Newer
Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
#include "entity_data.h"
#include "maxwell_interface.h"
#include "kernels_gpu.h"
namespace maxwell {
template<bool e_field>
__global__ void
gpu_compute_jumps_kernel(const double * __restrict field,
const size_t * __restrict__ fluxdofs_mine,
const size_t * __restrict__ fluxdofs_other,
double * __restrict__ jumps,
const double * __restrict__ bcjc,
size_t base, size_t max)
{
int32_t flux_ofs = blockIdx.x * blockDim.x + threadIdx.x;
if (flux_ofs >= max)
return;
auto idx_mine = fluxdofs_mine[flux_ofs];
auto idx_neigh = fluxdofs_other[flux_ofs];
if (idx_mine == NOT_PRESENT)
return;
if (idx_neigh != NOT_PRESENT)
{
jumps[base + flux_ofs] = field[idx_mine] - field[idx_neigh];
}
else
{
double bc_coeff = bcjc[base + flux_ofs];
if constexpr(e_field)
jumps[base + flux_ofs] = bc_coeff*field[idx_mine];
else
jumps[base + flux_ofs] = (2.0 - bc_coeff)*field[idx_mine];
}
}
void
gpu_compute_jumps(const entity_data_gpu& edg, const field_gpu& in, field_gpu& jumps,
double *bc_coeffs, cudaStream_t stream)
{
static const size_t JUMP_THREADS = 256;
auto num_all_fluxes = edg.num_all_elems*edg.num_fluxes*edg.num_faces_per_elem;
auto gs = num_all_fluxes/JUMP_THREADS;
if (num_all_fluxes % JUMP_THREADS != 0)
gs += 1;
dim3 grid_size(gs);
dim3 threads_per_block(JUMP_THREADS);
/* Compute E-field jumps */
gpu_compute_jumps_kernel<true><<<gs, threads_per_block, 0, stream>>>(in.Ex.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Ex.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<true><<<gs, threads_per_block, 0, stream>>>(in.Ey.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Ey.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<true><<<gs, threads_per_block, 0, stream>>>(in.Ez.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Ez.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
/* Compute H-field jumps */
gpu_compute_jumps_kernel<false><<<gs, threads_per_block, 0, stream>>>(in.Hx.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Hx.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<false><<<gs, threads_per_block, 0, stream>>>(in.Hy.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Hy.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<false><<<gs, threads_per_block, 0, stream>>>(in.Hz.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Hz.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
}
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
void
gpu_compute_jumps_E(const entity_data_gpu& edg, const field_gpu& in, field_gpu& jumps,
double *bc_coeffs, cudaStream_t stream)
{
static const size_t JUMP_THREADS = 256;
auto num_all_fluxes = edg.num_all_elems*edg.num_fluxes*edg.num_faces_per_elem;
auto gs = num_all_fluxes/JUMP_THREADS;
if (num_all_fluxes % JUMP_THREADS != 0)
gs += 1;
dim3 grid_size(gs);
dim3 threads_per_block(JUMP_THREADS);
/* Compute E-field jumps */
gpu_compute_jumps_kernel<true><<<gs, threads_per_block, 0, stream>>>(in.Ex.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Ex.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<true><<<gs, threads_per_block, 0, stream>>>(in.Ey.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Ey.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<true><<<gs, threads_per_block, 0, stream>>>(in.Ez.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Ez.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
}
void
gpu_compute_jumps_H(const entity_data_gpu& edg, const field_gpu& in, field_gpu& jumps,
double *bc_coeffs, cudaStream_t stream)
{
static const size_t JUMP_THREADS = 256;
auto num_all_fluxes = edg.num_all_elems*edg.num_fluxes*edg.num_faces_per_elem;
auto gs = num_all_fluxes/JUMP_THREADS;
if (num_all_fluxes % JUMP_THREADS != 0)
gs += 1;
dim3 grid_size(gs);
dim3 threads_per_block(JUMP_THREADS);
/* Compute H-field jumps */
gpu_compute_jumps_kernel<false><<<gs, threads_per_block, 0, stream>>>(in.Hx.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Hx.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<false><<<gs, threads_per_block, 0, stream>>>(in.Hy.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Hy.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
gpu_compute_jumps_kernel<false><<<gs, threads_per_block, 0, stream>>>(in.Hz.data(),
edg.fluxdofs_mine.data(), edg.fluxdofs_neigh.data(), jumps.Hz.data(),
bc_coeffs, edg.flux_base, num_all_fluxes);
checkGPU(cudaPeekAtLastError());
}
template<size_t K>
__global__ void
gpu_compute_fluxes_kernel_planar(field_gpu::const_raw_ptrs jump, field_gpu::raw_ptrs flux,
field_gpu::const_raw_ptrs bndsrc, material_params_gpu::const_raw_ptrs fcp,
const double * __restrict__ face_dets, const double * __restrict__ face_normals,
size_t flux_base, size_t num_fluxes)
{
using KS = kernel_gpu_sizes<K>;
auto local_dof_pos = blockIdx.x * blockDim.x + threadIdx.x;
auto global_dof_pos = flux_base + local_dof_pos;
auto entry_num = local_dof_pos/KS::num_fluxes;
if (local_dof_pos >= num_fluxes)
return;
auto face_det = face_dets[entry_num];
auto nx = face_normals[3*entry_num + 0];
auto ny = face_normals[3*entry_num + 1];
auto nz = face_normals[3*entry_num + 2];
auto jEx = jump.Ex[global_dof_pos] - bndsrc.Ex[global_dof_pos];
auto jEy = jump.Ey[global_dof_pos] - bndsrc.Ey[global_dof_pos];
auto jEz = jump.Ez[global_dof_pos] - bndsrc.Ez[global_dof_pos];
auto jHx = jump.Hx[global_dof_pos] + bndsrc.Hx[global_dof_pos];
auto jHy = jump.Hy[global_dof_pos] + bndsrc.Hy[global_dof_pos];
auto jHz = jump.Hz[global_dof_pos] + bndsrc.Hz[global_dof_pos];
auto ndotE = nx*jEx + ny*jEy + nz*jEz;
auto ndotH = nx*jHx + ny*jHy + nz*jHz;
auto aE = face_det * fcp.aE[global_dof_pos];
auto bE = face_det * fcp.bE[global_dof_pos];
auto aH = face_det * fcp.aH[global_dof_pos];
auto bH = face_det * fcp.bH[global_dof_pos];
flux.Ex[global_dof_pos] = aE*(nz*jHy - ny*jHz) + bE*(ndotE*nx - jEx);
flux.Ey[global_dof_pos] = aE*(nx*jHz - nz*jHx) + bE*(ndotE*ny - jEy);
flux.Ez[global_dof_pos] = aE*(ny*jHx - nx*jHy) + bE*(ndotE*nz - jEz);
flux.Hx[global_dof_pos] = aH*(ny*jEz - nz*jEy) + bH*(ndotH*nx - jHx);
flux.Hy[global_dof_pos] = aH*(nz*jEx - nx*jEz) + bH*(ndotH*ny - jHy);
flux.Hz[global_dof_pos] = aH*(nx*jEy - ny*jEx) + bH*(ndotH*nz - jHz);
}
template<size_t K>
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
__global__ void
gpu_compute_fluxes_kernel_planar_E(field_gpu::const_raw_ptrs jump, field_gpu::raw_ptrs flux,
field_gpu::const_raw_ptrs bndsrc, material_params_gpu::const_raw_ptrs fcp,
const double * __restrict__ face_dets, const double * __restrict__ face_normals,
size_t flux_base, size_t num_fluxes)
{
using KS = kernel_gpu_sizes<K>;
auto local_dof_pos = blockIdx.x * blockDim.x + threadIdx.x;
auto global_dof_pos = flux_base + local_dof_pos;
auto entry_num = local_dof_pos/KS::num_fluxes;
if (local_dof_pos >= num_fluxes)
return;
auto face_det = face_dets[entry_num];
auto nx = face_normals[3*entry_num + 0];
auto ny = face_normals[3*entry_num + 1];
auto nz = face_normals[3*entry_num + 2];
auto jEx = jump.Ex[global_dof_pos] - bndsrc.Ex[global_dof_pos];
auto jEy = jump.Ey[global_dof_pos] - bndsrc.Ey[global_dof_pos];
auto jEz = jump.Ez[global_dof_pos] - bndsrc.Ez[global_dof_pos];
auto jHx = jump.Hx[global_dof_pos] + bndsrc.Hx[global_dof_pos];
auto jHy = jump.Hy[global_dof_pos] + bndsrc.Hy[global_dof_pos];
auto jHz = jump.Hz[global_dof_pos] + bndsrc.Hz[global_dof_pos];
auto ndotE = nx*jEx + ny*jEy + nz*jEz;
auto aE = face_det * fcp.aE[global_dof_pos];
auto bE = face_det * fcp.bE[global_dof_pos];
flux.Ex[global_dof_pos] = aE*(nz*jHy - ny*jHz) + bE*(ndotE*nx - jEx);
flux.Ey[global_dof_pos] = aE*(nx*jHz - nz*jHx) + bE*(ndotE*ny - jEy);
flux.Ez[global_dof_pos] = aE*(ny*jHx - nx*jHy) + bE*(ndotE*nz - jEz);
}
template<size_t K>
__global__ void
gpu_compute_fluxes_kernel_planar_H(field_gpu::const_raw_ptrs jump, field_gpu::raw_ptrs flux,
field_gpu::const_raw_ptrs bndsrc, material_params_gpu::const_raw_ptrs fcp,
const double * __restrict__ face_dets, const double * __restrict__ face_normals,
size_t flux_base, size_t num_fluxes)
{
using KS = kernel_gpu_sizes<K>;
auto local_dof_pos = blockIdx.x * blockDim.x + threadIdx.x;
auto global_dof_pos = flux_base + local_dof_pos;
auto entry_num = local_dof_pos/KS::num_fluxes;
if (local_dof_pos >= num_fluxes)
return;
auto face_det = face_dets[entry_num];
auto nx = face_normals[3*entry_num + 0];
auto ny = face_normals[3*entry_num + 1];
auto nz = face_normals[3*entry_num + 2];
auto jEx = jump.Ex[global_dof_pos] - bndsrc.Ex[global_dof_pos];
auto jEy = jump.Ey[global_dof_pos] - bndsrc.Ey[global_dof_pos];
auto jEz = jump.Ez[global_dof_pos] - bndsrc.Ez[global_dof_pos];
auto jHx = jump.Hx[global_dof_pos] + bndsrc.Hx[global_dof_pos];
auto jHy = jump.Hy[global_dof_pos] + bndsrc.Hy[global_dof_pos];
auto jHz = jump.Hz[global_dof_pos] + bndsrc.Hz[global_dof_pos];
auto ndotH = nx*jHx + ny*jHy + nz*jHz;
auto aH = face_det * fcp.aH[global_dof_pos];
auto bH = face_det * fcp.bH[global_dof_pos];
flux.Hx[global_dof_pos] = aH*(ny*jEz - nz*jEy) + bH*(ndotH*nx - jHx);
flux.Hy[global_dof_pos] = aH*(nz*jEx - nx*jEz) + bH*(ndotH*ny - jHy);
flux.Hz[global_dof_pos] = aH*(nx*jEy - ny*jEx) + bH*(ndotH*nz - jHz);
}
template<size_t K, typename Kernel>
launch_compute_fluxes_kernel(Kernel& kernel, const entity_data_gpu& edg, const field_gpu& jumps,
field_gpu& fluxes, const field_gpu& bndsrc, const material_params_gpu& fcp,
cudaStream_t stream)
{
static const size_t FLUX_THREADS = 256;
auto num_all_fluxes = edg.num_all_elems*edg.num_fluxes*edg.num_faces_per_elem;
auto gs = num_all_fluxes/FLUX_THREADS;
if (num_all_fluxes % FLUX_THREADS != 0)
gs += 1;
dim3 grid_size(gs);
auto jp = jumps.data();
auto fp = fluxes.data();
auto pp = fcp.data();
auto bs = bndsrc.data();
kernel<<<gs, FLUX_THREADS, 0, stream>>>(jp, fp, bs, pp,
edg.face_determinants.data(), edg.normals.data(), edg.flux_base,
num_all_fluxes);
}
void
gpu_compute_fluxes(const entity_data_gpu& edg, const field_gpu& jumps,
field_gpu& fluxes, const field_gpu& bndsrc, const material_params_gpu& fcp,
cudaStream_t stream)
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
case 1: launch_compute_fluxes_kernel<1>(gpu_compute_fluxes_kernel_planar<1>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 2: launch_compute_fluxes_kernel<2>(gpu_compute_fluxes_kernel_planar<2>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 3: launch_compute_fluxes_kernel<3>(gpu_compute_fluxes_kernel_planar<3>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 4: launch_compute_fluxes_kernel<4>(gpu_compute_fluxes_kernel_planar<4>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 5: launch_compute_fluxes_kernel<5>(gpu_compute_fluxes_kernel_planar<5>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 6: launch_compute_fluxes_kernel<6>(gpu_compute_fluxes_kernel_planar<6>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
default: throw std::invalid_argument("unsupported order");
}
}
void
gpu_compute_fluxes_E(const entity_data_gpu& edg, const field_gpu& jumps,
field_gpu& fluxes, const field_gpu& bndsrc, const material_params_gpu& fcp,
cudaStream_t stream)
{
switch( edg.a_order )
{
case 1: launch_compute_fluxes_kernel<1>(gpu_compute_fluxes_kernel_planar_E<1>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 2: launch_compute_fluxes_kernel<2>(gpu_compute_fluxes_kernel_planar_E<2>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 3: launch_compute_fluxes_kernel<3>(gpu_compute_fluxes_kernel_planar_E<3>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 4: launch_compute_fluxes_kernel<4>(gpu_compute_fluxes_kernel_planar_E<4>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 5: launch_compute_fluxes_kernel<5>(gpu_compute_fluxes_kernel_planar_E<5>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 6: launch_compute_fluxes_kernel<6>(gpu_compute_fluxes_kernel_planar_E<6>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
default: throw std::invalid_argument("unsupported order");
}
}
void
gpu_compute_fluxes_H(const entity_data_gpu& edg, const field_gpu& jumps,
field_gpu& fluxes, const field_gpu& bndsrc, const material_params_gpu& fcp,
cudaStream_t stream)
{
switch( edg.a_order )
{
case 1: launch_compute_fluxes_kernel<1>(gpu_compute_fluxes_kernel_planar_H<1>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 2: launch_compute_fluxes_kernel<2>(gpu_compute_fluxes_kernel_planar_H<2>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 3: launch_compute_fluxes_kernel<3>(gpu_compute_fluxes_kernel_planar_H<3>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 4: launch_compute_fluxes_kernel<4>(gpu_compute_fluxes_kernel_planar_H<4>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 5: launch_compute_fluxes_kernel<5>(gpu_compute_fluxes_kernel_planar_H<5>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
case 6: launch_compute_fluxes_kernel<6>(gpu_compute_fluxes_kernel_planar_H<6>,
edg, jumps, fluxes, bndsrc, fcp, stream);
break;
default: throw std::invalid_argument("unsupported order");
}
}
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
__global__ void
gpu_bndsrcs_decompress_kernel(const size_t *dtable, const field_gpu::const_raw_ptrs csrcs,
field_gpu::raw_ptrs srcs)
{
auto cdof = blockIdx.x * blockDim.x + threadIdx.x;
if (cdof >= csrcs.num_dofs)
return;
auto ddof = dtable[cdof];
srcs.Ex[ddof] = csrcs.Ex[cdof];
srcs.Ey[ddof] = csrcs.Ey[cdof];
srcs.Ez[ddof] = csrcs.Ez[cdof];
srcs.Hx[ddof] = csrcs.Hx[cdof];
srcs.Hy[ddof] = csrcs.Hy[cdof];
srcs.Hz[ddof] = csrcs.Hz[cdof];
}
void
decompress_bndsrc(const solver_state_gpu& state, const field_gpu& csrcs, field_gpu& srcs)
{
static const size_t DECOMPRESS_THREADS = 256;
auto num_cdofs = csrcs.num_dofs;
auto gs = num_cdofs/DECOMPRESS_THREADS;
if (num_cdofs % DECOMPRESS_THREADS != 0)
gs += 1;
dim3 grid_size(gs);
gpu_bndsrcs_decompress_kernel<<<gs, DECOMPRESS_THREADS, 0, state.compute_stream>>>(
state.bndsrcs_decomp_table.data(), csrcs.data(), srcs.data());
}