tag, val):
                    """
                    gmsh.model.geo.mesh.setAlgorithm(dim, tag, val)
    
                    Set the meshing algorithm on the entity of dimension `dim' and tag `tag' in
                    the built-in CAD kernel representation. Currently only supported for `dim'
                    == 2.
                    """
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetAlgorithm(
                        c_int(dim),
                        c_int(tag),
                        c_int(val),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_algorithm = setAlgorithm
    
                @staticmethod
                def setSizeFromBoundary(dim, tag, val):
                    """
                    gmsh.model.geo.mesh.setSizeFromBoundary(dim, tag, val)
    
                    Force the mesh size to be extended from the boundary, or not, for the
                    entity of dimension `dim' and tag `tag' in the built-in CAD kernel
                    representation. Currently only supported for `dim' == 2.
                    """
                    ierr = c_int()
                    lib.gmshModelGeoMeshSetSizeFromBoundary(
                        c_int(dim),
                        c_int(tag),
                        c_int(val),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_size_from_boundary = setSizeFromBoundary
    
    
        class occ:
            """
            OpenCASCADE CAD kernel functions
            """
    
            @staticmethod
            def addPoint(x, y, z, meshSize=0., tag=-1):
                """
                gmsh.model.occ.addPoint(x, y, z, meshSize=0., tag=-1)
    
                Add a geometrical point in the OpenCASCADE CAD representation, at
                coordinates (`x', `y', `z'). If `meshSize' is > 0, add a meshing constraint
                at that point. If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically. Return the tag of the point. (Note that
                the point will be added in the current model only after `synchronize' is
                called. This behavior holds for all the entities added in the occ module.)
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddPoint(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(meshSize),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_point = addPoint
    
            @staticmethod
            def addLine(startTag, endTag, tag=-1):
                """
                gmsh.model.occ.addLine(startTag, endTag, tag=-1)
    
                Add a straight line segment in the OpenCASCADE CAD representation, between
                the two points with tags `startTag' and `endTag'. If `tag' is positive, set
                the tag explicitly; otherwise a new tag is selected automatically. Return
                the tag of the line.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddLine(
                    c_int(startTag),
                    c_int(endTag),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_line = addLine
    
            @staticmethod
            def addCircleArc(startTag, centerTag, endTag, tag=-1):
                """
                gmsh.model.occ.addCircleArc(startTag, centerTag, endTag, tag=-1)
    
                Add a circle arc in the OpenCASCADE CAD representation, between the two
                points with tags `startTag' and `endTag', with center `centerTag'. If `tag'
                is positive, set the tag explicitly; otherwise a new tag is selected
                automatically. Return the tag of the circle arc.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddCircleArc(
                    c_int(startTag),
                    c_int(centerTag),
                    c_int(endTag),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_circle_arc = addCircleArc
    
            @staticmethod
            def addCircle(x, y, z, r, tag=-1, angle1=0., angle2=2*pi):
                """
                gmsh.model.occ.addCircle(x, y, z, r, tag=-1, angle1=0., angle2=2*pi)
    
                Add a circle of center (`x', `y', `z') and radius `r' in the OpenCASCADE
                CAD representation. If `tag' is positive, set the tag explicitly; otherwise
                a new tag is selected automatically. If `angle1' and `angle2' are
                specified, create a circle arc between the two angles. Return the tag of
                the circle.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddCircle(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(r),
                    c_int(tag),
                    c_double(angle1),
                    c_double(angle2),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_circle = addCircle
    
            @staticmethod
            def addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1):
                """
                gmsh.model.occ.addEllipseArc(startTag, centerTag, majorTag, endTag, tag=-1)
    
                Add an ellipse arc in the OpenCASCADE CAD representation, between the two
                points `startTag' and `endTag', and with center `centerTag' and major axis
                point `majorTag'. If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically. Return the tag of the ellipse arc. Note
                that OpenCASCADE does not allow creating ellipse arcs with the major radius
                smaller than the minor radius.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddEllipseArc(
                    c_int(startTag),
                    c_int(centerTag),
                    c_int(majorTag),
                    c_int(endTag),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_ellipse_arc = addEllipseArc
    
            @staticmethod
            def addEllipse(x, y, z, r1, r2, tag=-1, angle1=0., angle2=2*pi):
                """
                gmsh.model.occ.addEllipse(x, y, z, r1, r2, tag=-1, angle1=0., angle2=2*pi)
    
                Add an ellipse of center (`x', `y', `z') and radii `r1' and `r2' along the
                x- and y-axes, respectively, in the OpenCASCADE CAD representation. If
                `tag' is positive, set the tag explicitly; otherwise a new tag is selected
                automatically. If `angle1' and `angle2' are specified, create an ellipse
                arc between the two angles. Return the tag of the ellipse. Note that
                OpenCASCADE does not allow creating ellipses with the major radius (along
                the x-axis) smaller than or equal to the minor radius (along the y-axis):
                rotate the shape or use `addCircle' in such cases.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddEllipse(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(r1),
                    c_double(r2),
                    c_int(tag),
                    c_double(angle1),
                    c_double(angle2),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_ellipse = addEllipse
    
            @staticmethod
            def addSpline(pointTags, tag=-1):
                """
                gmsh.model.occ.addSpline(pointTags, tag=-1)
    
                Add a spline (C2 b-spline) curve in the OpenCASCADE CAD representation,
                going through the points `pointTags'. If `tag' is positive, set the tag
                explicitly; otherwise a new tag is selected automatically. Create a
                periodic curve if the first and last points are the same. Return the tag of
                the spline curve.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddSpline(
                    api_pointTags_, api_pointTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_spline = addSpline
    
            @staticmethod
            def addBSpline(pointTags, tag=-1, degree=3, weights=[], knots=[], multiplicities=[]):
                """
                gmsh.model.occ.addBSpline(pointTags, tag=-1, degree=3, weights=[], knots=[], multiplicities=[])
    
                Add a b-spline curve of degree `degree' in the OpenCASCADE CAD
                representation, with `pointTags' control points. If `weights', `knots' or
                `multiplicities' are not provided, default parameters are computed
                automatically. If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically. Create a periodic curve if the first and
                last points are the same. Return the tag of the b-spline curve.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                api_weights_, api_weights_n_ = _ivectordouble(weights)
                api_knots_, api_knots_n_ = _ivectordouble(knots)
                api_multiplicities_, api_multiplicities_n_ = _ivectorint(multiplicities)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddBSpline(
                    api_pointTags_, api_pointTags_n_,
                    c_int(tag),
                    c_int(degree),
                    api_weights_, api_weights_n_,
                    api_knots_, api_knots_n_,
                    api_multiplicities_, api_multiplicities_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bspline = addBSpline
    
            @staticmethod
            def addBezier(pointTags, tag=-1):
                """
                gmsh.model.occ.addBezier(pointTags, tag=-1)
    
                Add a Bezier curve in the OpenCASCADE CAD representation, with `pointTags'
                control points. If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically. Return the tag of the Bezier curve.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddBezier(
                    api_pointTags_, api_pointTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bezier = addBezier
    
            @staticmethod
            def addWire(curveTags, tag=-1, checkClosed=False):
                """
                gmsh.model.occ.addWire(curveTags, tag=-1, checkClosed=False)
    
                Add a wire (open or closed) in the OpenCASCADE CAD representation, formed
                by the curves `curveTags'. Note that an OpenCASCADE wire can be made of
                curves that share geometrically identical (but topologically different)
                points. If `tag' is positive, set the tag explicitly; otherwise a new tag
                is selected automatically. Return the tag of the wire.
    
                Return an integer value.
                """
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddWire(
                    api_curveTags_, api_curveTags_n_,
                    c_int(tag),
                    c_int(bool(checkClosed)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_wire = addWire
    
            @staticmethod
            def addCurveLoop(curveTags, tag=-1):
                """
                gmsh.model.occ.addCurveLoop(curveTags, tag=-1)
    
                Add a curve loop (a closed wire) in the OpenCASCADE CAD representation,
                formed by the curves `curveTags'. `curveTags' should contain tags of curves
                forming a closed loop. Note that an OpenCASCADE curve loop can be made of
                curves that share geometrically identical (but topologically different)
                points. If `tag' is positive, set the tag explicitly; otherwise a new tag
                is selected automatically. Return the tag of the curve loop.
    
                Return an integer value.
                """
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddCurveLoop(
                    api_curveTags_, api_curveTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_curve_loop = addCurveLoop
    
            @staticmethod
            def addRectangle(x, y, z, dx, dy, tag=-1, roundedRadius=0.):
                """
                gmsh.model.occ.addRectangle(x, y, z, dx, dy, tag=-1, roundedRadius=0.)
    
                Add a rectangle in the OpenCASCADE CAD representation, with lower left
                corner at (`x', `y', `z') and upper right corner at (`x' + `dx', `y' +
                `dy', `z'). If `tag' is positive, set the tag explicitly; otherwise a new
                tag is selected automatically. Round the corners if `roundedRadius' is
                nonzero. Return the tag of the rectangle.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddRectangle(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(dx),
                    c_double(dy),
                    c_int(tag),
                    c_double(roundedRadius),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_rectangle = addRectangle
    
            @staticmethod
            def addDisk(xc, yc, zc, rx, ry, tag=-1):
                """
                gmsh.model.occ.addDisk(xc, yc, zc, rx, ry, tag=-1)
    
                Add a disk in the OpenCASCADE CAD representation, with center (`xc', `yc',
                `zc') and radius `rx' along the x-axis and `ry' along the y-axis. If `tag'
                is positive, set the tag explicitly; otherwise a new tag is selected
                automatically. Return the tag of the disk.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddDisk(
                    c_double(xc),
                    c_double(yc),
                    c_double(zc),
                    c_double(rx),
                    c_double(ry),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_disk = addDisk
    
            @staticmethod
            def addPlaneSurface(wireTags, tag=-1):
                """
                gmsh.model.occ.addPlaneSurface(wireTags, tag=-1)
    
                Add a plane surface in the OpenCASCADE CAD representation, defined by one
                or more curve loops (or closed wires) `wireTags'. The first curve loop
                defines the exterior contour; additional curve loop define holes. If `tag'
                is positive, set the tag explicitly; otherwise a new tag is selected
                automatically. Return the tag of the surface.
    
                Return an integer value.
                """
                api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddPlaneSurface(
                    api_wireTags_, api_wireTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_plane_surface = addPlaneSurface
    
            @staticmethod
            def addSurfaceFilling(wireTag, tag=-1, pointTags=[]):
                """
                gmsh.model.occ.addSurfaceFilling(wireTag, tag=-1, pointTags=[])
    
                Add a surface in the OpenCASCADE CAD representation, filling the curve loop
                `wireTag'. If `tag' is positive, set the tag explicitly; otherwise a new
                tag is selected automatically. Return the tag of the surface. If
                `pointTags' are provided, force the surface to pass through the given
                points.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddSurfaceFilling(
                    c_int(wireTag),
                    c_int(tag),
                    api_pointTags_, api_pointTags_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_surface_filling = addSurfaceFilling
    
            @staticmethod
            def addBSplineFilling(wireTag, tag=-1, type=""):
                """
                gmsh.model.occ.addBSplineFilling(wireTag, tag=-1, type="")
    
                Add a BSpline surface in the OpenCASCADE CAD representation, filling the
                curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 BSpline
                curves. The optional `type' argument specifies the type of filling:
                "Stretch" creates the flattest patch, "Curved" (the default) creates the
                most rounded patch, and "Coons" creates a rounded patch with less depth
                than "Curved". If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically. Return the tag of the surface.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddBSplineFilling(
                    c_int(wireTag),
                    c_int(tag),
                    c_char_p(type.encode()),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bspline_filling = addBSplineFilling
    
            @staticmethod
            def addBezierFilling(wireTag, tag=-1, type=""):
                """
                gmsh.model.occ.addBezierFilling(wireTag, tag=-1, type="")
    
                Add a Bezier surface in the OpenCASCADE CAD representation, filling the
                curve loop `wireTag'. The curve loop should be made of 2, 3 or 4 Bezier
                curves. The optional `type' argument specifies the type of filling:
                "Stretch" creates the flattest patch, "Curved" (the default) creates the
                most rounded patch, and "Coons" creates a rounded patch with less depth
                than "Curved". If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically. Return the tag of the surface.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddBezierFilling(
                    c_int(wireTag),
                    c_int(tag),
                    c_char_p(type.encode()),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bezier_filling = addBezierFilling
    
            @staticmethod
            def addBSplineSurface(pointTags, numPointsU, tag=-1, degreeU=3, degreeV=3, weights=[], knotsU=[], knotsV=[], multiplicitiesU=[], multiplicitiesV=[], wireTags=[], wire3D=False):
                """
                gmsh.model.occ.addBSplineSurface(pointTags, numPointsU, tag=-1, degreeU=3, degreeV=3, weights=[], knotsU=[], knotsV=[], multiplicitiesU=[], multiplicitiesV=[], wireTags=[], wire3D=False)
    
                Add a b-spline surface of degree `degreeU' x `degreeV' in the OpenCASCADE
                CAD representation, with `pointTags' control points given as a single
                vector [Pu1v1, ... Pu`numPointsU'v1, Pu1v2, ...]. If `weights', `knotsU',
                `knotsV', `multiplicitiesU' or `multiplicitiesV' are not provided, default
                parameters are computed automatically. If `tag' is positive, set the tag
                explicitly; otherwise a new tag is selected automatically. If `wireTags' is
                provided, trim the b-spline patch using the provided wires: the first wire
                defines the external contour, the others define holes. If `wire3D' is set,
                consider wire curves as 3D curves and project them on the b-spline surface;
                otherwise consider the wire curves as defined in the parametric space of
                the surface. Return the tag of the b-spline surface.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                api_weights_, api_weights_n_ = _ivectordouble(weights)
                api_knotsU_, api_knotsU_n_ = _ivectordouble(knotsU)
                api_knotsV_, api_knotsV_n_ = _ivectordouble(knotsV)
                api_multiplicitiesU_, api_multiplicitiesU_n_ = _ivectorint(multiplicitiesU)
                api_multiplicitiesV_, api_multiplicitiesV_n_ = _ivectorint(multiplicitiesV)
                api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddBSplineSurface(
                    api_pointTags_, api_pointTags_n_,
                    c_int(numPointsU),
                    c_int(tag),
                    c_int(degreeU),
                    c_int(degreeV),
                    api_weights_, api_weights_n_,
                    api_knotsU_, api_knotsU_n_,
                    api_knotsV_, api_knotsV_n_,
                    api_multiplicitiesU_, api_multiplicitiesU_n_,
                    api_multiplicitiesV_, api_multiplicitiesV_n_,
                    api_wireTags_, api_wireTags_n_,
                    c_int(bool(wire3D)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bspline_surface = addBSplineSurface
    
            @staticmethod
            def addBezierSurface(pointTags, numPointsU, tag=-1, wireTags=[], wire3D=False):
                """
                gmsh.model.occ.addBezierSurface(pointTags, numPointsU, tag=-1, wireTags=[], wire3D=False)
    
                Add a Bezier surface in the OpenCASCADE CAD representation, with
                `pointTags' control points given as a single vector [Pu1v1, ...
                Pu`numPointsU'v1, Pu1v2, ...]. If `tag' is positive, set the tag
                explicitly; otherwise a new tag is selected automatically. If `wireTags' is
                provided, trim the Bezier patch using the provided wires: the first wire
                defines the external contour, the others define holes. If `wire3D' is set,
                consider wire curves as 3D curves and project them on the Bezier surface;
                otherwise consider the wire curves as defined in the parametric space of
                the surface. Return the tag of the Bezier surface.
    
                Return an integer value.
                """
                api_pointTags_, api_pointTags_n_ = _ivectorint(pointTags)
                api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddBezierSurface(
                    api_pointTags_, api_pointTags_n_,
                    c_int(numPointsU),
                    c_int(tag),
                    api_wireTags_, api_wireTags_n_,
                    c_int(bool(wire3D)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_bezier_surface = addBezierSurface
    
            @staticmethod
            def addTrimmedSurface(surfaceTag, wireTags=[], wire3D=False, tag=-1):
                """
                gmsh.model.occ.addTrimmedSurface(surfaceTag, wireTags=[], wire3D=False, tag=-1)
    
                Trim the surface `surfaceTag' with the wires `wireTags', replacing any
                existing trimming curves. The first wire defines the external contour, the
                others define holes. If `wire3D' is set, consider wire curves as 3D curves
                and project them on the surface; otherwise consider the wire curves as
                defined in the parametric space of the surface. If `tag' is positive, set
                the tag explicitly; otherwise a new tag is selected automatically. Return
                the tag of the trimmed surface.
    
                Return an integer value.
                """
                api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddTrimmedSurface(
                    c_int(surfaceTag),
                    api_wireTags_, api_wireTags_n_,
                    c_int(bool(wire3D)),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_trimmed_surface = addTrimmedSurface
    
            @staticmethod
            def addSurfaceLoop(surfaceTags, tag=-1, sewing=False):
                """
                gmsh.model.occ.addSurfaceLoop(surfaceTags, tag=-1, sewing=False)
    
                Add a surface loop (a closed shell) in the OpenCASCADE CAD representation,
                formed by `surfaceTags'.  If `tag' is positive, set the tag explicitly;
                otherwise a new tag is selected automatically. Return the tag of the
                surface loop. Setting `sewing' allows to build a shell made of surfaces
                that share geometrically identical (but topologically different) curves.
    
                Return an integer value.
                """
                api_surfaceTags_, api_surfaceTags_n_ = _ivectorint(surfaceTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddSurfaceLoop(
                    api_surfaceTags_, api_surfaceTags_n_,
                    c_int(tag),
                    c_int(bool(sewing)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_surface_loop = addSurfaceLoop
    
            @staticmethod
            def addVolume(shellTags, tag=-1):
                """
                gmsh.model.occ.addVolume(shellTags, tag=-1)
    
                Add a volume (a region) in the OpenCASCADE CAD representation, defined by
                one or more surface loops `shellTags'. The first surface loop defines the
                exterior boundary; additional surface loop define holes. If `tag' is
                positive, set the tag explicitly; otherwise a new tag is selected
                automatically. Return the tag of the volume.
    
                Return an integer value.
                """
                api_shellTags_, api_shellTags_n_ = _ivectorint(shellTags)
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddVolume(
                    api_shellTags_, api_shellTags_n_,
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_volume = addVolume
    
            @staticmethod
            def addSphere(xc, yc, zc, radius, tag=-1, angle1=-pi/2, angle2=pi/2, angle3=2*pi):
                """
                gmsh.model.occ.addSphere(xc, yc, zc, radius, tag=-1, angle1=-pi/2, angle2=pi/2, angle3=2*pi)
    
                Add a sphere of center (`xc', `yc', `zc') and radius `r' in the OpenCASCADE
                CAD representation. The optional `angle1' and `angle2' arguments define the
                polar angle opening (from -Pi/2 to Pi/2). The optional `angle3' argument
                defines the azimuthal opening (from 0 to 2*Pi). If `tag' is positive, set
                the tag explicitly; otherwise a new tag is selected automatically. Return
                the tag of the sphere.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddSphere(
                    c_double(xc),
                    c_double(yc),
                    c_double(zc),
                    c_double(radius),
                    c_int(tag),
                    c_double(angle1),
                    c_double(angle2),
                    c_double(angle3),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_sphere = addSphere
    
            @staticmethod
            def addBox(x, y, z, dx, dy, dz, tag=-1):
                """
                gmsh.model.occ.addBox(x, y, z, dx, dy, dz, tag=-1)
    
                Add a parallelepipedic box in the OpenCASCADE CAD representation, defined
                by a point (`x', `y', `z') and the extents along the x-, y- and z-axes. If
                `tag' is positive, set the tag explicitly; otherwise a new tag is selected
                automatically. Return the tag of the box.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddBox(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_box = addBox
    
            @staticmethod
            def addCylinder(x, y, z, dx, dy, dz, r, tag=-1, angle=2*pi):
                """
                gmsh.model.occ.addCylinder(x, y, z, dx, dy, dz, r, tag=-1, angle=2*pi)
    
                Add a cylinder in the OpenCASCADE CAD representation, defined by the center
                (`x', `y', `z') of its first circular face, the 3 components (`dx', `dy',
                `dz') of the vector defining its axis and its radius `r'. The optional
                `angle' argument defines the angular opening (from 0 to 2*Pi). If `tag' is
                positive, set the tag explicitly; otherwise a new tag is selected
                automatically. Return the tag of the cylinder.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddCylinder(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    c_double(r),
                    c_int(tag),
                    c_double(angle),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_cylinder = addCylinder
    
            @staticmethod
            def addCone(x, y, z, dx, dy, dz, r1, r2, tag=-1, angle=2*pi):
                """
                gmsh.model.occ.addCone(x, y, z, dx, dy, dz, r1, r2, tag=-1, angle=2*pi)
    
                Add a cone in the OpenCASCADE CAD representation, defined by the center
                (`x', `y', `z') of its first circular face, the 3 components of the vector
                (`dx', `dy', `dz') defining its axis and the two radii `r1' and `r2' of the
                faces (these radii can be zero). If `tag' is positive, set the tag
                explicitly; otherwise a new tag is selected automatically. `angle' defines
                the optional angular opening (from 0 to 2*Pi). Return the tag of the cone.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddCone(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    c_double(r1),
                    c_double(r2),
                    c_int(tag),
                    c_double(angle),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_cone = addCone
    
            @staticmethod
            def addWedge(x, y, z, dx, dy, dz, tag=-1, ltx=0.):
                """
                gmsh.model.occ.addWedge(x, y, z, dx, dy, dz, tag=-1, ltx=0.)
    
                Add a right angular wedge in the OpenCASCADE CAD representation, defined by
                the right-angle point (`x', `y', `z') and the 3 extends along the x-, y-
                and z-axes (`dx', `dy', `dz'). If `tag' is positive, set the tag
                explicitly; otherwise a new tag is selected automatically. The optional
                argument `ltx' defines the top extent along the x-axis. Return the tag of
                the wedge.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddWedge(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    c_int(tag),
                    c_double(ltx),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_wedge = addWedge
    
            @staticmethod
            def addTorus(x, y, z, r1, r2, tag=-1, angle=2*pi):
                """
                gmsh.model.occ.addTorus(x, y, z, r1, r2, tag=-1, angle=2*pi)
    
                Add a torus in the OpenCASCADE CAD representation, defined by its center
                (`x', `y', `z') and its 2 radii `r' and `r2'. If `tag' is positive, set the
                tag explicitly; otherwise a new tag is selected automatically. The optional
                argument `angle' defines the angular opening (from 0 to 2*Pi). Return the
                tag of the wedge.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccAddTorus(
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(r1),
                    c_double(r2),
                    c_int(tag),
                    c_double(angle),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            add_torus = addTorus
    
            @staticmethod
            def addThruSections(wireTags, tag=-1, makeSolid=True, makeRuled=False, maxDegree=-1):
                """
                gmsh.model.occ.addThruSections(wireTags, tag=-1, makeSolid=True, makeRuled=False, maxDegree=-1)
    
                Add a volume (if the optional argument `makeSolid' is set) or surfaces in
                the OpenCASCADE CAD representation, defined through the open or closed
                wires `wireTags'. If `tag' is positive, set the tag explicitly; otherwise a
                new tag is selected automatically. The new entities are returned in
                `outDimTags'. If the optional argument `makeRuled' is set, the surfaces
                created on the boundary are forced to be ruled surfaces. If `maxDegree' is
                positive, set the maximal degree of resulting surface.
    
                Return `outDimTags'.
                """
                api_wireTags_, api_wireTags_n_ = _ivectorint(wireTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccAddThruSections(
                    api_wireTags_, api_wireTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    c_int(tag),
                    c_int(bool(makeSolid)),
                    c_int(bool(makeRuled)),
                    c_int(maxDegree),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
            add_thru_sections = addThruSections
    
            @staticmethod
            def addThickSolid(volumeTag, excludeSurfaceTags, offset, tag=-1):
                """
                gmsh.model.occ.addThickSolid(volumeTag, excludeSurfaceTags, offset, tag=-1)
    
                Add a hollowed volume in the OpenCASCADE CAD representation, built from an
                initial volume `volumeTag' and a set of faces from this volume
                `excludeSurfaceTags', which are to be removed. The remaining faces of the
                volume become the walls of the hollowed solid, with thickness `offset'. If
                `tag' is positive, set the tag explicitly; otherwise a new tag is selected
                automatically.
    
                Return `outDimTags'.
                """
                api_excludeSurfaceTags_, api_excludeSurfaceTags_n_ = _ivectorint(excludeSurfaceTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccAddThickSolid(
                    c_int(volumeTag),
                    api_excludeSurfaceTags_, api_excludeSurfaceTags_n_,
                    c_double(offset),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    c_int(tag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
            add_thick_solid = addThickSolid
    
            @staticmethod
            def extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False):
                """
                gmsh.model.occ.extrude(dimTags, dx, dy, dz, numElements=[], heights=[], recombine=False)
    
                Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using
                a translation along (`dx', `dy', `dz'). Return extruded entities in
                `outDimTags'. If `numElements' is not empty, also extrude the mesh: the
                entries in `numElements' give the number of elements in each layer. If
                `height' is not empty, it provides the (cumulative) height of the different
                layers, normalized to 1. If `recombine' is set, recombine the mesh in the
                layers.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_numElements_, api_numElements_n_ = _ivectorint(numElements)
                api_heights_, api_heights_n_ = _ivectordouble(heights)
                ierr = c_int()
                lib.gmshModelOccExtrude(
                    api_dimTags_, api_dimTags_n_,
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    api_numElements_, api_numElements_n_,
                    api_heights_, api_heights_n_,
                    c_int(bool(recombine)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False):
                """
                gmsh.model.occ.revolve(dimTags, x, y, z, ax, ay, az, angle, numElements=[], heights=[], recombine=False)
    
                Extrude the entities `dimTags' in the OpenCASCADE CAD representation, using
                a rotation of `angle' radians around the axis of revolution defined by the
                point (`x', `y', `z') and the direction (`ax', `ay', `az'). Return extruded
                entities in `outDimTags'. If `numElements' is not empty, also extrude the
                mesh: the entries in `numElements' give the number of elements in each
                layer. If `height' is not empty, it provides the (cumulative) height of the
                different layers, normalized to 1. When the mesh is extruded the angle
                should be strictly smaller than 2*Pi. If `recombine' is set, recombine the
                mesh in the layers.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_numElements_, api_numElements_n_ = _ivectorint(numElements)
                api_heights_, api_heights_n_ = _ivectordouble(heights)
                ierr = c_int()
                lib.gmshModelOccRevolve(
                    api_dimTags_, api_dimTags_n_,
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(ax),
                    c_double(ay),
                    c_double(az),
                    c_double(angle),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    api_numElements_, api_numElements_n_,
                    api_heights_, api_heights_n_,
                    c_int(bool(recombine)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def addPipe(dimTags, wireTag, trihedron=""):
                """
                gmsh.model.occ.addPipe(dimTags, wireTag, trihedron="")
    
                Add a pipe in the OpenCASCADE CAD representation, by extruding the entities
                `dimTags' along the wire `wireTag'. The type of sweep can be specified with
                `trihedron' (possible values: "DiscreteTrihedron", "CorrectedFrenet",
                "Fixed", "Frenet", "ConstantNormal", "Darboux", "GuideAC", "GuidePlan",
                "GuideACWithContact", "GuidePlanWithContact"). If `trihedron' is not
                provided, "DiscreteTrihedron" is assumed. Return the pipe in `outDimTags'.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccAddPipe(
                    api_dimTags_, api_dimTags_n_,
                    c_int(wireTag),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    c_char_p(trihedron.encode()),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
            add_pipe = addPipe
    
            @staticmethod
            def fillet(volumeTags, curveTags, radii, removeVolume=True):
                """
                gmsh.model.occ.fillet(volumeTags, curveTags, radii, removeVolume=True)
    
                Fillet the volumes `volumeTags' on the curves `curveTags' with radii
                `radii'. The `radii' vector can either contain a single radius, as many
                radii as `curveTags', or twice as many as `curveTags' (in which case
                different radii are provided for the begin and end points of the curves).
                Return the filleted entities in `outDimTags'. Remove the original volume if
                `removeVolume' is set.
    
                Return `outDimTags'.
                """
                api_volumeTags_, api_volumeTags_n_ = _ivectorint(volumeTags)
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                api_radii_, api_radii_n_ = _ivectordouble(radii)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccFillet(
                    api_volumeTags_, api_volumeTags_n_,
                    api_curveTags_, api_curveTags_n_,
                    api_radii_, api_radii_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    c_int(bool(removeVolume)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def chamfer(volumeTags, curveTags, surfaceTags, distances, removeVolume=True):
                """
                gmsh.model.occ.chamfer(volumeTags, curveTags, surfaceTags, distances, removeVolume=True)
    
                Chamfer the volumes `volumeTags' on the curves `curveTags' with distances
                `distances' measured on surfaces `surfaceTags'. The `distances' vector can
                either contain a single distance, as many distances as `curveTags' and
                `surfaceTags', or twice as many as `curveTags' and `surfaceTags' (in which
                case the first in each pair is measured on the corresponding surface in
                `surfaceTags', the other on the other adjacent surface). Return the
                chamfered entities in `outDimTags'. Remove the original volume if
                `removeVolume' is set.
    
                Return `outDimTags'.
                """
                api_volumeTags_, api_volumeTags_n_ = _ivectorint(volumeTags)
                api_curveTags_, api_curveTags_n_ = _ivectorint(curveTags)
                api_surfaceTags_, api_surfaceTags_n_ = _ivectorint(surfaceTags)
                api_distances_, api_distances_n_ = _ivectordouble(distances)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccChamfer(
                    api_volumeTags_, api_volumeTags_n_,
                    api_curveTags_, api_curveTags_n_,
                    api_surfaceTags_, api_surfaceTags_n_,
                    api_distances_, api_distances_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    c_int(bool(removeVolume)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def fuse(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True):
                """
                gmsh.model.occ.fuse(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True)
    
                Compute the boolean union (the fusion) of the entities `objectDimTags' and
                `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting
                entities in `outDimTags'. If `tag' is positive, try to set the tag
                explicitly (only valid if the boolean operation results in a single
                entity). Remove the object if `removeObject' is set. Remove the tool if
                `removeTool' is set.
    
                Return `outDimTags', `outDimTagsMap'.
                """
                api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags)
                api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccFuse(
                    api_objectDimTags_, api_objectDimTags_n_,
                    api_toolDimTags_, api_toolDimTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_),
                    c_int(tag),
                    c_int(bool(removeObject)),
                    c_int(bool(removeTool)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorpair(api_outDimTags_, api_outDimTags_n_.value),
                    _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_))
    
            @staticmethod
            def intersect(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True):
                """
                gmsh.model.occ.intersect(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True)
    
                Compute the boolean intersection (the common parts) of the entities
                `objectDimTags' and `toolDimTags' in the OpenCASCADE CAD representation.
                Return the resulting entities in `outDimTags'. If `tag' is positive, try to
                set the tag explicitly (only valid if the boolean operation results in a
                single entity). Remove the object if `removeObject' is set. Remove the tool
                if `removeTool' is set.
    
                Return `outDimTags', `outDimTagsMap'.
                """
                api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags)
                api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccIntersect(
                    api_objectDimTags_, api_objectDimTags_n_,
                    api_toolDimTags_, api_toolDimTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_),
                    c_int(tag),
                    c_int(bool(removeObject)),
                    c_int(bool(removeTool)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorpair(api_outDimTags_, api_outDimTags_n_.value),
                    _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_))
    
            @staticmethod
            def cut(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True):
                """
                gmsh.model.occ.cut(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True)
    
                Compute the boolean difference between the entities `objectDimTags' and
                `toolDimTags' in the OpenCASCADE CAD representation. Return the resulting
                entities in `outDimTags'. If `tag' is positive, try to set the tag
                explicitly (only valid if the boolean operation results in a single
                entity). Remove the object if `removeObject' is set. Remove the tool if
                `removeTool' is set.
    
                Return `outDimTags', `outDimTagsMap'.
                """
                api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags)
                api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccCut(
                    api_objectDimTags_, api_objectDimTags_n_,
                    api_toolDimTags_, api_toolDimTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_),
                    c_int(tag),
                    c_int(bool(removeObject)),
                    c_int(bool(removeTool)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorpair(api_outDimTags_, api_outDimTags_n_.value),
                    _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_))
    
            @staticmethod
            def fragment(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True):
                """
                gmsh.model.occ.fragment(objectDimTags, toolDimTags, tag=-1, removeObject=True, removeTool=True)
    
                Compute the boolean fragments (general fuse) resulting from the
                intersection of the entities `objectDimTags' and `toolDimTags' in the
                OpenCASCADE CAD representation, making all iterfaces conformal. When
                applied to entities of different dimensions, the lower dimensional entities
                will be automatically embedded in the higher dimensional entities if they
                are not on their boundary. Return the resulting entities in `outDimTags'.
                If `tag' is positive, try to set the tag explicitly (only valid if the
                boolean operation results in a single entity). Remove the object if
                `removeObject' is set. Remove the tool if `removeTool' is set.
    
                Return `outDimTags', `outDimTagsMap'.
                """
                api_objectDimTags_, api_objectDimTags_n_ = _ivectorpair(objectDimTags)
                api_toolDimTags_, api_toolDimTags_n_ = _ivectorpair(toolDimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_ = POINTER(POINTER(c_int))(), POINTER(c_size_t)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccFragment(
                    api_objectDimTags_, api_objectDimTags_n_,
                    api_toolDimTags_, api_toolDimTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    byref(api_outDimTagsMap_), byref(api_outDimTagsMap_n_), byref(api_outDimTagsMap_nn_),
                    c_int(tag),
                    c_int(bool(removeObject)),
                    c_int(bool(removeTool)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    _ovectorpair(api_outDimTags_, api_outDimTags_n_.value),
                    _ovectorvectorpair(api_outDimTagsMap_, api_outDimTagsMap_n_, api_outDimTagsMap_nn_))
    
            @staticmethod
            def translate(dimTags, dx, dy, dz):
                """
                gmsh.model.occ.translate(dimTags, dx, dy, dz)
    
                Translate the entities `dimTags' in the OpenCASCADE CAD representation
                along (`dx', `dy', `dz').
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelOccTranslate(
                    api_dimTags_, api_dimTags_n_,
                    c_double(dx),
                    c_double(dy),
                    c_double(dz),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def rotate(dimTags, x, y, z, ax, ay, az, angle):
                """
                gmsh.model.occ.rotate(dimTags, x, y, z, ax, ay, az, angle)
    
                Rotate the entities `dimTags' in the OpenCASCADE CAD representation by
                `angle' radians around the axis of revolution defined by the point (`x',
                `y', `z') and the direction (`ax', `ay', `az').
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelOccRotate(
                    api_dimTags_, api_dimTags_n_,
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(ax),
                    c_double(ay),
                    c_double(az),
                    c_double(angle),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def dilate(dimTags, x, y, z, a, b, c):
                """
                gmsh.model.occ.dilate(dimTags, x, y, z, a, b, c)
    
                Scale the entities `dimTags' in the OpenCASCADE CAD representation by
                factors `a', `b' and `c' along the three coordinate axes; use (`x', `y',
                `z') as the center of the homothetic transformation.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelOccDilate(
                    api_dimTags_, api_dimTags_n_,
                    c_double(x),
                    c_double(y),
                    c_double(z),
                    c_double(a),
                    c_double(b),
                    c_double(c),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def mirror(dimTags, a, b, c, d):
                """
                gmsh.model.occ.mirror(dimTags, a, b, c, d)
    
                Mirror the entities `dimTags' in the OpenCASCADE CAD representation, with
                respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelOccMirror(
                    api_dimTags_, api_dimTags_n_,
                    c_double(a),
                    c_double(b),
                    c_double(c),
                    c_double(d),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def symmetrize(dimTags, a, b, c, d):
                """
                gmsh.model.occ.symmetrize(dimTags, a, b, c, d)
    
                Mirror the entities `dimTags' in the OpenCASCADE CAD representation, with
                respect to the plane of equation `a' * x + `b' * y + `c' * z + `d' = 0.
                (This is a synonym for `mirror', which will be deprecated in a future
                release.)
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelOccSymmetrize(
                    api_dimTags_, api_dimTags_n_,
                    c_double(a),
                    c_double(b),
                    c_double(c),
                    c_double(d),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def affineTransform(dimTags, a):
                """
                gmsh.model.occ.affineTransform(dimTags, a)
    
                Apply a general affine transformation matrix `a' (16 entries of a 4x4
                matrix, by row; only the 12 first can be provided for convenience) to the
                entities `dimTags' in the OpenCASCADE CAD representation.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_a_, api_a_n_ = _ivectordouble(a)
                ierr = c_int()
                lib.gmshModelOccAffineTransform(
                    api_dimTags_, api_dimTags_n_,
                    api_a_, api_a_n_,
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            affine_transform = affineTransform
    
            @staticmethod
            def copy(dimTags):
                """
                gmsh.model.occ.copy(dimTags)
    
                Copy the entities `dimTags' in the OpenCASCADE CAD representation; the new
                entities are returned in `outDimTags'.
    
                Return `outDimTags'.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccCopy(
                    api_dimTags_, api_dimTags_n_,
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
    
            @staticmethod
            def remove(dimTags, recursive=False):
                """
                gmsh.model.occ.remove(dimTags, recursive=False)
    
                Remove the entities `dimTags' in the OpenCASCADE CAD representation. If
                `recursive' is true, remove all the entities on their boundaries, down to
                dimension 0.
                """
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelOccRemove(
                    api_dimTags_, api_dimTags_n_,
                    c_int(bool(recursive)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
            @staticmethod
            def removeAllDuplicates():
                """
                gmsh.model.occ.removeAllDuplicates()
    
                Remove all duplicate entities in the OpenCASCADE CAD representation
                (different entities at the same geometrical location) after intersecting
                (using boolean fragments) all highest dimensional entities.
                """
                ierr = c_int()
                lib.gmshModelOccRemoveAllDuplicates(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            remove_all_duplicates = removeAllDuplicates
    
            @staticmethod
            def healShapes(dimTags=[], tolerance=1e-8, fixDegenerated=True, fixSmallEdges=True, fixSmallFaces=True, sewFaces=True, makeSolids=True):
                """
                gmsh.model.occ.healShapes(dimTags=[], tolerance=1e-8, fixDegenerated=True, fixSmallEdges=True, fixSmallFaces=True, sewFaces=True, makeSolids=True)
    
                Apply various healing procedures to the entities `dimTags' (or to all the
                entities in the model if `dimTags' is empty) in the OpenCASCADE CAD
                representation. Return the healed entities in `outDimTags'. Available
                healing options are listed in the Gmsh reference manual.
    
                Return `outDimTags'.
                """
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                ierr = c_int()
                lib.gmshModelOccHealShapes(
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    api_dimTags_, api_dimTags_n_,
                    c_double(tolerance),
                    c_int(bool(fixDegenerated)),
                    c_int(bool(fixSmallEdges)),
                    c_int(bool(fixSmallFaces)),
                    c_int(bool(sewFaces)),
                    c_int(bool(makeSolids)),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
            heal_shapes = healShapes
    
            @staticmethod
            def importShapes(fileName, highestDimOnly=True, format=""):
                """
                gmsh.model.occ.importShapes(fileName, highestDimOnly=True, format="")
    
                Import BREP, STEP or IGES shapes from the file `fileName' in the
                OpenCASCADE CAD representation. The imported entities are returned in
                `outDimTags'. If the optional argument `highestDimOnly' is set, only import
                the highest dimensional entities in the file. The optional argument
                `format' can be used to force the format of the file (currently "brep",
                "step" or "iges").
    
                Return `outDimTags'.
                """
                api_outDimTags_, api_outDimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccImportShapes(
                    c_char_p(fileName.encode()),
                    byref(api_outDimTags_), byref(api_outDimTags_n_),
                    c_int(bool(highestDimOnly)),
                    c_char_p(format.encode()),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_outDimTags_, api_outDimTags_n_.value)
            import_shapes = importShapes
    
            @staticmethod
            def getEntities(dim=-1):
                """
                gmsh.model.occ.getEntities(dim=-1)
    
                Get all the OpenCASCADE entities. If `dim' is >= 0, return only the
                entities of the specified dimension (e.g. points if `dim' == 0). The
                entities are returned as a vector of (dim, tag) integer pairs.
    
                Return `dimTags'.
                """
                api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccGetEntities(
                    byref(api_dimTags_), byref(api_dimTags_n_),
                    c_int(dim),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_dimTags_, api_dimTags_n_.value)
            get_entities = getEntities
    
            @staticmethod
            def getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1):
                """
                gmsh.model.occ.getEntitiesInBoundingBox(xmin, ymin, zmin, xmax, ymax, zmax, dim=-1)
    
                Get the OpenCASCADE entities in the bounding box defined by the two points
                (`xmin', `ymin', `zmin') and (`xmax', `ymax', `zmax'). If `dim' is >= 0,
                return only the entities of the specified dimension (e.g. points if `dim'
                == 0).
    
                Return `tags'.
                """
                api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccGetEntitiesInBoundingBox(
                    c_double(xmin),
                    c_double(ymin),
                    c_double(zmin),
                    c_double(xmax),
                    c_double(ymax),
                    c_double(zmax),
                    byref(api_tags_), byref(api_tags_n_),
                    c_int(dim),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectorpair(api_tags_, api_tags_n_.value)
            get_entities_in_bounding_box = getEntitiesInBoundingBox
    
            @staticmethod
            def getBoundingBox(dim, tag):
                """
                gmsh.model.occ.getBoundingBox(dim, tag)
    
                Get the bounding box (`xmin', `ymin', `zmin'), (`xmax', `ymax', `zmax') of
                the OpenCASCADE entity of dimension `dim' and tag `tag'.
    
                Return `xmin', `ymin', `zmin', `xmax', `ymax', `zmax'.
                """
                api_xmin_ = c_double()
                api_ymin_ = c_double()
                api_zmin_ = c_double()
                api_xmax_ = c_double()
                api_ymax_ = c_double()
                api_zmax_ = c_double()
                ierr = c_int()
                lib.gmshModelOccGetBoundingBox(
                    c_int(dim),
                    c_int(tag),
                    byref(api_xmin_),
                    byref(api_ymin_),
                    byref(api_zmin_),
                    byref(api_xmax_),
                    byref(api_ymax_),
                    byref(api_zmax_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    api_xmin_.value,
                    api_ymin_.value,
                    api_zmin_.value,
                    api_xmax_.value,
                    api_ymax_.value,
                    api_zmax_.value)
            get_bounding_box = getBoundingBox
    
            @staticmethod
            def getMass(dim, tag):
                """
                gmsh.model.occ.getMass(dim, tag)
    
                Get the mass of the OpenCASCADE entity of dimension `dim' and tag `tag'.
    
                Return `mass'.
                """
                api_mass_ = c_double()
                ierr = c_int()
                lib.gmshModelOccGetMass(
                    c_int(dim),
                    c_int(tag),
                    byref(api_mass_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_mass_.value
            get_mass = getMass
    
            @staticmethod
            def getCenterOfMass(dim, tag):
                """
                gmsh.model.occ.getCenterOfMass(dim, tag)
    
                Get the center of mass of the OpenCASCADE entity of dimension `dim' and tag
                `tag'.
    
                Return `x', `y', `z'.
                """
                api_x_ = c_double()
                api_y_ = c_double()
                api_z_ = c_double()
                ierr = c_int()
                lib.gmshModelOccGetCenterOfMass(
                    c_int(dim),
                    c_int(tag),
                    byref(api_x_),
                    byref(api_y_),
                    byref(api_z_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return (
                    api_x_.value,
                    api_y_.value,
                    api_z_.value)
            get_center_of_mass = getCenterOfMass
    
            @staticmethod
            def getMatrixOfInertia(dim, tag):
                """
                gmsh.model.occ.getMatrixOfInertia(dim, tag)
    
                Get the matrix of inertia (by row) of the OpenCASCADE entity of dimension
                `dim' and tag `tag'.
    
                Return `mat'.
                """
                api_mat_, api_mat_n_ = POINTER(c_double)(), c_size_t()
                ierr = c_int()
                lib.gmshModelOccGetMatrixOfInertia(
                    c_int(dim),
                    c_int(tag),
                    byref(api_mat_), byref(api_mat_n_),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return _ovectordouble(api_mat_, api_mat_n_.value)
            get_matrix_of_inertia = getMatrixOfInertia
    
            @staticmethod
            def getMaxTag(dim):
                """
                gmsh.model.occ.getMaxTag(dim)
    
                Get the maximum tag of entities of dimension `dim' in the OpenCASCADE CAD
                representation.
    
                Return an integer value.
                """
                ierr = c_int()
                api_result_ = lib.gmshModelOccGetMaxTag(
                    c_int(dim),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
                return api_result_
            get_max_tag = getMaxTag
    
            @staticmethod
            def setMaxTag(dim, maxTag):
                """
                gmsh.model.occ.setMaxTag(dim, maxTag)
    
                Set the maximum tag `maxTag' for entities of dimension `dim' in the
                OpenCASCADE CAD representation.
                """
                ierr = c_int()
                lib.gmshModelOccSetMaxTag(
                    c_int(dim),
                    c_int(maxTag),
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
            set_max_tag = setMaxTag
    
            @staticmethod
            def synchronize():
                """
                gmsh.model.occ.synchronize()
    
                Synchronize the OpenCASCADE CAD representation with the current Gmsh model.
                This can be called at any time, but since it involves a non trivial amount
                of processing, the number of synchronization points should normally be
                minimized. Without synchronization the entities in the OpenCASCADE CAD
                representation are not available to any function outside of the OpenCASCADE
                CAD kernel functions.
                """
                ierr = c_int()
                lib.gmshModelOccSynchronize(
                    byref(ierr))
                if ierr.value != 0:
                    raise Exception(logger.getLastError())
    
    
            class mesh:
                """
                OpenCASCADE CAD kernel meshing constraints
                """
    
                @staticmethod
                def setSize(dimTags, size):
                    """
                    gmsh.model.occ.mesh.setSize(dimTags, size)
    
                    Set a mesh size constraint on the entities `dimTags' in the OpenCASCADE CAD
                    representation. Currently only entities of dimension 0 (points) are
                    handled.
                    """
                    api_dimTags_, api_dimTags_n_ = _ivectorpair(dimTags)
                    ierr = c_int()
                    lib.gmshModelOccMeshSetSize(
                        api_dimTags_, api_dimTags_n_,
                        c_double(size),
                        byref(ierr))
                    if ierr.value != 0:
                        raise Exception(logger.getLastError())
                set_size = setSize
    
    
    class view:
        """
        Post-processing view functions
        """
    
        @staticmethod
        def add(name, tag=-1):
            """
            gmsh.view.add(name, tag=-1)
    
            Add a new post-processing view, with name `name'. If `tag' is positive use
            it (and remove the view with that tag if it already exists), otherwise
            associate a new tag. Return the view tag.
    
            Return an integer value.
            """
            ierr = c_int()
            api_result_ = lib.gmshViewAdd(
                c_char_p(name.encode()),
                c_int(tag),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
    
        @staticmethod
        def remove(tag):
            """
            gmsh.view.remove(tag)
    
            Remove the view with tag `tag'.
            """
            ierr = c_int()
            lib.gmshViewRemove(
                c_int(tag),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def getIndex(tag):
            """
            gmsh.view.getIndex(tag)
    
            Get the index of the view with tag `tag' in the list of currently loaded
            views. This dynamic index (it can change when views are removed) is used to
            access view options.
    
            Return an integer value.
            """
            ierr = c_int()
            api_result_ = lib.gmshViewGetIndex(
                c_int(tag),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        get_index = getIndex
    
        @staticmethod
        def getTags():
            """
            gmsh.view.getTags()
    
            Get the tags of all views.
    
            Return `tags'.
            """
            api_tags_, api_tags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            lib.gmshViewGetTags(
                byref(api_tags_), byref(api_tags_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorint(api_tags_, api_tags_n_.value)
        get_tags = getTags
    
        @staticmethod
        def addModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0):
            """
            gmsh.view.addModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0)
    
            Add model-based post-processing data to the view with tag `tag'.
            `modelName' identifies the model the data is attached to. `dataType'
            specifies the type of data, currently either "NodeData", "ElementData" or
            "ElementNodeData". `step' specifies the identifier (>= 0) of the data in a
            sequence. `tags' gives the tags of the nodes or elements in the mesh to
            which the data is associated. `data' is a vector of the same length as
            `tags': each entry is the vector of double precision numbers representing
            the data associated with the corresponding tag. The optional `time'
            argument associate a time value with the data. `numComponents' gives the
            number of data components (1 for scalar data, 3 for vector data, etc.) per
            entity; if negative, it is automatically inferred (when possible) from the
            input data. `partition' allows to specify data in several sub-sets.
            """
            api_tags_, api_tags_n_ = _ivectorsize(tags)
            api_data_, api_data_n_, api_data_nn_ = _ivectorvectordouble(data)
            ierr = c_int()
            lib.gmshViewAddModelData(
                c_int(tag),
                c_int(step),
                c_char_p(modelName.encode()),
                c_char_p(dataType.encode()),
                api_tags_, api_tags_n_,
                api_data_, api_data_n_, api_data_nn_,
                c_double(time),
                c_int(numComponents),
                c_int(partition),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        add_model_data = addModelData
    
        @staticmethod
        def addHomogeneousModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0):
            """
            gmsh.view.addHomogeneousModelData(tag, step, modelName, dataType, tags, data, time=0., numComponents=-1, partition=0)
    
            Add homogeneous model-based post-processing data to the view with tag
            `tag'. The arguments have the same meaning as in `addModelData', except
            that `data' is supposed to be homogeneous and is thus flattened in a single
            vector. For data types that can lead to different data sizes per tag (like
            "ElementNodeData"), the data should be padded.
            """
            api_tags_, api_tags_n_ = _ivectorsize(tags)
            api_data_, api_data_n_ = _ivectordouble(data)
            ierr = c_int()
            lib.gmshViewAddHomogeneousModelData(
                c_int(tag),
                c_int(step),
                c_char_p(modelName.encode()),
                c_char_p(dataType.encode()),
                api_tags_, api_tags_n_,
                api_data_, api_data_n_,
                c_double(time),
                c_int(numComponents),
                c_int(partition),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        add_homogeneous_model_data = addHomogeneousModelData
    
        @staticmethod
        def getModelData(tag, step):
            """
            gmsh.view.getModelData(tag, step)
    
            Get model-based post-processing data from the view with tag `tag' at step
            `step'. Return the `data' associated to the nodes or the elements with tags
            `tags', as well as the `dataType' and the number of components
            `numComponents'.
    
            Return `dataType', `tags', `data', `time', `numComponents'.
            """
            api_dataType_ = c_char_p()
            api_tags_, api_tags_n_ = POINTER(c_size_t)(), c_size_t()
            api_data_, api_data_n_, api_data_nn_ = POINTER(POINTER(c_double))(), POINTER(c_size_t)(), c_size_t()
            api_time_ = c_double()
            api_numComponents_ = c_int()
            ierr = c_int()
            lib.gmshViewGetModelData(
                c_int(tag),
                c_int(step),
                byref(api_dataType_),
                byref(api_tags_), byref(api_tags_n_),
                byref(api_data_), byref(api_data_n_), byref(api_data_nn_),
                byref(api_time_),
                byref(api_numComponents_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ostring(api_dataType_),
                _ovectorsize(api_tags_, api_tags_n_.value),
                _ovectorvectordouble(api_data_, api_data_n_, api_data_nn_),
                api_time_.value,
                api_numComponents_.value)
        get_model_data = getModelData
    
        @staticmethod
        def getHomogeneousModelData(tag, step):
            """
            gmsh.view.getHomogeneousModelData(tag, step)
    
            Get homogeneous model-based post-processing data from the view with tag
            `tag' at step `step'. The arguments have the same meaning as in
            `getModelData', except that `data' is returned flattened in a single
            vector, with the appropriate padding if necessary.
    
            Return `dataType', `tags', `data', `time', `numComponents'.
            """
            api_dataType_ = c_char_p()
            api_tags_, api_tags_n_ = POINTER(c_size_t)(), c_size_t()
            api_data_, api_data_n_ = POINTER(c_double)(), c_size_t()
            api_time_ = c_double()
            api_numComponents_ = c_int()
            ierr = c_int()
            lib.gmshViewGetHomogeneousModelData(
                c_int(tag),
                c_int(step),
                byref(api_dataType_),
                byref(api_tags_), byref(api_tags_n_),
                byref(api_data_), byref(api_data_n_),
                byref(api_time_),
                byref(api_numComponents_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ostring(api_dataType_),
                _ovectorsize(api_tags_, api_tags_n_.value),
                _ovectordouble(api_data_, api_data_n_.value),
                api_time_.value,
                api_numComponents_.value)
        get_homogeneous_model_data = getHomogeneousModelData
    
        @staticmethod
        def addListData(tag, dataType, numEle, data):
            """
            gmsh.view.addListData(tag, dataType, numEle, data)
    
            Add list-based post-processing data to the view with tag `tag'. List-based
            datasets are independent from any model and any mesh. `dataType' identifies
            the data by concatenating the field type ("S" for scalar, "V" for vector,
            "T" for tensor) and the element type ("P" for point, "L" for line, "T" for
            triangle, "S" for tetrahedron, "I" for prism, "H" for hexaHedron, "Y" for
            pyramid). For example `dataType' should be "ST" for a scalar field on
            triangles. `numEle' gives the number of elements in the data. `data'
            contains the data for the `numEle' elements, concatenated, with node
            coordinates followed by values per node, repeated for each step: [e1x1,
            ..., e1xn, e1y1, ..., e1yn, e1z1, ..., e1zn, e1v1..., e1vN, e2x1, ...].
            """
            api_data_, api_data_n_ = _ivectordouble(data)
            ierr = c_int()
            lib.gmshViewAddListData(
                c_int(tag),
                c_char_p(dataType.encode()),
                c_int(numEle),
                api_data_, api_data_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        add_list_data = addListData
    
        @staticmethod
        def getListData(tag):
            """
            gmsh.view.getListData(tag)
    
            Get list-based post-processing data from the view with tag `tag'. Return
            the types `dataTypes', the number of elements `numElements' for each data
            type and the `data' for each data type.
    
            Return `dataType', `numElements', `data'.
            """
            api_dataType_, api_dataType_n_ = POINTER(POINTER(c_char))(), c_size_t()
            api_numElements_, api_numElements_n_ = POINTER(c_int)(), c_size_t()
            api_data_, api_data_n_, api_data_nn_ = POINTER(POINTER(c_double))(), POINTER(c_size_t)(), c_size_t()
            ierr = c_int()
            lib.gmshViewGetListData(
                c_int(tag),
                byref(api_dataType_), byref(api_dataType_n_),
                byref(api_numElements_), byref(api_numElements_n_),
                byref(api_data_), byref(api_data_n_), byref(api_data_nn_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ovectorstring(api_dataType_, api_dataType_n_.value),
                _ovectorint(api_numElements_, api_numElements_n_.value),
                _ovectorvectordouble(api_data_, api_data_n_, api_data_nn_))
        get_list_data = getListData
    
        @staticmethod
        def addListDataString(tag, coord, data, style=[]):
            """
            gmsh.view.addListDataString(tag, coord, data, style=[])
    
            Add a string to a list-based post-processing view with tag `tag'. If
            `coord' contains 3 coordinates the string is positioned in the 3D model
            space ("3D string"); if it contains 2 coordinates it is positioned in the
            2D graphics viewport ("2D string"). `data' contains one or more (for
            multistep views) strings. `style' contains key-value pairs of styling
            parameters, concatenated. Available keys are "Font" (possible values:
            "Times-Roman", "Times-Bold", "Times-Italic", "Times-BoldItalic",
            "Helvetica", "Helvetica-Bold", "Helvetica-Oblique", "Helvetica-
            BoldOblique", "Courier", "Courier-Bold", "Courier-Oblique", "Courier-
            BoldOblique", "Symbol", "ZapfDingbats", "Screen"), "FontSize" and "Align"
            (possible values: "Left" or "BottomLeft", "Center" or "BottomCenter",
            "Right" or "BottomRight", "TopLeft", "TopCenter", "TopRight", "CenterLeft",
            "CenterCenter", "CenterRight").
            """
            api_coord_, api_coord_n_ = _ivectordouble(coord)
            api_data_, api_data_n_ = _ivectorstring(data)
            api_style_, api_style_n_ = _ivectorstring(style)
            ierr = c_int()
            lib.gmshViewAddListDataString(
                c_int(tag),
                api_coord_, api_coord_n_,
                api_data_, api_data_n_,
                api_style_, api_style_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        add_list_data_string = addListDataString
    
        @staticmethod
        def getListDataStrings(tag, dim):
            """
            gmsh.view.getListDataStrings(tag, dim)
    
            Get list-based post-processing data strings (2D strings if `dim' = 2, 3D
            strings if `dim' = 3) from the view with tag `tag'. Return the coordinates
            in `coord', the strings in `data' and the styles in `style'.
    
            Return `coord', `data', `style'.
            """
            api_coord_, api_coord_n_ = POINTER(c_double)(), c_size_t()
            api_data_, api_data_n_ = POINTER(POINTER(c_char))(), c_size_t()
            api_style_, api_style_n_ = POINTER(POINTER(c_char))(), c_size_t()
            ierr = c_int()
            lib.gmshViewGetListDataStrings(
                c_int(tag),
                c_int(dim),
                byref(api_coord_), byref(api_coord_n_),
                byref(api_data_), byref(api_data_n_),
                byref(api_style_), byref(api_style_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                _ovectordouble(api_coord_, api_coord_n_.value),
                _ovectorstring(api_data_, api_data_n_.value),
                _ovectorstring(api_style_, api_style_n_.value))
        get_list_data_strings = getListDataStrings
    
        @staticmethod
        def setInterpolationMatrices(tag, type, d, coef, exp, dGeo=0, coefGeo=[], expGeo=[]):
            """
            gmsh.view.setInterpolationMatrices(tag, type, d, coef, exp, dGeo=0, coefGeo=[], expGeo=[])
    
            Set interpolation matrices for the element family `type' ("Line",
            "Triangle", "Quadrangle", "Tetrahedron", "Hexahedron", "Prism", "Pyramid")
            in the view `tag'. The approximation of the values over an element is
            written as a linear combination of `d' basis functions f_i(u, v, w) =
            sum_(j = 0, ..., `d' - 1) `coef'[i][j] u^`exp'[j][0] v^`exp'[j][1]
            w^`exp'[j][2], i = 0, ..., `d'-1, with u, v, w the coordinates in the
            reference element. The `coef' matrix (of size `d' x `d') and the `exp'
            matrix (of size `d' x 3) are stored as vectors, by row. If `dGeo' is
            positive, use `coefGeo' and `expGeo' to define the interpolation of the x,
            y, z coordinates of the element in terms of the u, v, w coordinates, in
            exactly the same way. If `d' < 0, remove the interpolation matrices.
            """
            api_coef_, api_coef_n_ = _ivectordouble(coef)
            api_exp_, api_exp_n_ = _ivectordouble(exp)
            api_coefGeo_, api_coefGeo_n_ = _ivectordouble(coefGeo)
            api_expGeo_, api_expGeo_n_ = _ivectordouble(expGeo)
            ierr = c_int()
            lib.gmshViewSetInterpolationMatrices(
                c_int(tag),
                c_char_p(type.encode()),
                c_int(d),
                api_coef_, api_coef_n_,
                api_exp_, api_exp_n_,
                c_int(dGeo),
                api_coefGeo_, api_coefGeo_n_,
                api_expGeo_, api_expGeo_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_interpolation_matrices = setInterpolationMatrices
    
        @staticmethod
        def addAlias(refTag, copyOptions=False, tag=-1):
            """
            gmsh.view.addAlias(refTag, copyOptions=False, tag=-1)
    
            Add a post-processing view as an `alias' of the reference view with tag
            `refTag'. If `copyOptions' is set, copy the options of the reference view.
            If `tag' is positive use it (and remove the view with that tag if it
            already exists), otherwise associate a new tag. Return the view tag.
    
            Return an integer value.
            """
            ierr = c_int()
            api_result_ = lib.gmshViewAddAlias(
                c_int(refTag),
                c_int(bool(copyOptions)),
                c_int(tag),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        add_alias = addAlias
    
        @staticmethod
        def copyOptions(refTag, tag):
            """
            gmsh.view.copyOptions(refTag, tag)
    
            Copy the options from the view with tag `refTag' to the view with tag
            `tag'.
            """
            ierr = c_int()
            lib.gmshViewCopyOptions(
                c_int(refTag),
                c_int(tag),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        copy_options = copyOptions
    
        @staticmethod
        def combine(what, how, remove=True, copyOptions=True):
            """
            gmsh.view.combine(what, how, remove=True, copyOptions=True)
    
            Combine elements (if `what' == "elements") or steps (if `what' == "steps")
            of all views (`how' == "all"), all visible views (`how' == "visible") or
            all views having the same name (`how' == "name"). Remove original views if
            `remove' is set.
            """
            ierr = c_int()
            lib.gmshViewCombine(
                c_char_p(what.encode()),
                c_char_p(how.encode()),
                c_int(bool(remove)),
                c_int(bool(copyOptions)),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def probe(tag, x, y, z, step=-1, numComp=-1, gradient=False, tolerance=0., xElemCoord=[], yElemCoord=[], zElemCoord=[], dim=-1):
            """
            gmsh.view.probe(tag, x, y, z, step=-1, numComp=-1, gradient=False, tolerance=0., xElemCoord=[], yElemCoord=[], zElemCoord=[], dim=-1)
    
            Probe the view `tag' for its `value' at point (`x', `y', `z'). Return only
            the value at step `step' is `step' is positive. Return only values with
            `numComp' if `numComp' is positive. Return the gradient of the `value' if
            `gradient' is set. Probes with a geometrical tolerance (in the reference
            unit cube) of `tolerance' if `tolerance' is not zero. Return the result
            from the element described by its coordinates if `xElementCoord',
            `yElementCoord' and `zElementCoord' are provided. If `dim' is >= 0, return
            only elements of the specified dimension.
    
            Return `value'.
            """
            api_value_, api_value_n_ = POINTER(c_double)(), c_size_t()
            api_xElemCoord_, api_xElemCoord_n_ = _ivectordouble(xElemCoord)
            api_yElemCoord_, api_yElemCoord_n_ = _ivectordouble(yElemCoord)
            api_zElemCoord_, api_zElemCoord_n_ = _ivectordouble(zElemCoord)
            ierr = c_int()
            lib.gmshViewProbe(
                c_int(tag),
                c_double(x),
                c_double(y),
                c_double(z),
                byref(api_value_), byref(api_value_n_),
                c_int(step),
                c_int(numComp),
                c_int(bool(gradient)),
                c_double(tolerance),
                api_xElemCoord_, api_xElemCoord_n_,
                api_yElemCoord_, api_yElemCoord_n_,
                api_zElemCoord_, api_zElemCoord_n_,
                c_int(dim),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_value_, api_value_n_.value)
    
        @staticmethod
        def write(tag, fileName, append=False):
            """
            gmsh.view.write(tag, fileName, append=False)
    
            Write the view to a file `fileName'. The export format is determined by the
            file extension. Append to the file if `append' is set.
            """
            ierr = c_int()
            lib.gmshViewWrite(
                c_int(tag),
                c_char_p(fileName.encode()),
                c_int(bool(append)),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def setVisibilityPerWindow(tag, value, windowIndex=0):
            """
            gmsh.view.setVisibilityPerWindow(tag, value, windowIndex=0)
    
            Set the global visibility of the view `tag' per window to `value', where
            `windowIndex' identifies the window in the window list.
            """
            ierr = c_int()
            lib.gmshViewSetVisibilityPerWindow(
                c_int(tag),
                c_int(value),
                c_int(windowIndex),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_visibility_per_window = setVisibilityPerWindow
    
    
    class plugin:
        """
        Plugin functions
        """
    
        @staticmethod
        def setNumber(name, option, value):
            """
            gmsh.plugin.setNumber(name, option, value)
    
            Set the numerical option `option' to the value `value' for plugin `name'.
            """
            ierr = c_int()
            lib.gmshPluginSetNumber(
                c_char_p(name.encode()),
                c_char_p(option.encode()),
                c_double(value),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_number = setNumber
    
        @staticmethod
        def setString(name, option, value):
            """
            gmsh.plugin.setString(name, option, value)
    
            Set the string option `option' to the value `value' for plugin `name'.
            """
            ierr = c_int()
            lib.gmshPluginSetString(
                c_char_p(name.encode()),
                c_char_p(option.encode()),
                c_char_p(value.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_string = setString
    
        @staticmethod
        def run(name):
            """
            gmsh.plugin.run(name)
    
            Run the plugin `name'.
            """
            ierr = c_int()
            lib.gmshPluginRun(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
    
    class graphics:
        """
        Graphics functions
        """
    
        @staticmethod
        def draw():
            """
            gmsh.graphics.draw()
    
            Draw all the OpenGL scenes.
            """
            ierr = c_int()
            lib.gmshGraphicsDraw(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
    
    class fltk:
        """
        FLTK graphical user interface functions
        """
    
        @staticmethod
        def initialize():
            """
            gmsh.fltk.initialize()
    
            Create the FLTK graphical user interface. Can only be called in the main
            thread.
            """
            ierr = c_int()
            lib.gmshFltkInitialize(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def wait(time=-1.):
            """
            gmsh.fltk.wait(time=-1.)
    
            Wait at most `time' seconds for user interface events and return. If `time'
            < 0, wait indefinitely. First automatically create the user interface if it
            has not yet been initialized. Can only be called in the main thread.
            """
            ierr = c_int()
            lib.gmshFltkWait(
                c_double(time),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def update():
            """
            gmsh.fltk.update()
    
            Update the user interface (potentially creating new widgets and windows).
            First automatically create the user interface if it has not yet been
            initialized. Can only be called in the main thread: use `awake("update")'
            to trigger an update of the user interface from another thread.
            """
            ierr = c_int()
            lib.gmshFltkUpdate(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def awake(action=""):
            """
            gmsh.fltk.awake(action="")
    
            Awake the main user interface thread and process pending events, and
            optionally perform an action (currently the only `action' allowed is
            "update").
            """
            ierr = c_int()
            lib.gmshFltkAwake(
                c_char_p(action.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def lock():
            """
            gmsh.fltk.lock()
    
            Block the current thread until it can safely modify the user interface.
            """
            ierr = c_int()
            lib.gmshFltkLock(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def unlock():
            """
            gmsh.fltk.unlock()
    
            Release the lock that was set using lock.
            """
            ierr = c_int()
            lib.gmshFltkUnlock(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def run():
            """
            gmsh.fltk.run()
    
            Run the event loop of the graphical user interface, i.e. repeatedly call
            `wait()'. First automatically create the user interface if it has not yet
            been initialized. Can only be called in the main thread.
            """
            ierr = c_int()
            lib.gmshFltkRun(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def isAvailable():
            """
            gmsh.fltk.isAvailable()
    
            Check if the user interface is available (e.g. to detect if it has been
            closed).
    
            Return an integer value.
            """
            ierr = c_int()
            api_result_ = lib.gmshFltkIsAvailable(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        is_available = isAvailable
    
        @staticmethod
        def selectEntities(dim=-1):
            """
            gmsh.fltk.selectEntities(dim=-1)
    
            Select entities in the user interface. If `dim' is >= 0, return only the
            entities of the specified dimension (e.g. points if `dim' == 0).
    
            Return an integer value, `dimTags'.
            """
            api_dimTags_, api_dimTags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            api_result_ = lib.gmshFltkSelectEntities(
                byref(api_dimTags_), byref(api_dimTags_n_),
                c_int(dim),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                api_result_,
                _ovectorpair(api_dimTags_, api_dimTags_n_.value))
        select_entities = selectEntities
    
        @staticmethod
        def selectElements():
            """
            gmsh.fltk.selectElements()
    
            Select elements in the user interface.
    
            Return an integer value, `elementTags'.
            """
            api_elementTags_, api_elementTags_n_ = POINTER(c_size_t)(), c_size_t()
            ierr = c_int()
            api_result_ = lib.gmshFltkSelectElements(
                byref(api_elementTags_), byref(api_elementTags_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                api_result_,
                _ovectorsize(api_elementTags_, api_elementTags_n_.value))
        select_elements = selectElements
    
        @staticmethod
        def selectViews():
            """
            gmsh.fltk.selectViews()
    
            Select views in the user interface.
    
            Return an integer value, `viewTags'.
            """
            api_viewTags_, api_viewTags_n_ = POINTER(c_int)(), c_size_t()
            ierr = c_int()
            api_result_ = lib.gmshFltkSelectViews(
                byref(api_viewTags_), byref(api_viewTags_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return (
                api_result_,
                _ovectorint(api_viewTags_, api_viewTags_n_.value))
        select_views = selectViews
    
        @staticmethod
        def splitCurrentWindow(how="v", ratio=0.5):
            """
            gmsh.fltk.splitCurrentWindow(how="v", ratio=0.5)
    
            Split the current window horizontally (if `how' = "h") or vertically (if
            `how' = "v"), using ratio `ratio'. If `how' = "u", restore a single window.
            """
            ierr = c_int()
            lib.gmshFltkSplitCurrentWindow(
                c_char_p(how.encode()),
                c_double(ratio),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        split_current_window = splitCurrentWindow
    
        @staticmethod
        def setCurrentWindow(windowIndex=0):
            """
            gmsh.fltk.setCurrentWindow(windowIndex=0)
    
            Set the current window by speficying its index (starting at 0) in the list
            of all windows. When new windows are created by splits, new windows are
            appended at the end of the list.
            """
            ierr = c_int()
            lib.gmshFltkSetCurrentWindow(
                c_int(windowIndex),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_current_window = setCurrentWindow
    
        @staticmethod
        def setStatusMessage(message, graphics=False):
            """
            gmsh.fltk.setStatusMessage(message, graphics=False)
    
            Set a status message in the current window. If `graphics' is set, display
            the message inside the graphic window instead of the status bar.
            """
            ierr = c_int()
            lib.gmshFltkSetStatusMessage(
                c_char_p(message.encode()),
                c_int(bool(graphics)),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_status_message = setStatusMessage
    
        @staticmethod
        def showContextWindow(dim, tag):
            """
            gmsh.fltk.showContextWindow(dim, tag)
    
            Show context window for the entity of dimension `dim' and tag `tag'.
            """
            ierr = c_int()
            lib.gmshFltkShowContextWindow(
                c_int(dim),
                c_int(tag),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        show_context_window = showContextWindow
    
        @staticmethod
        def openTreeItem(name):
            """
            gmsh.fltk.openTreeItem(name)
    
            Open the `name' item in the menu tree.
            """
            ierr = c_int()
            lib.gmshFltkOpenTreeItem(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        open_tree_item = openTreeItem
    
        @staticmethod
        def closeTreeItem(name):
            """
            gmsh.fltk.closeTreeItem(name)
    
            Close the `name' item in the menu tree.
            """
            ierr = c_int()
            lib.gmshFltkCloseTreeItem(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        close_tree_item = closeTreeItem
    
    
    class onelab:
        """
        ONELAB server functions
        """
    
        @staticmethod
        def set(data, format="json"):
            """
            gmsh.onelab.set(data, format="json")
    
            Set one or more parameters in the ONELAB database, encoded in `format'.
            """
            ierr = c_int()
            lib.gmshOnelabSet(
                c_char_p(data.encode()),
                c_char_p(format.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def get(name="", format="json"):
            """
            gmsh.onelab.get(name="", format="json")
    
            Get all the parameters (or a single one if `name' is specified) from the
            ONELAB database, encoded in `format'.
    
            Return `data'.
            """
            api_data_ = c_char_p()
            ierr = c_int()
            lib.gmshOnelabGet(
                byref(api_data_),
                c_char_p(name.encode()),
                c_char_p(format.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ostring(api_data_)
    
        @staticmethod
        def getNames(search=""):
            """
            gmsh.onelab.getNames(search="")
    
            Get the names of the parameters in the ONELAB database matching the
            `search' regular expression. If `search' is empty, return all the names.
    
            Return `names'.
            """
            api_names_, api_names_n_ = POINTER(POINTER(c_char))(), c_size_t()
            ierr = c_int()
            lib.gmshOnelabGetNames(
                byref(api_names_), byref(api_names_n_),
                c_char_p(search.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorstring(api_names_, api_names_n_.value)
        get_names = getNames
    
        @staticmethod
        def setNumber(name, value):
            """
            gmsh.onelab.setNumber(name, value)
    
            Set the value of the number parameter `name' in the ONELAB database. Create
            the parameter if it does not exist; update the value if the parameter
            exists.
            """
            api_value_, api_value_n_ = _ivectordouble(value)
            ierr = c_int()
            lib.gmshOnelabSetNumber(
                c_char_p(name.encode()),
                api_value_, api_value_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_number = setNumber
    
        @staticmethod
        def setString(name, value):
            """
            gmsh.onelab.setString(name, value)
    
            Set the value of the string parameter `name' in the ONELAB database. Create
            the parameter if it does not exist; update the value if the parameter
            exists.
            """
            api_value_, api_value_n_ = _ivectorstring(value)
            ierr = c_int()
            lib.gmshOnelabSetString(
                c_char_p(name.encode()),
                api_value_, api_value_n_,
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
        set_string = setString
    
        @staticmethod
        def getNumber(name):
            """
            gmsh.onelab.getNumber(name)
    
            Get the value of the number parameter `name' from the ONELAB database.
            Return an empty vector if the parameter does not exist.
    
            Return `value'.
            """
            api_value_, api_value_n_ = POINTER(c_double)(), c_size_t()
            ierr = c_int()
            lib.gmshOnelabGetNumber(
                c_char_p(name.encode()),
                byref(api_value_), byref(api_value_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectordouble(api_value_, api_value_n_.value)
        get_number = getNumber
    
        @staticmethod
        def getString(name):
            """
            gmsh.onelab.getString(name)
    
            Get the value of the string parameter `name' from the ONELAB database.
            Return an empty vector if the parameter does not exist.
    
            Return `value'.
            """
            api_value_, api_value_n_ = POINTER(POINTER(c_char))(), c_size_t()
            ierr = c_int()
            lib.gmshOnelabGetString(
                c_char_p(name.encode()),
                byref(api_value_), byref(api_value_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorstring(api_value_, api_value_n_.value)
        get_string = getString
    
        @staticmethod
        def clear(name=""):
            """
            gmsh.onelab.clear(name="")
    
            Clear the ONELAB database, or remove a single parameter if `name' is given.
            """
            ierr = c_int()
            lib.gmshOnelabClear(
                c_char_p(name.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def run(name="", command=""):
            """
            gmsh.onelab.run(name="", command="")
    
            Run a ONELAB client. If `name' is provided, create a new ONELAB client with
            name `name' and executes `command'. If not, try to run a client that might
            be linked to the processed input files.
            """
            ierr = c_int()
            lib.gmshOnelabRun(
                c_char_p(name.encode()),
                c_char_p(command.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
    
    class logger:
        """
        Information logging functions
        """
    
        @staticmethod
        def write(message, level="info"):
            """
            gmsh.logger.write(message, level="info")
    
            Write a `message'. `level' can be "info", "warning" or "error".
            """
            ierr = c_int()
            lib.gmshLoggerWrite(
                c_char_p(message.encode()),
                c_char_p(level.encode()),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def start():
            """
            gmsh.logger.start()
    
            Start logging messages.
            """
            ierr = c_int()
            lib.gmshLoggerStart(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def get():
            """
            gmsh.logger.get()
    
            Get logged messages.
    
            Return `log'.
            """
            api_log_, api_log_n_ = POINTER(POINTER(c_char))(), c_size_t()
            ierr = c_int()
            lib.gmshLoggerGet(
                byref(api_log_), byref(api_log_n_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return _ovectorstring(api_log_, api_log_n_.value)
    
        @staticmethod
        def stop():
            """
            gmsh.logger.stop()
    
            Stop logging messages.
            """
            ierr = c_int()
            lib.gmshLoggerStop(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
    
        @staticmethod
        def getWallTime():
            """
            gmsh.logger.getWallTime()
    
            Return wall clock time.
    
            Return a floating point value.
            """
            ierr = c_int()
            lib.gmshLoggerGetWallTime.restype = c_double
            api_result_ = lib.gmshLoggerGetWallTime(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        get_wall_time = getWallTime
    
        @staticmethod
        def getCpuTime():
            """
            gmsh.logger.getCpuTime()
    
            Return CPU time.
    
            Return a floating point value.
            """
            ierr = c_int()
            lib.gmshLoggerGetCpuTime.restype = c_double
            api_result_ = lib.gmshLoggerGetCpuTime(
                byref(ierr))
            if ierr.value != 0:
                raise Exception(logger.getLastError())
            return api_result_
        get_cpu_time = getCpuTime
    
        @staticmethod
        def getLastError():
            """
            gmsh.logger.getLastError()
    
            Return last error message, if any.
    
            Return `error'.
            """
            api_error_ = c_char_p()
            ierr = c_int()
            lib.gmshLoggerGetLastError(
                byref(api_error_),
                byref(ierr))
            if ierr.value != 0:
                raise Exception('Could not get last error')
            return _ostring(api_error_)
        get_last_error = getLastError